blob: 0d16260f4b082585b3b1379d6701b64064a9d87d [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/logging.h"
#include "calling_convention_arm.h"
#include "handle_scope-inl.h"
#include "utils/arm/managed_register_arm.h"
namespace art {
namespace arm {
static_assert(kArmPointerSize == PointerSize::k32, "Unexpected ARM pointer size");
// Used by hard float.
static const Register kHFCoreArgumentRegisters[] = {
R0, R1, R2, R3
};
static const SRegister kHFSArgumentRegisters[] = {
S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15
};
static const DRegister kHFDArgumentRegisters[] = {
D0, D1, D2, D3, D4, D5, D6, D7
};
static_assert(arraysize(kHFDArgumentRegisters) * 2 == arraysize(kHFSArgumentRegisters),
"ks d argument registers mismatch");
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
ArmManagedRegister::FromCoreRegister(R5),
ArmManagedRegister::FromCoreRegister(R6),
ArmManagedRegister::FromCoreRegister(R7),
ArmManagedRegister::FromCoreRegister(R8),
ArmManagedRegister::FromCoreRegister(R10),
ArmManagedRegister::FromCoreRegister(R11),
// Hard float registers.
ArmManagedRegister::FromSRegister(S16),
ArmManagedRegister::FromSRegister(S17),
ArmManagedRegister::FromSRegister(S18),
ArmManagedRegister::FromSRegister(S19),
ArmManagedRegister::FromSRegister(S20),
ArmManagedRegister::FromSRegister(S21),
ArmManagedRegister::FromSRegister(S22),
ArmManagedRegister::FromSRegister(S23),
ArmManagedRegister::FromSRegister(S24),
ArmManagedRegister::FromSRegister(S25),
ArmManagedRegister::FromSRegister(S26),
ArmManagedRegister::FromSRegister(S27),
ArmManagedRegister::FromSRegister(S28),
ArmManagedRegister::FromSRegister(S29),
ArmManagedRegister::FromSRegister(S30),
ArmManagedRegister::FromSRegister(S31)
};
static constexpr uint32_t CalculateCoreCalleeSpillMask() {
// LR is a special callee save which is not reported by CalleeSaveRegisters().
uint32_t result = 1 << LR;
for (auto&& r : kCalleeSaveRegisters) {
if (r.AsArm().IsCoreRegister()) {
result |= (1 << r.AsArm().AsCoreRegister());
}
}
return result;
}
static constexpr uint32_t CalculateFpCalleeSpillMask() {
uint32_t result = 0;
for (auto&& r : kCalleeSaveRegisters) {
if (r.AsArm().IsSRegister()) {
result |= (1 << r.AsArm().AsSRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask();
// Calling convention
ManagedRegister ArmManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
return ArmManagedRegister::FromCoreRegister(IP); // R12
}
ManagedRegister ArmJniCallingConvention::InterproceduralScratchRegister() {
return ArmManagedRegister::FromCoreRegister(IP); // R12
}
ManagedRegister ArmManagedRuntimeCallingConvention::ReturnRegister() {
if (kArm32QuickCodeUseSoftFloat) {
switch (GetShorty()[0]) {
case 'V':
return ArmManagedRegister::NoRegister();
case 'D':
case 'J':
return ArmManagedRegister::FromRegisterPair(R0_R1);
default:
return ArmManagedRegister::FromCoreRegister(R0);
}
} else {
switch (GetShorty()[0]) {
case 'V':
return ArmManagedRegister::NoRegister();
case 'D':
return ArmManagedRegister::FromDRegister(D0);
case 'F':
return ArmManagedRegister::FromSRegister(S0);
case 'J':
return ArmManagedRegister::FromRegisterPair(R0_R1);
default:
return ArmManagedRegister::FromCoreRegister(R0);
}
}
}
ManagedRegister ArmJniCallingConvention::ReturnRegister() {
switch (GetShorty()[0]) {
case 'V':
return ArmManagedRegister::NoRegister();
case 'D':
case 'J':
return ArmManagedRegister::FromRegisterPair(R0_R1);
default:
return ArmManagedRegister::FromCoreRegister(R0);
}
}
ManagedRegister ArmJniCallingConvention::IntReturnRegister() {
return ArmManagedRegister::FromCoreRegister(R0);
}
// Managed runtime calling convention
ManagedRegister ArmManagedRuntimeCallingConvention::MethodRegister() {
return ArmManagedRegister::FromCoreRegister(R0);
}
bool ArmManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
return false; // Everything moved to stack on entry.
}
bool ArmManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
return true;
}
ManagedRegister ArmManagedRuntimeCallingConvention::CurrentParamRegister() {
LOG(FATAL) << "Should not reach here";
return ManagedRegister::NoRegister();
}
FrameOffset ArmManagedRuntimeCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
FrameOffset result =
FrameOffset(displacement_.Int32Value() + // displacement
kFramePointerSize + // Method*
(itr_slots_ * kFramePointerSize)); // offset into in args
return result;
}
const ManagedRegisterEntrySpills& ArmManagedRuntimeCallingConvention::EntrySpills() {
// We spill the argument registers on ARM to free them up for scratch use, we then assume
// all arguments are on the stack.
if (kArm32QuickCodeUseSoftFloat) {
if (entry_spills_.size() == 0) {
size_t num_spills = NumArgs() + NumLongOrDoubleArgs();
if (num_spills > 0) {
entry_spills_.push_back(ArmManagedRegister::FromCoreRegister(R1));
if (num_spills > 1) {
entry_spills_.push_back(ArmManagedRegister::FromCoreRegister(R2));
if (num_spills > 2) {
entry_spills_.push_back(ArmManagedRegister::FromCoreRegister(R3));
}
}
}
}
} else {
if ((entry_spills_.size() == 0) && (NumArgs() > 0)) {
uint32_t gpr_index = 1; // R0 ~ R3. Reserve r0 for ArtMethod*.
uint32_t fpr_index = 0; // S0 ~ S15.
uint32_t fpr_double_index = 0; // D0 ~ D7.
ResetIterator(FrameOffset(0));
while (HasNext()) {
if (IsCurrentParamAFloatOrDouble()) {
if (IsCurrentParamADouble()) { // Double.
// Double should not overlap with float.
fpr_double_index = (std::max(fpr_double_index * 2, RoundUp(fpr_index, 2))) / 2;
if (fpr_double_index < arraysize(kHFDArgumentRegisters)) {
entry_spills_.push_back(
ArmManagedRegister::FromDRegister(kHFDArgumentRegisters[fpr_double_index++]));
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 8);
}
} else { // Float.
// Float should not overlap with double.
if (fpr_index % 2 == 0) {
fpr_index = std::max(fpr_double_index * 2, fpr_index);
}
if (fpr_index < arraysize(kHFSArgumentRegisters)) {
entry_spills_.push_back(
ArmManagedRegister::FromSRegister(kHFSArgumentRegisters[fpr_index++]));
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
}
}
} else {
// FIXME: Pointer this returns as both reference and long.
if (IsCurrentParamALong() && !IsCurrentParamAReference()) { // Long.
if (gpr_index < arraysize(kHFCoreArgumentRegisters) - 1) {
// Skip R1, and use R2_R3 if the long is the first parameter.
if (gpr_index == 1) {
gpr_index++;
}
}
// If it spans register and memory, we must use the value in memory.
if (gpr_index < arraysize(kHFCoreArgumentRegisters) - 1) {
entry_spills_.push_back(
ArmManagedRegister::FromCoreRegister(kHFCoreArgumentRegisters[gpr_index++]));
} else if (gpr_index == arraysize(kHFCoreArgumentRegisters) - 1) {
gpr_index++;
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
}
}
// High part of long or 32-bit argument.
if (gpr_index < arraysize(kHFCoreArgumentRegisters)) {
entry_spills_.push_back(
ArmManagedRegister::FromCoreRegister(kHFCoreArgumentRegisters[gpr_index++]));
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
}
}
Next();
}
}
}
return entry_spills_;
}
// JNI calling convention
ArmJniCallingConvention::ArmJniCallingConvention(bool is_static, bool is_synchronized,
const char* shorty)
: JniCallingConvention(is_static, is_synchronized, shorty, kArmPointerSize) {
// Compute padding to ensure longs and doubles are not split in AAPCS. Ignore the 'this' jobject
// or jclass for static methods and the JNIEnv. We start at the aligned register r2.
size_t padding = 0;
for (size_t cur_arg = IsStatic() ? 0 : 1, cur_reg = 2; cur_arg < NumArgs(); cur_arg++) {
if (IsParamALongOrDouble(cur_arg)) {
if ((cur_reg & 1) != 0) {
padding += 4;
cur_reg++; // additional bump to ensure alignment
}
cur_reg++; // additional bump to skip extra long word
}
cur_reg++; // bump the iterator for every argument
}
padding_ = padding;
}
uint32_t ArmJniCallingConvention::CoreSpillMask() const {
// Compute spill mask to agree with callee saves initialized in the constructor
return kCoreCalleeSpillMask;
}
uint32_t ArmJniCallingConvention::FpSpillMask() const {
return kFpCalleeSpillMask;
}
ManagedRegister ArmJniCallingConvention::ReturnScratchRegister() const {
return ArmManagedRegister::FromCoreRegister(R2);
}
size_t ArmJniCallingConvention::FrameSize() {
// Method*, LR and callee save area size, local reference segment state
size_t frame_data_size = static_cast<size_t>(kArmPointerSize)
+ (2 + CalleeSaveRegisters().size()) * kFramePointerSize;
// References plus 2 words for HandleScope header
size_t handle_scope_size = HandleScope::SizeOf(kArmPointerSize, ReferenceCount());
// Plus return value spill area size
return RoundUp(frame_data_size + handle_scope_size + SizeOfReturnValue(), kStackAlignment);
}
size_t ArmJniCallingConvention::OutArgSize() {
return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize + padding_,
kStackAlignment);
}
ArrayRef<const ManagedRegister> ArmJniCallingConvention::CalleeSaveRegisters() const {
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
// JniCallingConvention ABI follows AAPCS where longs and doubles must occur
// in even register numbers and stack slots
void ArmJniCallingConvention::Next() {
JniCallingConvention::Next();
size_t arg_pos = itr_args_ - NumberOfExtraArgumentsForJni();
if ((itr_args_ >= 2) &&
(arg_pos < NumArgs()) &&
IsParamALongOrDouble(arg_pos)) {
// itr_slots_ needs to be an even number, according to AAPCS.
if ((itr_slots_ & 0x1u) != 0) {
itr_slots_++;
}
}
}
bool ArmJniCallingConvention::IsCurrentParamInRegister() {
return itr_slots_ < 4;
}
bool ArmJniCallingConvention::IsCurrentParamOnStack() {
return !IsCurrentParamInRegister();
}
static const Register kJniArgumentRegisters[] = {
R0, R1, R2, R3
};
ManagedRegister ArmJniCallingConvention::CurrentParamRegister() {
CHECK_LT(itr_slots_, 4u);
int arg_pos = itr_args_ - NumberOfExtraArgumentsForJni();
if ((itr_args_ >= 2) && IsParamALongOrDouble(arg_pos)) {
CHECK_EQ(itr_slots_, 2u);
return ArmManagedRegister::FromRegisterPair(R2_R3);
} else {
return
ArmManagedRegister::FromCoreRegister(kJniArgumentRegisters[itr_slots_]);
}
}
FrameOffset ArmJniCallingConvention::CurrentParamStackOffset() {
CHECK_GE(itr_slots_, 4u);
size_t offset =
displacement_.Int32Value() - OutArgSize() + ((itr_slots_ - 4) * kFramePointerSize);
CHECK_LT(offset, OutArgSize());
return FrameOffset(offset);
}
size_t ArmJniCallingConvention::NumberOfOutgoingStackArgs() {
size_t static_args = IsStatic() ? 1 : 0; // count jclass
// regular argument parameters and this
size_t param_args = NumArgs() + NumLongOrDoubleArgs();
// count JNIEnv* less arguments in registers
return static_args + param_args + 1 - 4;
}
} // namespace arm
} // namespace art