| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "load_store_elimination.h" |
| |
| #include "base/array_ref.h" |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "escape.h" |
| #include "load_store_analysis.h" |
| #include "side_effects_analysis.h" |
| |
| /** |
| * The general algorithm of load-store elimination (LSE). |
| * Load-store analysis in the previous pass collects a list of heap locations |
| * and does alias analysis of those heap locations. |
| * LSE keeps track of a list of heap values corresponding to the heap |
| * locations. It visits basic blocks in reverse post order and for |
| * each basic block, visits instructions sequentially, and processes |
| * instructions as follows: |
| * - If the instruction is a load, and the heap location for that load has a |
| * valid heap value, the load can be eliminated. In order to maintain the |
| * validity of all heap locations during the optimization phase, the real |
| * elimination is delayed till the end of LSE. |
| * - If the instruction is a store, it updates the heap value for the heap |
| * location of the store with the store instruction. The real heap value |
| * can be fetched from the store instruction. Heap values are invalidated |
| * for heap locations that may alias with the store instruction's heap |
| * location. The store instruction can be eliminated unless the value stored |
| * is later needed e.g. by a load from the same/aliased heap location or |
| * the heap location persists at method return/deoptimization. |
| * The store instruction is also needed if it's not used to track the heap |
| * value anymore, e.g. when it fails to merge with the heap values from other |
| * predecessors. |
| * - A store that stores the same value as the heap value is eliminated. |
| * - The list of heap values are merged at basic block entry from the basic |
| * block's predecessors. The algorithm is single-pass, so loop side-effects is |
| * used as best effort to decide if a heap location is stored inside the loop. |
| * - A special type of objects called singletons are instantiated in the method |
| * and have a single name, i.e. no aliases. Singletons have exclusive heap |
| * locations since they have no aliases. Singletons are helpful in narrowing |
| * down the life span of a heap location such that they do not always |
| * need to participate in merging heap values. Allocation of a singleton |
| * can be eliminated if that singleton is not used and does not persist |
| * at method return/deoptimization. |
| * - For newly instantiated instances, their heap values are initialized to |
| * language defined default values. |
| * - Some instructions such as invokes are treated as loading and invalidating |
| * all the heap values, depending on the instruction's side effects. |
| * - Finalizable objects are considered as persisting at method |
| * return/deoptimization. |
| * - SIMD graphs (with VecLoad and VecStore instructions) are also handled. Any |
| * partial overlap access among ArrayGet/ArraySet/VecLoad/Store is seen as |
| * alias and no load/store is eliminated in such case. |
| * - Currently this LSE algorithm doesn't handle graph with try-catch, due to |
| * the special block merging structure. |
| */ |
| |
| namespace art { |
| |
| // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. |
| // A heap location can be set to kUnknownHeapValue when: |
| // - initially set a value. |
| // - killed due to aliasing, merging, invocation, or loop side effects. |
| static HInstruction* const kUnknownHeapValue = |
| reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1)); |
| |
| // Default heap value after an allocation. |
| // A heap location can be set to that value right after an allocation. |
| static HInstruction* const kDefaultHeapValue = |
| reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2)); |
| |
| // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke(). |
| class LSEVisitor : public HGraphDelegateVisitor { |
| public: |
| LSEVisitor(HGraph* graph, |
| const HeapLocationCollector& heap_locations_collector, |
| const SideEffectsAnalysis& side_effects, |
| OptimizingCompilerStats* stats) |
| : HGraphDelegateVisitor(graph, stats), |
| heap_location_collector_(heap_locations_collector), |
| side_effects_(side_effects), |
| allocator_(graph->GetArenaStack()), |
| heap_values_for_(graph->GetBlocks().size(), |
| ScopedArenaVector<HInstruction*>(heap_locations_collector. |
| GetNumberOfHeapLocations(), |
| kUnknownHeapValue, |
| allocator_.Adapter(kArenaAllocLSE)), |
| allocator_.Adapter(kArenaAllocLSE)), |
| removed_loads_(allocator_.Adapter(kArenaAllocLSE)), |
| substitute_instructions_for_loads_(allocator_.Adapter(kArenaAllocLSE)), |
| possibly_removed_stores_(allocator_.Adapter(kArenaAllocLSE)), |
| singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)) { |
| } |
| |
| void VisitBasicBlock(HBasicBlock* block) override { |
| // Populate the heap_values array for this block. |
| // TODO: try to reuse the heap_values array from one predecessor if possible. |
| if (block->IsLoopHeader()) { |
| HandleLoopSideEffects(block); |
| } else { |
| MergePredecessorValues(block); |
| } |
| HGraphVisitor::VisitBasicBlock(block); |
| } |
| |
| HTypeConversion* FindOrAddTypeConversionIfNecessary(HInstruction* instruction, |
| HInstruction* value, |
| DataType::Type expected_type) { |
| // Should never add type conversion into boolean value. |
| if (expected_type == DataType::Type::kBool || |
| DataType::IsTypeConversionImplicit(value->GetType(), expected_type) || |
| // TODO: This prevents type conversion of default values but we can still insert |
| // type conversion of other constants and there is no constant folding pass after LSE. |
| IsZeroBitPattern(value)) { |
| return nullptr; |
| } |
| |
| // Check if there is already a suitable TypeConversion we can reuse. |
| for (const HUseListNode<HInstruction*>& use : value->GetUses()) { |
| if (use.GetUser()->IsTypeConversion() && |
| use.GetUser()->GetType() == expected_type && |
| // TODO: We could move the TypeConversion to a common dominator |
| // if it does not cross irreducible loop header. |
| use.GetUser()->GetBlock()->Dominates(instruction->GetBlock()) && |
| // Don't share across irreducible loop headers. |
| // TODO: can be more fine-grained than this by testing each dominator. |
| (use.GetUser()->GetBlock() == instruction->GetBlock() || |
| !GetGraph()->HasIrreducibleLoops())) { |
| if (use.GetUser()->GetBlock() == instruction->GetBlock() && |
| use.GetUser()->GetBlock()->GetInstructions().FoundBefore(instruction, use.GetUser())) { |
| // Move the TypeConversion before the instruction. |
| use.GetUser()->MoveBefore(instruction); |
| } |
| DCHECK(use.GetUser()->StrictlyDominates(instruction)); |
| return use.GetUser()->AsTypeConversion(); |
| } |
| } |
| |
| // We must create a new TypeConversion instruction. |
| HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion( |
| expected_type, value, instruction->GetDexPc()); |
| instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction); |
| return type_conversion; |
| } |
| |
| // Find an instruction's substitute if it's a removed load. |
| // Return the same instruction if it should not be removed. |
| HInstruction* FindSubstitute(HInstruction* instruction) { |
| if (!IsLoad(instruction)) { |
| return instruction; |
| } |
| size_t size = removed_loads_.size(); |
| for (size_t i = 0; i < size; i++) { |
| if (removed_loads_[i] == instruction) { |
| HInstruction* substitute = substitute_instructions_for_loads_[i]; |
| // The substitute list is a flat hierarchy. |
| DCHECK_EQ(FindSubstitute(substitute), substitute); |
| return substitute; |
| } |
| } |
| return instruction; |
| } |
| |
| void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) { |
| DCHECK(IsLoad(load)); |
| DCHECK_EQ(FindSubstitute(heap_value), heap_value) << |
| "Unexpected heap_value that has a substitute " << heap_value->DebugName(); |
| |
| // The load expects to load the heap value as type load->GetType(). |
| // However the tracked heap value may not be of that type. An explicit |
| // type conversion may be needed. |
| // There are actually three types involved here: |
| // (1) tracked heap value's type (type A) |
| // (2) heap location (field or element)'s type (type B) |
| // (3) load's type (type C) |
| // We guarantee that type A stored as type B and then fetched out as |
| // type C is the same as casting from type A to type C directly, since |
| // type B and type C will have the same size which is guaranteed in |
| // HInstanceFieldGet/HStaticFieldGet/HArrayGet/HVecLoad's SetType(). |
| // So we only need one type conversion from type A to type C. |
| HTypeConversion* type_conversion = FindOrAddTypeConversionIfNecessary( |
| load, heap_value, load->GetType()); |
| |
| removed_loads_.push_back(load); |
| substitute_instructions_for_loads_.push_back( |
| type_conversion != nullptr ? type_conversion : heap_value); |
| } |
| |
| // Remove recorded instructions that should be eliminated. |
| void RemoveInstructions() { |
| size_t size = removed_loads_.size(); |
| DCHECK_EQ(size, substitute_instructions_for_loads_.size()); |
| for (size_t i = 0; i < size; i++) { |
| HInstruction* load = removed_loads_[i]; |
| DCHECK(load != nullptr); |
| DCHECK(IsLoad(load)); |
| HInstruction* substitute = substitute_instructions_for_loads_[i]; |
| DCHECK(substitute != nullptr); |
| // We proactively retrieve the substitute for a removed load, so |
| // a load that has a substitute should not be observed as a heap |
| // location value. |
| DCHECK_EQ(FindSubstitute(substitute), substitute); |
| |
| load->ReplaceWith(substitute); |
| load->GetBlock()->RemoveInstruction(load); |
| } |
| |
| // At this point, stores in possibly_removed_stores_ can be safely removed. |
| for (HInstruction* store : possibly_removed_stores_) { |
| DCHECK(IsStore(store)); |
| store->GetBlock()->RemoveInstruction(store); |
| } |
| |
| // Eliminate singleton-classified instructions: |
| // * - Constructor fences (they never escape this thread). |
| // * - Allocations (if they are unused). |
| for (HInstruction* new_instance : singleton_new_instances_) { |
| size_t removed = HConstructorFence::RemoveConstructorFences(new_instance); |
| MaybeRecordStat(stats_, |
| MethodCompilationStat::kConstructorFenceRemovedLSE, |
| removed); |
| |
| if (!new_instance->HasNonEnvironmentUses()) { |
| new_instance->RemoveEnvironmentUsers(); |
| new_instance->GetBlock()->RemoveInstruction(new_instance); |
| } |
| } |
| } |
| |
| private: |
| static bool IsLoad(const HInstruction* instruction) { |
| if (instruction == kUnknownHeapValue || instruction == kDefaultHeapValue) { |
| return false; |
| } |
| // Unresolved load is not treated as a load. |
| return instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsVecLoad() || |
| instruction->IsArrayGet(); |
| } |
| |
| static bool IsStore(const HInstruction* instruction) { |
| if (instruction == kUnknownHeapValue || instruction == kDefaultHeapValue) { |
| return false; |
| } |
| // Unresolved store is not treated as a store. |
| return instruction->IsInstanceFieldSet() || |
| instruction->IsArraySet() || |
| instruction->IsVecStore() || |
| instruction->IsStaticFieldSet(); |
| } |
| |
| // Check if it is allowed to use default values for the specified load. |
| static bool IsDefaultAllowedForLoad(const HInstruction* load) { |
| DCHECK(IsLoad(load)); |
| // Using defaults for VecLoads requires to create additional vector operations. |
| // As there are some issues with scheduling vector operations it is better to avoid creating |
| // them. |
| return !load->IsVecOperation(); |
| } |
| |
| // Returns the real heap value by finding its substitute or by "peeling" |
| // a store instruction. |
| HInstruction* GetRealHeapValue(HInstruction* heap_value) { |
| if (IsLoad(heap_value)) { |
| return FindSubstitute(heap_value); |
| } |
| if (!IsStore(heap_value)) { |
| return heap_value; |
| } |
| |
| // We keep track of store instructions as the heap values which might be |
| // eliminated if the stores are later found not necessary. The real stored |
| // value needs to be fetched from the store instruction. |
| if (heap_value->IsInstanceFieldSet()) { |
| heap_value = heap_value->AsInstanceFieldSet()->GetValue(); |
| } else if (heap_value->IsStaticFieldSet()) { |
| heap_value = heap_value->AsStaticFieldSet()->GetValue(); |
| } else if (heap_value->IsVecStore()) { |
| heap_value = heap_value->AsVecStore()->GetValue(); |
| } else { |
| DCHECK(heap_value->IsArraySet()); |
| heap_value = heap_value->AsArraySet()->GetValue(); |
| } |
| // heap_value may already be a removed load. |
| return FindSubstitute(heap_value); |
| } |
| |
| // If heap_value is a store, need to keep the store. |
| // This is necessary if a heap value is killed or replaced by another value, |
| // so that the store is no longer used to track heap value. |
| void KeepIfIsStore(HInstruction* heap_value) { |
| if (!IsStore(heap_value)) { |
| return; |
| } |
| auto idx = std::find(possibly_removed_stores_.begin(), |
| possibly_removed_stores_.end(), heap_value); |
| if (idx != possibly_removed_stores_.end()) { |
| // Make sure the store is kept. |
| possibly_removed_stores_.erase(idx); |
| } |
| } |
| |
| // If a heap location X may alias with heap location at `loc_index` |
| // and heap_values of that heap location X holds a store, keep that store. |
| // It's needed for a dependent load that's not eliminated since any store |
| // that may put value into the load's heap location needs to be kept. |
| void KeepStoresIfAliasedToLocation(ScopedArenaVector<HInstruction*>& heap_values, |
| size_t loc_index) { |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| if ((i == loc_index) || heap_location_collector_.MayAlias(i, loc_index)) { |
| KeepIfIsStore(heap_values[i]); |
| } |
| } |
| } |
| |
| void HandleLoopSideEffects(HBasicBlock* block) { |
| DCHECK(block->IsLoopHeader()); |
| int block_id = block->GetBlockId(); |
| ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id]; |
| HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); |
| ScopedArenaVector<HInstruction*>& pre_header_heap_values = |
| heap_values_for_[pre_header->GetBlockId()]; |
| |
| // Don't eliminate loads in irreducible loops. |
| // Also keep the stores before the loop. |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| if (kIsDebugBuild) { |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| DCHECK_EQ(heap_values[i], kUnknownHeapValue); |
| } |
| } |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| KeepIfIsStore(pre_header_heap_values[i]); |
| } |
| return; |
| } |
| |
| // Inherit the values from pre-header. |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| heap_values[i] = pre_header_heap_values[i]; |
| } |
| |
| // We do a single pass in reverse post order. For loops, use the side effects as a hint |
| // to see if the heap values should be killed. |
| if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) { |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(i); |
| ReferenceInfo* ref_info = location->GetReferenceInfo(); |
| if (ref_info->IsSingleton() && !location->IsValueKilledByLoopSideEffects()) { |
| // A singleton's field that's not stored into inside a loop is |
| // invariant throughout the loop. Nothing to do. |
| } else { |
| // heap value is killed by loop side effects. |
| KeepIfIsStore(pre_header_heap_values[i]); |
| heap_values[i] = kUnknownHeapValue; |
| } |
| } |
| } else { |
| // The loop doesn't kill any value. |
| } |
| } |
| |
| void MergePredecessorValues(HBasicBlock* block) { |
| ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| if (predecessors.size() == 0) { |
| return; |
| } |
| if (block->IsExitBlock()) { |
| // Exit block doesn't really merge values since the control flow ends in |
| // its predecessors. Each predecessor needs to make sure stores are kept |
| // if necessary. |
| return; |
| } |
| |
| ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HInstruction* merged_value = nullptr; |
| // If we can merge the store itself from the predecessors, we keep |
| // the store as the heap value as long as possible. In case we cannot |
| // merge the store, we try to merge the values of the stores. |
| HInstruction* merged_store_value = nullptr; |
| // Whether merged_value is a result that's merged from all predecessors. |
| bool from_all_predecessors = true; |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| HInstruction* ref = ref_info->GetReference(); |
| HInstruction* singleton_ref = nullptr; |
| if (ref_info->IsSingleton()) { |
| // We do more analysis based on singleton's liveness when merging |
| // heap values for such cases. |
| singleton_ref = ref; |
| } |
| |
| for (HBasicBlock* predecessor : predecessors) { |
| HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i]; |
| if (!IsStore(pred_value)) { |
| pred_value = FindSubstitute(pred_value); |
| } |
| DCHECK(pred_value != nullptr); |
| HInstruction* pred_store_value = GetRealHeapValue(pred_value); |
| if ((singleton_ref != nullptr) && |
| !singleton_ref->GetBlock()->Dominates(predecessor)) { |
| // singleton_ref is not live in this predecessor. No need to merge |
| // since singleton_ref is not live at the beginning of this block. |
| DCHECK_EQ(pred_value, kUnknownHeapValue); |
| from_all_predecessors = false; |
| break; |
| } |
| if (merged_value == nullptr) { |
| // First seen heap value. |
| DCHECK(pred_value != nullptr); |
| merged_value = pred_value; |
| } else if (pred_value != merged_value) { |
| // There are conflicting values. |
| merged_value = kUnknownHeapValue; |
| // We may still be able to merge store values. |
| } |
| |
| // Conflicting stores may be storing the same value. We do another merge |
| // of real stored values. |
| if (merged_store_value == nullptr) { |
| // First seen store value. |
| DCHECK(pred_store_value != nullptr); |
| merged_store_value = pred_store_value; |
| } else if (pred_store_value != merged_store_value) { |
| // There are conflicting store values. |
| merged_store_value = kUnknownHeapValue; |
| // There must be conflicting stores also. |
| DCHECK_EQ(merged_value, kUnknownHeapValue); |
| // No need to merge anymore. |
| break; |
| } |
| } |
| |
| if (merged_value == nullptr) { |
| DCHECK(!from_all_predecessors); |
| DCHECK(singleton_ref != nullptr); |
| } |
| if (from_all_predecessors) { |
| if (ref_info->IsSingletonAndRemovable() && |
| (block->IsSingleReturnOrReturnVoidAllowingPhis() || |
| (block->EndsWithReturn() && (merged_value != kUnknownHeapValue || |
| merged_store_value != kUnknownHeapValue)))) { |
| // Values in the singleton are not needed anymore: |
| // (1) if this block consists of a sole return, or |
| // (2) if this block returns and a usable merged value is obtained |
| // (loads prior to the return will always use that value). |
| } else if (!IsStore(merged_value)) { |
| // We don't track merged value as a store anymore. We have to |
| // hold the stores in predecessors live here. |
| for (HBasicBlock* predecessor : predecessors) { |
| ScopedArenaVector<HInstruction*>& pred_values = |
| heap_values_for_[predecessor->GetBlockId()]; |
| KeepIfIsStore(pred_values[i]); |
| } |
| } |
| } else { |
| DCHECK(singleton_ref != nullptr); |
| // singleton_ref is non-existing at the beginning of the block. There is |
| // no need to keep the stores. |
| } |
| |
| if (!from_all_predecessors) { |
| DCHECK(singleton_ref != nullptr); |
| DCHECK((singleton_ref->GetBlock() == block) || |
| !singleton_ref->GetBlock()->Dominates(block)) |
| << "method: " << GetGraph()->GetMethodName(); |
| // singleton_ref is not defined before block or defined only in some of its |
| // predecessors, so block doesn't really have the location at its entry. |
| heap_values[i] = kUnknownHeapValue; |
| } else if (predecessors.size() == 1) { |
| // Inherit heap value from the single predecessor. |
| DCHECK_EQ(heap_values_for_[predecessors[0]->GetBlockId()][i], merged_value); |
| heap_values[i] = merged_value; |
| } else { |
| DCHECK(merged_value == kUnknownHeapValue || |
| merged_value == kDefaultHeapValue || |
| merged_value->GetBlock()->Dominates(block)); |
| if (merged_value != kUnknownHeapValue) { |
| heap_values[i] = merged_value; |
| } else { |
| // Stores in different predecessors may be storing the same value. |
| heap_values[i] = merged_store_value; |
| } |
| } |
| } |
| } |
| |
| // `instruction` is being removed. Try to see if the null check on it |
| // can be removed. This can happen if the same value is set in two branches |
| // but not in dominators. Such as: |
| // int[] a = foo(); |
| // if () { |
| // a[0] = 2; |
| // } else { |
| // a[0] = 2; |
| // } |
| // // a[0] can now be replaced with constant 2, and the null check on it can be removed. |
| void TryRemovingNullCheck(HInstruction* instruction) { |
| HInstruction* prev = instruction->GetPrevious(); |
| if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) { |
| // Previous instruction is a null check for this instruction. Remove the null check. |
| prev->ReplaceWith(prev->InputAt(0)); |
| prev->GetBlock()->RemoveInstruction(prev); |
| } |
| } |
| |
| HInstruction* GetDefaultValue(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kReference: |
| return GetGraph()->GetNullConstant(); |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| return GetGraph()->GetIntConstant(0); |
| case DataType::Type::kInt64: |
| return GetGraph()->GetLongConstant(0); |
| case DataType::Type::kFloat32: |
| return GetGraph()->GetFloatConstant(0); |
| case DataType::Type::kFloat64: |
| return GetGraph()->GetDoubleConstant(0); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void VisitGetLocation(HInstruction* instruction, size_t idx) { |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| HInstruction* heap_value = heap_values[idx]; |
| if (heap_value == kDefaultHeapValue) { |
| if (IsDefaultAllowedForLoad(instruction)) { |
| HInstruction* constant = GetDefaultValue(instruction->GetType()); |
| AddRemovedLoad(instruction, constant); |
| heap_values[idx] = constant; |
| return; |
| } else { |
| heap_values[idx] = kUnknownHeapValue; |
| heap_value = kUnknownHeapValue; |
| } |
| } |
| heap_value = GetRealHeapValue(heap_value); |
| if (heap_value == kUnknownHeapValue) { |
| // Load isn't eliminated. Put the load as the value into the HeapLocation. |
| // This acts like GVN but with better aliasing analysis. |
| heap_values[idx] = instruction; |
| KeepStoresIfAliasedToLocation(heap_values, idx); |
| } else { |
| // Load is eliminated. |
| AddRemovedLoad(instruction, heap_value); |
| TryRemovingNullCheck(instruction); |
| } |
| } |
| |
| bool Equal(HInstruction* heap_value, HInstruction* value) { |
| DCHECK(!IsStore(value)) << value->DebugName(); |
| if (heap_value == kUnknownHeapValue) { |
| // Don't compare kUnknownHeapValue with other values. |
| return false; |
| } |
| if (heap_value == value) { |
| return true; |
| } |
| if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) { |
| return true; |
| } |
| HInstruction* real_heap_value = GetRealHeapValue(heap_value); |
| if (real_heap_value != heap_value) { |
| return Equal(real_heap_value, value); |
| } |
| return false; |
| } |
| |
| bool CanValueBeKeptIfSameAsNew(HInstruction* value, |
| HInstruction* new_value, |
| HInstruction* new_value_set_instr) { |
| // For field/array set location operations, if the value is the same as the new_value |
| // it can be kept even if aliasing happens. All aliased operations will access the same memory |
| // range. |
| // For vector values, this is not true. For example: |
| // packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane. |
| // VecStore array[i ,i+1,i+2,i+3] = packed_data; |
| // VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap). |
| // VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated because the value |
| // here is not packed_data anymore. |
| // |
| // TODO: to allow such 'same value' optimization on vector data, |
| // LSA needs to report more fine-grain MAY alias information: |
| // (1) May alias due to two vector data partial overlap. |
| // e.g. a[i..i+3] and a[i+1,..,i+4]. |
| // (2) May alias due to two vector data may complete overlap each other. |
| // e.g. a[i..i+3] and b[i..i+3]. |
| // (3) May alias but the exact relationship between two locations is unknown. |
| // e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown. |
| // This 'same value' optimization can apply only on case (2). |
| if (new_value_set_instr->IsVecOperation()) { |
| return false; |
| } |
| |
| return Equal(value, new_value); |
| } |
| |
| void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) { |
| DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| DCHECK(!IsStore(value)) << value->DebugName(); |
| // value may already have a substitute. |
| value = FindSubstitute(value); |
| ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| HInstruction* heap_value = heap_values[idx]; |
| bool possibly_redundant = false; |
| |
| if (Equal(heap_value, value)) { |
| // Store into the heap location with the same value. |
| // This store can be eliminated right away. |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| return; |
| } else { |
| if (instruction->CanThrow()) { |
| HandleExit(instruction->GetBlock()); |
| } |
| HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); |
| if (loop_info == nullptr) { |
| // Store is not in a loop. We try to precisely track the heap value by |
| // the store. |
| possibly_redundant = true; |
| } else if (!loop_info->IsIrreducible()) { |
| // instruction is a store in the loop so the loop must do write. |
| DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite()); |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo(); |
| if (ref_info->IsSingleton() && !loop_info->IsDefinedOutOfTheLoop(ref_info->GetReference())) { |
| // original_ref is created inside the loop. Value stored to it isn't needed at |
| // the loop header. This is true for outer loops also. |
| possibly_redundant = true; |
| } else { |
| // Keep the store since its value may be needed at the loop header. |
| } |
| } else { |
| // Keep the store inside irreducible loops. |
| } |
| } |
| if (possibly_redundant && !instruction->CanThrow()) { |
| possibly_removed_stores_.push_back(instruction); |
| } |
| |
| // Put the store as the heap value. If the value is loaded or needed after |
| // return/deoptimization later, this store isn't really redundant. |
| heap_values[idx] = instruction; |
| |
| // This store may kill values in other heap locations due to aliasing. |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| if (i == idx || |
| heap_values[i] == kUnknownHeapValue || |
| CanValueBeKeptIfSameAsNew(heap_values[i], value, instruction) || |
| !heap_location_collector_.MayAlias(i, idx)) { |
| continue; |
| } |
| // Kill heap locations that may alias and as a result if the heap value |
| // is a store, the store needs to be kept. |
| KeepIfIsStore(heap_values[i]); |
| heap_values[i] = kUnknownHeapValue; |
| } |
| } |
| |
| void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override { |
| HInstruction* object = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field)); |
| } |
| |
| void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override { |
| HInstruction* object = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| HInstruction* value = instruction->InputAt(1); |
| size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field); |
| VisitSetLocation(instruction, idx, value); |
| } |
| |
| void VisitStaticFieldGet(HStaticFieldGet* instruction) override { |
| HInstruction* cls = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field)); |
| } |
| |
| void VisitStaticFieldSet(HStaticFieldSet* instruction) override { |
| HInstruction* cls = instruction->InputAt(0); |
| const FieldInfo& field = instruction->GetFieldInfo(); |
| size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field); |
| VisitSetLocation(instruction, idx, instruction->InputAt(1)); |
| } |
| |
| void VisitArrayGet(HArrayGet* instruction) override { |
| VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| } |
| |
| void VisitArraySet(HArraySet* instruction) override { |
| size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| VisitSetLocation(instruction, idx, instruction->GetValue()); |
| } |
| |
| void VisitVecLoad(HVecLoad* instruction) override { |
| VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| } |
| |
| void VisitVecStore(HVecStore* instruction) override { |
| size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| VisitSetLocation(instruction, idx, instruction->GetValue()); |
| } |
| |
| void VisitDeoptimize(HDeoptimize* instruction) override { |
| const ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (HInstruction* heap_value : heap_values) { |
| // A store is kept as the heap value for possibly removed stores. |
| // That value stored is generally observeable after deoptimization, except |
| // for singletons that don't escape after deoptimization. |
| if (IsStore(heap_value)) { |
| if (heap_value->IsStaticFieldSet()) { |
| KeepIfIsStore(heap_value); |
| continue; |
| } |
| HInstruction* reference = heap_value->InputAt(0); |
| if (heap_location_collector_.FindReferenceInfoOf(reference)->IsSingleton()) { |
| if (reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable()) { |
| // Finalizable objects alway escape. |
| KeepIfIsStore(heap_value); |
| continue; |
| } |
| // Check whether the reference for a store is used by an environment local of |
| // HDeoptimize. If not, the singleton is not observed after |
| // deoptimizion. |
| for (const HUseListNode<HEnvironment*>& use : reference->GetEnvUses()) { |
| HEnvironment* user = use.GetUser(); |
| if (user->GetHolder() == instruction) { |
| // The singleton for the store is visible at this deoptimization |
| // point. Need to keep the store so that the heap value is |
| // seen by the interpreter. |
| KeepIfIsStore(heap_value); |
| } |
| } |
| } else { |
| KeepIfIsStore(heap_value); |
| } |
| } |
| } |
| } |
| |
| // Keep necessary stores before exiting a method via return/throw. |
| void HandleExit(HBasicBlock* block) { |
| const ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[block->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HInstruction* heap_value = heap_values[i]; |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (!ref_info->IsSingletonAndRemovable()) { |
| KeepIfIsStore(heap_value); |
| } |
| } |
| } |
| |
| void VisitReturn(HReturn* instruction) override { |
| HandleExit(instruction->GetBlock()); |
| } |
| |
| void VisitReturnVoid(HReturnVoid* return_void) override { |
| HandleExit(return_void->GetBlock()); |
| } |
| |
| void VisitThrow(HThrow* throw_instruction) override { |
| HandleExit(throw_instruction->GetBlock()); |
| } |
| |
| void HandleInvoke(HInstruction* instruction) { |
| SideEffects side_effects = instruction->GetSideEffects(); |
| ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| if (ref_info->IsSingleton()) { |
| // Singleton references cannot be seen by the callee. |
| } else { |
| if (side_effects.DoesAnyRead()) { |
| // Invocation may read the heap value. |
| KeepIfIsStore(heap_values[i]); |
| } |
| if (side_effects.DoesAnyWrite()) { |
| // Keep the store since it's not used to track the heap value anymore. |
| KeepIfIsStore(heap_values[i]); |
| heap_values[i] = kUnknownHeapValue; |
| } |
| } |
| } |
| } |
| |
| void VisitInvoke(HInvoke* invoke) override { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitClinitCheck(HClinitCheck* clinit) override { |
| HandleInvoke(clinit); |
| } |
| |
| void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override { |
| // Conservatively treat it as an invocation. |
| HandleInvoke(instruction); |
| } |
| |
| void VisitNewInstance(HNewInstance* new_instance) override { |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); |
| if (ref_info == nullptr) { |
| // new_instance isn't used for field accesses. No need to process it. |
| return; |
| } |
| if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) { |
| DCHECK(!new_instance->IsFinalizable()); |
| // new_instance can potentially be eliminated. |
| singleton_new_instances_.push_back(new_instance); |
| } |
| ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[new_instance->GetBlock()->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HInstruction* ref = |
| heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference(); |
| size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); |
| if (ref == new_instance && offset >= mirror::kObjectHeaderSize) { |
| // Instance fields except the header fields are set to default heap values. |
| heap_values[i] = kDefaultHeapValue; |
| } |
| } |
| } |
| |
| void VisitNewArray(HNewArray* new_array) override { |
| ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array); |
| if (ref_info == nullptr) { |
| // new_array isn't used for array accesses. No need to process it. |
| return; |
| } |
| if (ref_info->IsSingletonAndRemovable()) { |
| if (new_array->GetLength()->IsIntConstant() && |
| new_array->GetLength()->AsIntConstant()->GetValue() >= 0) { |
| // new_array can potentially be eliminated. |
| singleton_new_instances_.push_back(new_array); |
| } else { |
| // new_array may throw NegativeArraySizeException. Keep it. |
| } |
| } |
| ScopedArenaVector<HInstruction*>& heap_values = |
| heap_values_for_[new_array->GetBlock()->GetBlockId()]; |
| for (size_t i = 0; i < heap_values.size(); i++) { |
| HeapLocation* location = heap_location_collector_.GetHeapLocation(i); |
| HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
| if (ref == new_array && location->GetIndex() != nullptr) { |
| // Array elements are set to default heap values. |
| heap_values[i] = kDefaultHeapValue; |
| } |
| } |
| } |
| |
| const HeapLocationCollector& heap_location_collector_; |
| const SideEffectsAnalysis& side_effects_; |
| |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator_; |
| |
| // One array of heap values for each block. |
| ScopedArenaVector<ScopedArenaVector<HInstruction*>> heap_values_for_; |
| |
| // We record the instructions that should be eliminated but may be |
| // used by heap locations. They'll be removed in the end. |
| ScopedArenaVector<HInstruction*> removed_loads_; |
| ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_; |
| |
| // Stores in this list may be removed from the list later when it's |
| // found that the store cannot be eliminated. |
| ScopedArenaVector<HInstruction*> possibly_removed_stores_; |
| |
| ScopedArenaVector<HInstruction*> singleton_new_instances_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LSEVisitor); |
| }; |
| |
| bool LoadStoreElimination::Run() { |
| if (graph_->IsDebuggable() || graph_->HasTryCatch()) { |
| // Debugger may set heap values or trigger deoptimization of callers. |
| // Try/catch support not implemented yet. |
| // Skip this optimization. |
| return false; |
| } |
| ScopedArenaAllocator allocator(graph_->GetArenaStack()); |
| LoadStoreAnalysis lsa(graph_, &allocator); |
| lsa.Run(); |
| const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector(); |
| if (heap_location_collector.GetNumberOfHeapLocations() == 0) { |
| // No HeapLocation information from LSA, skip this optimization. |
| return false; |
| } |
| |
| LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_, stats_); |
| for (HBasicBlock* block : graph_->GetReversePostOrder()) { |
| lse_visitor.VisitBasicBlock(block); |
| } |
| lse_visitor.RemoveInstructions(); |
| |
| return true; |
| } |
| |
| } // namespace art |