| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_arm_vixl.h" |
| |
| #include "arch/arm/instruction_set_features_arm.h" |
| #include "art_method.h" |
| #include "code_generator_arm_vixl.h" |
| #include "common_arm.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference.h" |
| #include "mirror/string-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-current-inl.h" |
| |
| #include "aarch32/constants-aarch32.h" |
| |
| namespace art { |
| namespace arm { |
| |
| #define __ assembler->GetVIXLAssembler()-> |
| |
| using helpers::DRegisterFrom; |
| using helpers::HighRegisterFrom; |
| using helpers::InputDRegisterAt; |
| using helpers::InputRegisterAt; |
| using helpers::InputSRegisterAt; |
| using helpers::Int32ConstantFrom; |
| using helpers::LocationFrom; |
| using helpers::LowRegisterFrom; |
| using helpers::LowSRegisterFrom; |
| using helpers::HighSRegisterFrom; |
| using helpers::OutputDRegister; |
| using helpers::OutputRegister; |
| using helpers::RegisterFrom; |
| using helpers::SRegisterFrom; |
| |
| using namespace vixl::aarch32; // NOLINT(build/namespaces) |
| |
| using vixl::ExactAssemblyScope; |
| using vixl::CodeBufferCheckScope; |
| |
| ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() { |
| return codegen_->GetAssembler(); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() { |
| return codegen_->GetGraph()->GetAllocator(); |
| } |
| |
| using IntrinsicSlowPathARMVIXL = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARMVIXL, |
| SlowPathCodeARMVIXL, |
| ArmVIXLAssembler>; |
| |
| // Compute base address for the System.arraycopy intrinsic in `base`. |
| static void GenSystemArrayCopyBaseAddress(ArmVIXLAssembler* assembler, |
| DataType::Type type, |
| const vixl32::Register& array, |
| const Location& pos, |
| const vixl32::Register& base) { |
| // This routine is only used by the SystemArrayCopy intrinsic at the |
| // moment. We can allow DataType::Type::kReference as `type` to implement |
| // the SystemArrayCopyChar intrinsic. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| const int32_t element_size = DataType::Size(type); |
| const uint32_t element_size_shift = DataType::SizeShift(type); |
| const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t constant = Int32ConstantFrom(pos); |
| __ Add(base, array, element_size * constant + data_offset); |
| } else { |
| __ Add(base, array, Operand(RegisterFrom(pos), vixl32::LSL, element_size_shift)); |
| __ Add(base, base, data_offset); |
| } |
| } |
| |
| // Compute end address for the System.arraycopy intrinsic in `end`. |
| static void GenSystemArrayCopyEndAddress(ArmVIXLAssembler* assembler, |
| DataType::Type type, |
| const Location& copy_length, |
| const vixl32::Register& base, |
| const vixl32::Register& end) { |
| // This routine is only used by the SystemArrayCopy intrinsic at the |
| // moment. We can allow DataType::Type::kReference as `type` to implement |
| // the SystemArrayCopyChar intrinsic. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| const int32_t element_size = DataType::Size(type); |
| const uint32_t element_size_shift = DataType::SizeShift(type); |
| |
| if (copy_length.IsConstant()) { |
| int32_t constant = Int32ConstantFrom(copy_length); |
| __ Add(end, base, element_size * constant); |
| } else { |
| __ Add(end, base, Operand(RegisterFrom(copy_length), vixl32::LSL, element_size_shift)); |
| } |
| } |
| |
| // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. |
| class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction) |
| : SlowPathCodeARMVIXL(instruction) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| ArmVIXLAssembler* assembler = arm_codegen->GetAssembler(); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(instruction_->IsInvokeStaticOrDirect()) |
| << "Unexpected instruction in read barrier arraycopy slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); |
| |
| DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| vixl32::Register dest = InputRegisterAt(instruction_, 2); |
| Location dest_pos = locations->InAt(3); |
| vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1)); |
| vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2)); |
| vixl32::Register tmp = RegisterFrom(locations->GetTemp(3)); |
| |
| __ Bind(GetEntryLabel()); |
| // Compute the base destination address in `dst_curr_addr`. |
| GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr); |
| |
| vixl32::Label loop; |
| __ Bind(&loop); |
| __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); |
| assembler->MaybeUnpoisonHeapReference(tmp); |
| // TODO: Inline the mark bit check before calling the runtime? |
| // tmp = ReadBarrier::Mark(tmp); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more |
| // explanations.) |
| DCHECK(!tmp.IsSP()); |
| DCHECK(!tmp.IsLR()); |
| DCHECK(!tmp.IsPC()); |
| // IP is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary (and not preserved). It thus cannot be used by |
| // any live register in this slow path. |
| DCHECK(!src_curr_addr.Is(ip)); |
| DCHECK(!dst_curr_addr.Is(ip)); |
| DCHECK(!src_stop_addr.Is(ip)); |
| DCHECK(!tmp.Is(ip)); |
| DCHECK(tmp.IsRegister()) << tmp; |
| // TODO: Load the entrypoint once before the loop, instead of |
| // loading it at every iteration. |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode()); |
| // This runtime call does not require a stack map. |
| arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| assembler->MaybePoisonHeapReference(tmp); |
| __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(ne, &loop, /* is_far_target= */ false); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "ReadBarrierSystemArrayCopySlowPathARMVIXL"; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL); |
| }; |
| |
| IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen) |
| : allocator_(codegen->GetGraph()->GetAllocator()), |
| codegen_(codegen), |
| assembler_(codegen->GetAssembler()), |
| features_(codegen->GetInstructionSetFeatures()) {} |
| |
| bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| if (is64bit) { |
| __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input)); |
| } else { |
| __ Vmov(RegisterFrom(output), SRegisterFrom(input)); |
| } |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| if (is64bit) { |
| __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input)); |
| } else { |
| __ Vmov(SRegisterFrom(output), RegisterFrom(input)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| static void CreateLongToLongLocationsWithOverlap(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } |
| |
| static void GenNumberOfLeadingZeros(HInvoke* invoke, |
| DataType::Type type, |
| CodeGeneratorARMVIXL* codegen) { |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location in = locations->InAt(0); |
| vixl32::Register out = RegisterFrom(locations->Out()); |
| |
| DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64)); |
| |
| if (type == DataType::Type::kInt64) { |
| vixl32::Register in_reg_lo = LowRegisterFrom(in); |
| vixl32::Register in_reg_hi = HighRegisterFrom(in); |
| vixl32::Label end; |
| vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end); |
| __ Clz(out, in_reg_hi); |
| __ CompareAndBranchIfNonZero(in_reg_hi, final_label, /* is_far_target= */ false); |
| __ Clz(out, in_reg_lo); |
| __ Add(out, out, 32); |
| if (end.IsReferenced()) { |
| __ Bind(&end); |
| } |
| } else { |
| __ Clz(out, RegisterFrom(in)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenNumberOfLeadingZeros(invoke, DataType::Type::kInt32, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLongToLongLocationsWithOverlap(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenNumberOfLeadingZeros(invoke, DataType::Type::kInt64, codegen_); |
| } |
| |
| static void GenNumberOfTrailingZeros(HInvoke* invoke, |
| DataType::Type type, |
| CodeGeneratorARMVIXL* codegen) { |
| DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64)); |
| |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| vixl32::Register out = RegisterFrom(locations->Out()); |
| |
| if (type == DataType::Type::kInt64) { |
| vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); |
| vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); |
| vixl32::Label end; |
| vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end); |
| __ Rbit(out, in_reg_lo); |
| __ Clz(out, out); |
| __ CompareAndBranchIfNonZero(in_reg_lo, final_label, /* is_far_target= */ false); |
| __ Rbit(out, in_reg_hi); |
| __ Clz(out, out); |
| __ Add(out, out, 32); |
| if (end.IsReferenced()) { |
| __ Bind(&end); |
| } |
| } else { |
| vixl32::Register in = RegisterFrom(locations->InAt(0)); |
| __ Rbit(out, in); |
| __ Clz(out, out); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenNumberOfTrailingZeros(invoke, DataType::Type::kInt32, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateLongToLongLocationsWithOverlap(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenNumberOfTrailingZeros(invoke, DataType::Type::kInt64, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathRint(HInvoke* invoke) { |
| if (features_.HasARMv8AInstructions()) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathRint(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Vrintn(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathRoundFloat(HInvoke* invoke) { |
| if (features_.HasARMv8AInstructions()) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathRoundFloat(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); |
| |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| vixl32::SRegister in_reg = InputSRegisterAt(invoke, 0); |
| vixl32::Register out_reg = OutputRegister(invoke); |
| vixl32::SRegister temp1 = LowSRegisterFrom(invoke->GetLocations()->GetTemp(0)); |
| vixl32::SRegister temp2 = HighSRegisterFrom(invoke->GetLocations()->GetTemp(0)); |
| vixl32::Label done; |
| vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done); |
| |
| // Round to nearest integer, ties away from zero. |
| __ Vcvta(S32, F32, temp1, in_reg); |
| __ Vmov(out_reg, temp1); |
| |
| // For positive, zero or NaN inputs, rounding is done. |
| __ Cmp(out_reg, 0); |
| __ B(ge, final_label, /* is_far_target= */ false); |
| |
| // Handle input < 0 cases. |
| // If input is negative but not a tie, previous result (round to nearest) is valid. |
| // If input is a negative tie, change rounding direction to positive infinity, out_reg += 1. |
| __ Vrinta(F32, temp1, in_reg); |
| __ Vmov(temp2, 0.5); |
| __ Vsub(F32, temp1, in_reg, temp1); |
| __ Vcmp(F32, temp1, temp2); |
| __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); |
| { |
| // Use ExactAsemblyScope here because we are using IT. |
| ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(), |
| 2 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ it(eq); |
| __ add(eq, out_reg, out_reg, 1); |
| } |
| |
| if (done.IsReferenced()) { |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| // Ignore upper 4B of long address. |
| __ Ldrsb(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| // Ignore upper 4B of long address. |
| __ Ldr(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| // Ignore upper 4B of long address. |
| vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0)); |
| // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor |
| // exception. So we can't use ldrd as addr may be unaligned. |
| vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out()); |
| vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out()); |
| if (addr.Is(lo)) { |
| __ Ldr(hi, MemOperand(addr, 4)); |
| __ Ldr(lo, MemOperand(addr)); |
| } else { |
| __ Ldr(lo, MemOperand(addr)); |
| __ Ldr(hi, MemOperand(addr, 4)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| // Ignore upper 4B of long address. |
| __ Ldrsh(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); |
| } |
| |
| static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Strb(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Str(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| // Ignore upper 4B of long address. |
| vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0)); |
| // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor |
| // exception. So we can't use ldrd as addr may be unaligned. |
| __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr)); |
| __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Strh(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Ldr(OutputRegister(invoke), |
| MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value())); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile, |
| CodeGeneratorARMVIXL* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| Location base_loc = locations->InAt(1); |
| vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer. |
| Location offset_loc = locations->InAt(2); |
| vixl32::Register offset = LowRegisterFrom(offset_loc); // Long offset, lo part only. |
| Location trg_loc = locations->Out(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| vixl32::Register trg = RegisterFrom(trg_loc); |
| __ Ldr(trg, MemOperand(base, offset)); |
| if (is_volatile) { |
| __ Dmb(vixl32::ISH); |
| } |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| vixl32::Register trg = RegisterFrom(trg_loc); |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| Location temp = locations->GetTemp(0); |
| // Piggy-back on the field load path using introspection for the Baker read barrier. |
| __ Add(RegisterFrom(temp), base, Operand(offset)); |
| MemOperand src(RegisterFrom(temp), 0); |
| codegen->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, trg_loc, base, src, /* needs_null_check= */ false); |
| if (is_volatile) { |
| __ Dmb(vixl32::ISH); |
| } |
| } else { |
| __ Ldr(trg, MemOperand(base, offset)); |
| if (is_volatile) { |
| __ Dmb(vixl32::ISH); |
| } |
| codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc); |
| } |
| } else { |
| __ Ldr(trg, MemOperand(base, offset)); |
| if (is_volatile) { |
| __ Dmb(vixl32::ISH); |
| } |
| assembler->MaybeUnpoisonHeapReference(trg); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| vixl32::Register trg_lo = LowRegisterFrom(trg_loc); |
| vixl32::Register trg_hi = HighRegisterFrom(trg_loc); |
| if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp_reg = temps.Acquire(); |
| __ Add(temp_reg, base, offset); |
| __ Ldrexd(trg_lo, trg_hi, MemOperand(temp_reg)); |
| } else { |
| __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset)); |
| } |
| if (is_volatile) { |
| __ Dmb(vixl32::ISH); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| DataType::Type type) { |
| bool can_call = kEmitCompilerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || |
| invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), |
| (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_); |
| } |
| |
| static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, |
| const ArmInstructionSetFeatures& features, |
| DataType::Type type, |
| bool is_volatile, |
| HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| |
| if (type == DataType::Type::kInt64) { |
| // Potentially need temps for ldrexd-strexd loop. |
| if (is_volatile && !features.HasAtomicLdrdAndStrd()) { |
| locations->AddTemp(Location::RequiresRegister()); // Temp_lo. |
| locations->AddTemp(Location::RequiresRegister()); // Temp_hi. |
| } |
| } else if (type == DataType::Type::kReference) { |
| // Temps for card-marking. |
| locations->AddTemp(Location::RequiresRegister()); // Temp. |
| locations->AddTemp(Location::RequiresRegister()); // Card. |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ false, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ false, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ true, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kReference, /* is_volatile= */ false, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kReference, /* is_volatile= */ false, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kReference, /* is_volatile= */ true, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ false, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ false, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid( |
| allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ true, invoke); |
| } |
| |
| static void GenUnsafePut(LocationSummary* locations, |
| DataType::Type type, |
| bool is_volatile, |
| bool is_ordered, |
| CodeGeneratorARMVIXL* codegen) { |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| |
| vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer. |
| vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only. |
| vixl32::Register value; |
| |
| if (is_volatile || is_ordered) { |
| __ Dmb(vixl32::ISH); |
| } |
| |
| if (type == DataType::Type::kInt64) { |
| vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3)); |
| vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3)); |
| value = value_lo; |
| if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { |
| vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1)); |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp_reg = temps.Acquire(); |
| |
| __ Add(temp_reg, base, offset); |
| vixl32::Label loop_head; |
| __ Bind(&loop_head); |
| __ Ldrexd(temp_lo, temp_hi, MemOperand(temp_reg)); |
| __ Strexd(temp_lo, value_lo, value_hi, MemOperand(temp_reg)); |
| __ Cmp(temp_lo, 0); |
| __ B(ne, &loop_head, /* is_far_target= */ false); |
| } else { |
| __ Strd(value_lo, value_hi, MemOperand(base, offset)); |
| } |
| } else { |
| value = RegisterFrom(locations->InAt(3)); |
| vixl32::Register source = value; |
| if (kPoisonHeapReferences && type == DataType::Type::kReference) { |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| __ Mov(temp, value); |
| assembler->PoisonHeapReference(temp); |
| source = temp; |
| } |
| __ Str(source, MemOperand(base, offset)); |
| } |
| |
| if (is_volatile) { |
| __ Dmb(vixl32::ISH); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register card = RegisterFrom(locations->GetTemp(1)); |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(temp, card, base, value, value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kInt32, |
| /* is_volatile= */ false, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kInt32, |
| /* is_volatile= */ false, |
| /* is_ordered= */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kInt32, |
| /* is_volatile= */ true, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kReference, |
| /* is_volatile= */ false, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kReference, |
| /* is_volatile= */ false, |
| /* is_ordered= */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kReference, |
| /* is_volatile= */ true, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kInt64, |
| /* is_volatile= */ false, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kInt64, |
| /* is_volatile= */ false, |
| /* is_ordered= */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), |
| DataType::Type::kInt64, |
| /* is_volatile= */ true, |
| /* is_ordered= */ false, |
| codegen_); |
| } |
| |
| static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) { |
| bool can_call = kEmitCompilerReadBarrier && |
| kUseBakerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| |
| // Temporary registers used in CAS. In the object case |
| // (UnsafeCASObject intrinsic), these are also used for |
| // card-marking, and possibly for (Baker) read barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Pointer. |
| locations->AddTemp(Location::RequiresRegister()); // Temp 1. |
| } |
| |
| class BakerReadBarrierCasSlowPathARMVIXL : public SlowPathCodeARMVIXL { |
| public: |
| explicit BakerReadBarrierCasSlowPathARMVIXL(HInvoke* invoke) |
| : SlowPathCodeARMVIXL(invoke) {} |
| |
| const char* GetDescription() const override { return "BakerReadBarrierCasSlowPathARMVIXL"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); |
| ArmVIXLAssembler* assembler = arm_codegen->GetAssembler(); |
| __ Bind(GetEntryLabel()); |
| |
| LocationSummary* locations = instruction_->GetLocations(); |
| vixl32::Register base = InputRegisterAt(instruction_, 1); // Object pointer. |
| vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Offset (discard high 4B). |
| vixl32::Register expected = InputRegisterAt(instruction_, 3); // Expected. |
| vixl32::Register value = InputRegisterAt(instruction_, 4); // Value. |
| |
| vixl32::Register tmp_ptr = RegisterFrom(locations->GetTemp(0)); // Pointer to actual memory. |
| vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Temporary. |
| |
| // The `tmp` is initialized to `[tmp_ptr] - expected` in the main path. Reconstruct |
| // and mark the old value and compare with `expected`. We clobber `tmp_ptr` in the |
| // process due to lack of other temps suitable for the read barrier. |
| arm_codegen->GenerateUnsafeCasOldValueAddWithBakerReadBarrier(tmp_ptr, tmp, expected); |
| __ Cmp(tmp_ptr, expected); |
| __ B(ne, GetExitLabel()); |
| |
| // The old value we have read did not match `expected` (which is always a to-space reference) |
| // but after the read barrier in GenerateUnsafeCasOldValueAddWithBakerReadBarrier() the marked |
| // to-space value matched, so the old value must be a from-space reference to the same object. |
| // Do the same CAS loop as the main path but check for both `expected` and the unmarked |
| // old value representing the to-space and from-space references for the same object. |
| |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| vixl32::Register adjusted_old_value = temps.Acquire(); // For saved `tmp` from main path. |
| |
| // Recalculate the `tmp_ptr` clobbered above and store the `adjusted_old_value`, i.e. IP. |
| __ Add(tmp_ptr, base, offset); |
| __ Mov(adjusted_old_value, tmp); |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while ((tmp == 0 || tmp == adjusted_old_value) && failure([r_ptr] <- r_new_value)); |
| // result = (tmp == 0 || tmp == adjusted_old_value); |
| |
| vixl32::Label loop_head; |
| __ Bind(&loop_head); |
| __ Ldrex(tmp, MemOperand(tmp_ptr)); // This can now load null stored by another thread. |
| assembler->MaybeUnpoisonHeapReference(tmp); |
| __ Subs(tmp, tmp, expected); // Use SUBS to get non-zero value if both compares fail. |
| { |
| // If the newly loaded value did not match `expected`, compare with `adjusted_old_value`. |
| ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes); |
| __ it(ne); |
| __ cmp(ne, tmp, adjusted_old_value); |
| } |
| __ B(ne, GetExitLabel()); |
| assembler->MaybePoisonHeapReference(value); |
| __ Strex(tmp, value, MemOperand(tmp_ptr)); |
| assembler->MaybeUnpoisonHeapReference(value); |
| __ Cmp(tmp, 0); |
| __ B(ne, &loop_head, /* is_far_target= */ false); |
| __ B(GetExitLabel()); |
| } |
| }; |
| |
| static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { |
| DCHECK_NE(type, DataType::Type::kInt64); |
| |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| vixl32::Register out = OutputRegister(invoke); // Boolean result. |
| |
| vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer. |
| vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Offset (discard high 4B). |
| vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected. |
| vixl32::Register value = InputRegisterAt(invoke, 4); // Value. |
| |
| vixl32::Register tmp_ptr = RegisterFrom(locations->GetTemp(0)); // Pointer to actual memory. |
| vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Temporary. |
| |
| vixl32::Label loop_exit_label; |
| vixl32::Label* loop_exit = &loop_exit_label; |
| vixl32::Label* failure = &loop_exit_label; |
| |
| if (type == DataType::Type::kReference) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| // Mark card for object assuming new value is stored. Worst case we will mark an unchanged |
| // object and scan the receiver at the next GC for nothing. |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null); |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // If marking, check if the stored reference is a from-space reference to the same |
| // object as the to-space reference `expected`. If so, perform a custom CAS loop. |
| BakerReadBarrierCasSlowPathARMVIXL* slow_path = |
| new (codegen->GetScopedAllocator()) BakerReadBarrierCasSlowPathARMVIXL(invoke); |
| codegen->AddSlowPath(slow_path); |
| failure = slow_path->GetEntryLabel(); |
| loop_exit = slow_path->GetExitLabel(); |
| } |
| } |
| |
| // Prevent reordering with prior memory operations. |
| // Emit a DMB ISH instruction instead of an DMB ISHST one, as the |
| // latter allows a preceding load to be delayed past the STREX |
| // instruction below. |
| __ Dmb(vixl32::ISH); |
| |
| __ Add(tmp_ptr, base, offset); |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| // result = tmp == 0; |
| |
| vixl32::Label loop_head; |
| __ Bind(&loop_head); |
| __ Ldrex(tmp, MemOperand(tmp_ptr)); |
| if (type == DataType::Type::kReference) { |
| assembler->MaybeUnpoisonHeapReference(tmp); |
| } |
| __ Subs(tmp, tmp, expected); |
| static_cast<vixl32::MacroAssembler*>(assembler->GetVIXLAssembler())-> |
| B(ne, failure, /* hint= */ (failure == loop_exit) ? kNear : kBranchWithoutHint); |
| if (type == DataType::Type::kReference) { |
| assembler->MaybePoisonHeapReference(value); |
| } |
| __ Strex(tmp, value, MemOperand(tmp_ptr)); |
| if (type == DataType::Type::kReference) { |
| assembler->MaybeUnpoisonHeapReference(value); |
| } |
| __ Cmp(tmp, 0); |
| __ B(ne, &loop_head, /* is_far_target= */ false); |
| |
| __ Bind(loop_exit); |
| |
| __ Dmb(vixl32::ISH); |
| |
| // out = tmp == 0. |
| __ Clz(out, tmp); |
| __ Lsr(out, out, WhichPowerOf2(out.GetSizeInBits())); |
| |
| if (type == DataType::Type::kReference) { |
| codegen->MaybeGenerateMarkingRegisterCheck(/* code= */ 128); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) { |
| CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) { |
| GenCas(invoke, DataType::Type::kInt32, codegen_); |
| } |
| void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| GenCas(invoke, DataType::Type::kReference, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) { |
| // The inputs plus one temp. |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, |
| invoke->InputAt(1)->CanBeNull() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| // Need temporary registers for String compression's feature. |
| if (mirror::kUseStringCompression) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| // Forward declaration. |
| // |
| // ART build system imposes a size limit (deviceFrameSizeLimit) on the stack frames generated |
| // by the compiler for every C++ function, and if this function gets inlined in |
| // IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo, the limit will be exceeded, resulting in a |
| // build failure. That is the reason why NO_INLINE attribute is used. |
| static void NO_INLINE GenerateStringCompareToLoop(ArmVIXLAssembler* assembler, |
| HInvoke* invoke, |
| vixl32::Label* end, |
| vixl32::Label* different_compression); |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| const vixl32::Register str = InputRegisterAt(invoke, 0); |
| const vixl32::Register arg = InputRegisterAt(invoke, 1); |
| const vixl32::Register out = OutputRegister(invoke); |
| |
| const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0)); |
| const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); |
| const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2)); |
| vixl32::Register temp3; |
| if (mirror::kUseStringCompression) { |
| temp3 = RegisterFrom(locations->GetTemp(3)); |
| } |
| |
| vixl32::Label end; |
| vixl32::Label different_compression; |
| |
| // Get offsets of count and value fields within a string object. |
| const int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| // Take slow path and throw if input can be and is null. |
| SlowPathCodeARMVIXL* slow_path = nullptr; |
| const bool can_slow_path = invoke->InputAt(1)->CanBeNull(); |
| if (can_slow_path) { |
| slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel()); |
| } |
| |
| // Reference equality check, return 0 if same reference. |
| __ Subs(out, str, arg); |
| __ B(eq, &end); |
| |
| if (mirror::kUseStringCompression) { |
| // Load `count` fields of this and argument strings. |
| __ Ldr(temp3, MemOperand(str, count_offset)); |
| __ Ldr(temp2, MemOperand(arg, count_offset)); |
| // Extract lengths from the `count` fields. |
| __ Lsr(temp0, temp3, 1u); |
| __ Lsr(temp1, temp2, 1u); |
| } else { |
| // Load lengths of this and argument strings. |
| __ Ldr(temp0, MemOperand(str, count_offset)); |
| __ Ldr(temp1, MemOperand(arg, count_offset)); |
| } |
| // out = length diff. |
| __ Subs(out, temp0, temp1); |
| // temp0 = min(len(str), len(arg)). |
| |
| { |
| ExactAssemblyScope aas(assembler->GetVIXLAssembler(), |
| 2 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| |
| __ it(gt); |
| __ mov(gt, temp0, temp1); |
| } |
| |
| // Shorter string is empty? |
| // Note that mirror::kUseStringCompression==true introduces lots of instructions, |
| // which makes &end label far away from this branch and makes it not 'CBZ-encodable'. |
| __ CompareAndBranchIfZero(temp0, &end, mirror::kUseStringCompression); |
| |
| if (mirror::kUseStringCompression) { |
| // Check if both strings using same compression style to use this comparison loop. |
| __ Eors(temp2, temp2, temp3); |
| __ Lsrs(temp2, temp2, 1u); |
| __ B(cs, &different_compression); |
| // For string compression, calculate the number of bytes to compare (not chars). |
| // This could in theory exceed INT32_MAX, so treat temp0 as unsigned. |
| __ Lsls(temp3, temp3, 31u); // Extract purely the compression flag. |
| |
| ExactAssemblyScope aas(assembler->GetVIXLAssembler(), |
| 2 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| |
| __ it(ne); |
| __ add(ne, temp0, temp0, temp0); |
| } |
| |
| |
| GenerateStringCompareToLoop(assembler, invoke, &end, &different_compression); |
| |
| __ Bind(&end); |
| |
| if (can_slow_path) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| static void GenerateStringCompareToLoop(ArmVIXLAssembler* assembler, |
| HInvoke* invoke, |
| vixl32::Label* end, |
| vixl32::Label* different_compression) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| const vixl32::Register str = InputRegisterAt(invoke, 0); |
| const vixl32::Register arg = InputRegisterAt(invoke, 1); |
| const vixl32::Register out = OutputRegister(invoke); |
| |
| const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0)); |
| const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); |
| const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2)); |
| vixl32::Register temp3; |
| if (mirror::kUseStringCompression) { |
| temp3 = RegisterFrom(locations->GetTemp(3)); |
| } |
| |
| vixl32::Label loop; |
| vixl32::Label find_char_diff; |
| |
| const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Store offset of string value in preparation for comparison loop. |
| __ Mov(temp1, value_offset); |
| |
| // Assertions that must hold in order to compare multiple characters at a time. |
| CHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), |
| "String data must be 8-byte aligned for unrolled CompareTo loop."); |
| |
| const unsigned char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| |
| vixl32::Label find_char_diff_2nd_cmp; |
| // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment). |
| __ Bind(&loop); |
| vixl32::Register temp_reg = temps.Acquire(); |
| __ Ldr(temp_reg, MemOperand(str, temp1)); |
| __ Ldr(temp2, MemOperand(arg, temp1)); |
| __ Cmp(temp_reg, temp2); |
| __ B(ne, &find_char_diff, /* is_far_target= */ false); |
| __ Add(temp1, temp1, char_size * 2); |
| |
| __ Ldr(temp_reg, MemOperand(str, temp1)); |
| __ Ldr(temp2, MemOperand(arg, temp1)); |
| __ Cmp(temp_reg, temp2); |
| __ B(ne, &find_char_diff_2nd_cmp, /* is_far_target= */ false); |
| __ Add(temp1, temp1, char_size * 2); |
| // With string compression, we have compared 8 bytes, otherwise 4 chars. |
| __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4)); |
| __ B(hi, &loop, /* is_far_target= */ false); |
| __ B(end); |
| |
| __ Bind(&find_char_diff_2nd_cmp); |
| if (mirror::kUseStringCompression) { |
| __ Subs(temp0, temp0, 4); // 4 bytes previously compared. |
| __ B(ls, end, /* is_far_target= */ false); // Was the second comparison fully beyond the end? |
| } else { |
| // Without string compression, we can start treating temp0 as signed |
| // and rely on the signed comparison below. |
| __ Sub(temp0, temp0, 2); |
| } |
| |
| // Find the single character difference. |
| __ Bind(&find_char_diff); |
| // Get the bit position of the first character that differs. |
| __ Eor(temp1, temp2, temp_reg); |
| __ Rbit(temp1, temp1); |
| __ Clz(temp1, temp1); |
| |
| // temp0 = number of characters remaining to compare. |
| // (Without string compression, it could be < 1 if a difference is found by the second CMP |
| // in the comparison loop, and after the end of the shorter string data). |
| |
| // Without string compression (temp1 >> 4) = character where difference occurs between the last |
| // two words compared, in the interval [0,1]. |
| // (0 for low half-word different, 1 for high half-word different). |
| // With string compression, (temp1 << 3) = byte where the difference occurs, |
| // in the interval [0,3]. |
| |
| // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside |
| // the remaining string data, so just return length diff (out). |
| // The comparison is unsigned for string compression, otherwise signed. |
| __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4))); |
| __ B((mirror::kUseStringCompression ? ls : le), end, /* is_far_target= */ false); |
| |
| // Extract the characters and calculate the difference. |
| if (mirror::kUseStringCompression) { |
| // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear |
| // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`. |
| // The compression flag is now in the highest bit of temp3, so let's play some tricks. |
| __ Orr(temp3, temp3, 0xffu << 23); // uncompressed ? 0xff800000u : 0x7ff80000u |
| __ Bic(temp1, temp1, Operand(temp3, vixl32::LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u) |
| __ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u. |
| __ Lsr(temp2, temp2, temp1); // Extract second character. |
| __ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu |
| __ Lsr(out, temp_reg, temp1); // Extract first character. |
| __ And(temp2, temp2, temp3); |
| __ And(out, out, temp3); |
| } else { |
| __ Bic(temp1, temp1, 0xf); |
| __ Lsr(temp2, temp2, temp1); |
| __ Lsr(out, temp_reg, temp1); |
| __ Movt(temp2, 0); |
| __ Movt(out, 0); |
| } |
| |
| __ Sub(out, out, temp2); |
| temps.Release(temp_reg); |
| |
| if (mirror::kUseStringCompression) { |
| __ B(end); |
| __ Bind(different_compression); |
| |
| // Comparison for different compression style. |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| |
| // We want to free up the temp3, currently holding `str.count`, for comparison. |
| // So, we move it to the bottom bit of the iteration count `temp0` which we tnen |
| // need to treat as unsigned. Start by freeing the bit with an ADD and continue |
| // further down by a LSRS+SBC which will flip the meaning of the flag but allow |
| // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition. |
| __ Add(temp0, temp0, temp0); // Unlike LSL, this ADD is always 16-bit. |
| // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer. |
| __ Mov(temp1, str); |
| __ Mov(temp2, arg); |
| __ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag. |
| { |
| ExactAssemblyScope aas(assembler->GetVIXLAssembler(), |
| 3 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ itt(cs); // Interleave with selection of temp1 and temp2. |
| __ mov(cs, temp1, arg); // Preserves flags. |
| __ mov(cs, temp2, str); // Preserves flags. |
| } |
| __ Sbc(temp0, temp0, 0); // Complete the move of the compression flag. |
| |
| // Adjust temp1 and temp2 from string pointers to data pointers. |
| __ Add(temp1, temp1, value_offset); |
| __ Add(temp2, temp2, value_offset); |
| |
| vixl32::Label different_compression_loop; |
| vixl32::Label different_compression_diff; |
| |
| // Main loop for different compression. |
| temp_reg = temps.Acquire(); |
| __ Bind(&different_compression_loop); |
| __ Ldrb(temp_reg, MemOperand(temp1, c_char_size, PostIndex)); |
| __ Ldrh(temp3, MemOperand(temp2, char_size, PostIndex)); |
| __ Cmp(temp_reg, temp3); |
| __ B(ne, &different_compression_diff, /* is_far_target= */ false); |
| __ Subs(temp0, temp0, 2); |
| __ B(hi, &different_compression_loop, /* is_far_target= */ false); |
| __ B(end); |
| |
| // Calculate the difference. |
| __ Bind(&different_compression_diff); |
| __ Sub(out, temp_reg, temp3); |
| temps.Release(temp_reg); |
| // Flip the difference if the `arg` is compressed. |
| // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag. |
| __ Lsrs(temp0, temp0, 1u); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| |
| ExactAssemblyScope aas(assembler->GetVIXLAssembler(), |
| 2 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ it(cc); |
| __ rsb(cc, out, out, 0); |
| } |
| } |
| |
| // The cut off for unrolling the loop in String.equals() intrinsic for const strings. |
| // The normal loop plus the pre-header is 9 instructions (18-26 bytes) without string compression |
| // and 12 instructions (24-32 bytes) with string compression. We can compare up to 4 bytes in 4 |
| // instructions (LDR+LDR+CMP+BNE) and up to 8 bytes in 6 instructions (LDRD+LDRD+CMP+BNE+CMP+BNE). |
| // Allow up to 12 instructions (32 bytes) for the unrolled loop. |
| constexpr size_t kShortConstStringEqualsCutoffInBytes = 16; |
| |
| static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) { |
| if (candidate->IsLoadString()) { |
| HLoadString* load_string = candidate->AsLoadString(); |
| const DexFile& dex_file = load_string->GetDexFile(); |
| return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length); |
| } |
| return nullptr; |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // Temporary registers to store lengths of strings and for calculations. |
| // Using instruction cbz requires a low register, so explicitly set a temp to be R0. |
| locations->AddTemp(LocationFrom(r0)); |
| |
| // For the generic implementation and for long const strings we need an extra temporary. |
| // We do not need it for short const strings, up to 4 bytes, see code generation below. |
| uint32_t const_string_length = 0u; |
| const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); |
| if (const_string == nullptr) { |
| const_string = GetConstString(invoke->InputAt(1), &const_string_length); |
| } |
| bool is_compressed = |
| mirror::kUseStringCompression && |
| const_string != nullptr && |
| mirror::String::DexFileStringAllASCII(const_string, const_string_length); |
| if (const_string == nullptr || const_string_length > (is_compressed ? 4u : 2u)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| // TODO: If the String.equals() is used only for an immediately following HIf, we can |
| // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks. |
| // Then we shall need an extra temporary register instead of the output register. |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| vixl32::Register str = InputRegisterAt(invoke, 0); |
| vixl32::Register arg = InputRegisterAt(invoke, 1); |
| vixl32::Register out = OutputRegister(invoke); |
| |
| vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); |
| |
| vixl32::Label loop; |
| vixl32::Label end; |
| vixl32::Label return_true; |
| vixl32::Label return_false; |
| vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &end); |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ CompareAndBranchIfZero(arg, &return_false, /* is_far_target= */ false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ Cmp(str, arg); |
| __ B(eq, &return_true, /* is_far_target= */ false); |
| |
| if (!optimizations.GetArgumentIsString()) { |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| // |
| // As the String class is expected to be non-movable, we can read the class |
| // field from String.equals' arguments without read barriers. |
| AssertNonMovableStringClass(); |
| // /* HeapReference<Class> */ temp = str->klass_ |
| __ Ldr(temp, MemOperand(str, class_offset)); |
| // /* HeapReference<Class> */ out = arg->klass_ |
| __ Ldr(out, MemOperand(arg, class_offset)); |
| // Also, because we use the previously loaded class references only in the |
| // following comparison, we don't need to unpoison them. |
| __ Cmp(temp, out); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| } |
| |
| // Check if one of the inputs is a const string. Do not special-case both strings |
| // being const, such cases should be handled by constant folding if needed. |
| uint32_t const_string_length = 0u; |
| const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); |
| if (const_string == nullptr) { |
| const_string = GetConstString(invoke->InputAt(1), &const_string_length); |
| if (const_string != nullptr) { |
| std::swap(str, arg); // Make sure the const string is in `str`. |
| } |
| } |
| bool is_compressed = |
| mirror::kUseStringCompression && |
| const_string != nullptr && |
| mirror::String::DexFileStringAllASCII(const_string, const_string_length); |
| |
| if (const_string != nullptr) { |
| // Load `count` field of the argument string and check if it matches the const string. |
| // Also compares the compression style, if differs return false. |
| __ Ldr(temp, MemOperand(arg, count_offset)); |
| __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed))); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| } else { |
| // Load `count` fields of this and argument strings. |
| __ Ldr(temp, MemOperand(str, count_offset)); |
| __ Ldr(out, MemOperand(arg, count_offset)); |
| // Check if `count` fields are equal, return false if they're not. |
| // Also compares the compression style, if differs return false. |
| __ Cmp(temp, out); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| } |
| |
| // Assertions that must hold in order to compare strings 4 bytes at a time. |
| // Ok to do this because strings are zero-padded to kObjectAlignment. |
| DCHECK_ALIGNED(value_offset, 4); |
| static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare."); |
| |
| if (const_string != nullptr && |
| const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes |
| : kShortConstStringEqualsCutoffInBytes / 2u)) { |
| // Load and compare the contents. Though we know the contents of the short const string |
| // at compile time, materializing constants may be more code than loading from memory. |
| int32_t offset = value_offset; |
| size_t remaining_bytes = |
| RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 4u); |
| while (remaining_bytes > sizeof(uint32_t)) { |
| vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); |
| UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler()); |
| vixl32::Register temp2 = scratch_scope.Acquire(); |
| __ Ldrd(temp, temp1, MemOperand(str, offset)); |
| __ Ldrd(temp2, out, MemOperand(arg, offset)); |
| __ Cmp(temp, temp2); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| __ Cmp(temp1, out); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| offset += 2u * sizeof(uint32_t); |
| remaining_bytes -= 2u * sizeof(uint32_t); |
| } |
| if (remaining_bytes != 0u) { |
| __ Ldr(temp, MemOperand(str, offset)); |
| __ Ldr(out, MemOperand(arg, offset)); |
| __ Cmp(temp, out); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| } |
| } else { |
| // Return true if both strings are empty. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ CompareAndBranchIfZero(temp, &return_true, /* is_far_target= */ false); |
| |
| if (mirror::kUseStringCompression) { |
| // For string compression, calculate the number of bytes to compare (not chars). |
| // This could in theory exceed INT32_MAX, so treat temp as unsigned. |
| __ Lsrs(temp, temp, 1u); // Extract length and check compression flag. |
| ExactAssemblyScope aas(assembler->GetVIXLAssembler(), |
| 2 * kMaxInstructionSizeInBytes, |
| CodeBufferCheckScope::kMaximumSize); |
| __ it(cs); // If uncompressed, |
| __ add(cs, temp, temp, temp); // double the byte count. |
| } |
| |
| vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); |
| UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler()); |
| vixl32::Register temp2 = scratch_scope.Acquire(); |
| |
| // Store offset of string value in preparation for comparison loop. |
| __ Mov(temp1, value_offset); |
| |
| // Loop to compare strings 4 bytes at a time starting at the front of the string. |
| __ Bind(&loop); |
| __ Ldr(out, MemOperand(str, temp1)); |
| __ Ldr(temp2, MemOperand(arg, temp1)); |
| __ Add(temp1, temp1, Operand::From(sizeof(uint32_t))); |
| __ Cmp(out, temp2); |
| __ B(ne, &return_false, /* is_far_target= */ false); |
| // With string compression, we have compared 4 bytes, otherwise 2 chars. |
| __ Subs(temp, temp, mirror::kUseStringCompression ? 4 : 2); |
| __ B(hi, &loop, /* is_far_target= */ false); |
| } |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ Mov(out, 1); |
| __ B(final_label); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ Mov(out, 0); |
| |
| if (end.IsReferenced()) { |
| __ Bind(&end); |
| } |
| } |
| |
| static void GenerateVisitStringIndexOf(HInvoke* invoke, |
| ArmVIXLAssembler* assembler, |
| CodeGeneratorARMVIXL* codegen, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. |
| SlowPathCodeARMVIXL* slow_path = nullptr; |
| HInstruction* code_point = invoke->InputAt(1); |
| if (code_point->IsIntConstant()) { |
| if (static_cast<uint32_t>(Int32ConstantFrom(code_point)) > |
| std::numeric_limits<uint16_t>::max()) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else if (code_point->GetType() != DataType::Type::kUint16) { |
| vixl32::Register char_reg = InputRegisterAt(invoke, 1); |
| // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`. |
| __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1); |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ B(hs, slow_path->GetEntryLabel()); |
| } |
| |
| if (start_at_zero) { |
| vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0)); |
| DCHECK(tmp_reg.Is(r2)); |
| // Start-index = 0. |
| __ Mov(tmp_reg, 0); |
| } |
| |
| codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>(); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's |
| // best to align the inputs accordingly. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(LocationFrom(r0)); |
| |
| // Need to send start-index=0. |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's |
| // best to align the inputs accordingly. |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(LocationFrom(r0)); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(LocationFrom(r0)); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| vixl32::Register byte_array = InputRegisterAt(invoke, 0); |
| __ Cmp(byte_array, 0); |
| SlowPathCodeARMVIXL* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ B(eq, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(LocationFrom(r0)); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) { |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(LocationFrom(r0)); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| vixl32::Register string_to_copy = InputRegisterAt(invoke, 0); |
| __ Cmp(string_to_copy, 0); |
| SlowPathCodeARMVIXL* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ B(eq, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations == nullptr) { |
| return; |
| } |
| |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| |
| if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) { |
| locations->SetInAt(3, Location::RequiresRegister()); |
| } |
| if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) { |
| locations->SetInAt(4, Location::RequiresRegister()); |
| } |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Temporary register IP cannot be used in |
| // ReadBarrierSystemArrayCopySlowPathARM (because that register |
| // is clobbered by ReadBarrierMarkRegX entry points). Get an extra |
| // temporary register from the register allocator. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| static void CheckPosition(ArmVIXLAssembler* assembler, |
| Location pos, |
| vixl32::Register input, |
| Location length, |
| SlowPathCodeARMVIXL* slow_path, |
| vixl32::Register temp, |
| bool length_is_input_length = false) { |
| // Where is the length in the Array? |
| const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t pos_const = Int32ConstantFrom(pos); |
| if (pos_const == 0) { |
| if (!length_is_input_length) { |
| // Check that length(input) >= length. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| if (length.IsConstant()) { |
| __ Cmp(temp, Int32ConstantFrom(length)); |
| } else { |
| __ Cmp(temp, RegisterFrom(length)); |
| } |
| __ B(lt, slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Check that length(input) >= pos. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Subs(temp, temp, pos_const); |
| __ B(lt, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| if (length.IsConstant()) { |
| __ Cmp(temp, Int32ConstantFrom(length)); |
| } else { |
| __ Cmp(temp, RegisterFrom(length)); |
| } |
| __ B(lt, slow_path->GetEntryLabel()); |
| } |
| } else if (length_is_input_length) { |
| // The only way the copy can succeed is if pos is zero. |
| vixl32::Register pos_reg = RegisterFrom(pos); |
| __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel()); |
| } else { |
| // Check that pos >= 0. |
| vixl32::Register pos_reg = RegisterFrom(pos); |
| __ Cmp(pos_reg, 0); |
| __ B(lt, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input). |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Subs(temp, temp, pos_reg); |
| __ B(lt, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| if (length.IsConstant()) { |
| __ Cmp(temp, Int32ConstantFrom(length)); |
| } else { |
| __ Cmp(temp, RegisterFrom(length)); |
| } |
| __ B(lt, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| vixl32::Register src = InputRegisterAt(invoke, 0); |
| Location src_pos = locations->InAt(1); |
| vixl32::Register dest = InputRegisterAt(invoke, 2); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| Location temp1_loc = locations->GetTemp(0); |
| vixl32::Register temp1 = RegisterFrom(temp1_loc); |
| Location temp2_loc = locations->GetTemp(1); |
| vixl32::Register temp2 = RegisterFrom(temp2_loc); |
| Location temp3_loc = locations->GetTemp(2); |
| vixl32::Register temp3 = RegisterFrom(temp3_loc); |
| |
| SlowPathCodeARMVIXL* intrinsic_slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); |
| codegen_->AddSlowPath(intrinsic_slow_path); |
| |
| vixl32::Label conditions_on_positions_validated; |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| // If source and destination are the same, we go to slow path if we need to do |
| // forward copying. |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_constant = Int32ConstantFrom(src_pos); |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = Int32ConstantFrom(dest_pos); |
| if (optimizations.GetDestinationIsSource()) { |
| // Checked when building locations. |
| DCHECK_GE(src_pos_constant, dest_pos_constant); |
| } else if (src_pos_constant < dest_pos_constant) { |
| __ Cmp(src, dest); |
| __ B(eq, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // Checked when building locations. |
| DCHECK(!optimizations.GetDestinationIsSource() |
| || (src_pos_constant >= Int32ConstantFrom(dest_pos))); |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ Cmp(src, dest); |
| __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false); |
| } |
| __ Cmp(RegisterFrom(dest_pos), src_pos_constant); |
| __ B(gt, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ Cmp(src, dest); |
| __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = Int32ConstantFrom(dest_pos); |
| __ Cmp(RegisterFrom(src_pos), dest_pos_constant); |
| } else { |
| __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos)); |
| } |
| __ B(lt, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| __ Bind(&conditions_on_positions_validated); |
| |
| if (!optimizations.GetSourceIsNotNull()) { |
| // Bail out if the source is null. |
| __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { |
| // Bail out if the destination is null. |
| __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant() && |
| !optimizations.GetCountIsSourceLength() && |
| !optimizations.GetCountIsDestinationLength()) { |
| __ Cmp(RegisterFrom(length), 0); |
| __ B(lt, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // Validity checks: source. |
| CheckPosition(assembler, |
| src_pos, |
| src, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsSourceLength()); |
| |
| // Validity checks: dest. |
| CheckPosition(assembler, |
| dest_pos, |
| dest, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsDestinationLength()); |
| |
| if (!optimizations.GetDoesNotNeedTypeCheck()) { |
| // Check whether all elements of the source array are assignable to the component |
| // type of the destination array. We do two checks: the classes are the same, |
| // or the destination is Object[]. If none of these checks succeed, we go to the |
| // slow path. |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false); |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); |
| __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp1` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_); |
| __ Ldrh(temp1, MemOperand(temp1, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check= */ false); |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // |
| // Register `temp1` is not trashed by the read barrier emitted |
| // by GenerateFieldLoadWithBakerReadBarrier below, as that |
| // method produces a call to a ReadBarrierMarkRegX entry point, |
| // which saves all potentially live registers, including |
| // temporaries such a `temp1`. |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check= */ false); |
| __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp2` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); |
| __ Ldrh(temp2, MemOperand(temp2, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // For the same reason given earlier, `temp1` is not trashed by the |
| // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check= */ false); |
| // Note: if heap poisoning is on, we are comparing two unpoisoned references here. |
| __ Cmp(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| vixl32::Label do_copy; |
| __ B(eq, &do_copy, /* is_far_target= */ false); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| // We do not need to emit a read barrier for the following |
| // heap reference load, as `temp1` is only used in a |
| // comparison with null below, and this reference is not |
| // kept afterwards. |
| __ Ldr(temp1, MemOperand(temp1, super_offset)); |
| __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ B(ne, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Non read barrier code. |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| __ Ldr(temp1, MemOperand(dest, class_offset)); |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| __ Ldr(temp2, MemOperand(src, class_offset)); |
| bool did_unpoison = false; |
| if (!optimizations.GetDestinationIsNonPrimitiveArray() || |
| !optimizations.GetSourceIsNonPrimitiveArray()) { |
| // One or two of the references need to be unpoisoned. Unpoison them |
| // both to make the identity check valid. |
| assembler->MaybeUnpoisonHeapReference(temp1); |
| assembler->MaybeUnpoisonHeapReference(temp2); |
| did_unpoison = true; |
| } |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // /* HeapReference<Class> */ temp3 = temp1->component_type_ |
| __ Ldr(temp3, MemOperand(temp1, component_offset)); |
| __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| assembler->MaybeUnpoisonHeapReference(temp3); |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp3 = temp2->component_type_ |
| __ Ldr(temp3, MemOperand(temp2, component_offset)); |
| __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| assembler->MaybeUnpoisonHeapReference(temp3); |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| __ Cmp(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| vixl32::Label do_copy; |
| __ B(eq, &do_copy, /* is_far_target= */ false); |
| if (!did_unpoison) { |
| assembler->MaybeUnpoisonHeapReference(temp1); |
| } |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ Ldr(temp1, MemOperand(temp1, component_offset)); |
| assembler->MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| __ Ldr(temp1, MemOperand(temp1, super_offset)); |
| // No need to unpoison the result, we're comparing against null. |
| __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ B(ne, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } |
| } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); |
| // Bail out if the source is not a non primitive array. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false); |
| // /* HeapReference<Class> */ temp3 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); |
| __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp3` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ Ldr(temp1, MemOperand(src, class_offset)); |
| assembler->MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp3 = temp1->component_type_ |
| __ Ldr(temp3, MemOperand(temp1, component_offset)); |
| __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| assembler->MaybeUnpoisonHeapReference(temp3); |
| } |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (length.IsConstant() && Int32ConstantFrom(length) == 0) { |
| // Null constant length: not need to emit the loop code at all. |
| } else { |
| vixl32::Label done; |
| const DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| if (length.IsRegister()) { |
| // Don't enter the copy loop if the length is null. |
| __ CompareAndBranchIfZero(RegisterFrom(length), &done, /* is_far_target= */ false); |
| } |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // TODO: Also convert this intrinsic to the IsGcMarking strategy? |
| |
| // SystemArrayCopy implementation for Baker read barriers (see |
| // also CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier): |
| // |
| // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // // Slow-path copy. |
| // do { |
| // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); |
| // } while (src_ptr != end_ptr) |
| // } else { |
| // // Fast-path copy. |
| // do { |
| // *dest_ptr++ = *src_ptr++; |
| // } while (src_ptr != end_ptr) |
| // } |
| |
| // /* int32_t */ monitor = src->monitor_ |
| __ Ldr(temp2, MemOperand(src, monitor_offset)); |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including the rb_state, |
| // which shall prevent load-load reordering without using |
| // a memory barrier (which would be more expensive). |
| // `src` is unchanged by this operation, but its value now depends |
| // on `temp2`. |
| __ Add(src, src, Operand(temp2, vixl32::LSR, 32)); |
| |
| // Compute the base source address in `temp1`. |
| // Note that `temp1` (the base source address) is computed from |
| // `src` (and `src_pos`) here, and thus honors the artificial |
| // dependency of `src` on `temp2`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); |
| // Compute the end source address in `temp3`. |
| GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); |
| // The base destination address is computed later, as `temp2` is |
| // used for intermediate computations. |
| |
| // Slow path used to copy array when `src` is gray. |
| // Note that the base destination address is computed in `temp2` |
| // by the slow path code. |
| SlowPathCodeARMVIXL* read_barrier_slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke); |
| codegen_->AddSlowPath(read_barrier_slow_path); |
| |
| // Given the numeric representation, it's enough to check the low bit of the |
| // rb_state. We do that by shifting the bit out of the lock word with LSRS |
| // which can be a 16-bit instruction unlike the TST immediate. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1); |
| // Carry flag is the last bit shifted out by LSRS. |
| __ B(cs, read_barrier_slow_path->GetEntryLabel()); |
| |
| // Fast-path copy. |
| // Compute the base destination address in `temp2`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| vixl32::Label loop; |
| __ Bind(&loop); |
| { |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp_reg = temps.Acquire(); |
| __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex)); |
| __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex)); |
| } |
| __ Cmp(temp1, temp3); |
| __ B(ne, &loop, /* is_far_target= */ false); |
| |
| __ Bind(read_barrier_slow_path->GetExitLabel()); |
| } else { |
| // Non read barrier code. |
| // Compute the base source address in `temp1`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); |
| // Compute the base destination address in `temp2`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); |
| // Compute the end source address in `temp3`. |
| GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| vixl32::Label loop; |
| __ Bind(&loop); |
| { |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp_reg = temps.Acquire(); |
| __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex)); |
| __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex)); |
| } |
| __ Cmp(temp1, temp3); |
| __ B(ne, &loop, /* is_far_target= */ false); |
| } |
| __ Bind(&done); |
| } |
| |
| // We only need one card marking on the destination array. |
| codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* can_be_null= */ false); |
| |
| __ Bind(intrinsic_slow_path->GetExitLabel()); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| // If the graph is debuggable, all callee-saved floating-point registers are blocked by |
| // the code generator. Furthermore, the register allocator creates fixed live intervals |
| // for all caller-saved registers because we are doing a function call. As a result, if |
| // the input and output locations are unallocated, the register allocator runs out of |
| // registers and fails; however, a debuggable graph is not the common case. |
| if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { |
| return; |
| } |
| |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); |
| DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64); |
| DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); |
| |
| LocationSummary* const locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| const InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| // Native code uses the soft float ABI. |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1))); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| // If the graph is debuggable, all callee-saved floating-point registers are blocked by |
| // the code generator. Furthermore, the register allocator creates fixed live intervals |
| // for all caller-saved registers because we are doing a function call. As a result, if |
| // the input and output locations are unallocated, the register allocator runs out of |
| // registers and fails; however, a debuggable graph is not the common case. |
| if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { |
| return; |
| } |
| |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); |
| DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64); |
| DCHECK_EQ(invoke->InputAt(1)->GetType(), DataType::Type::kFloat64); |
| DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); |
| |
| LocationSummary* const locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| const InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| // Native code uses the soft float ABI. |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3))); |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, |
| ArmVIXLAssembler* assembler, |
| CodeGeneratorARMVIXL* codegen, |
| QuickEntrypointEnum entry) { |
| LocationSummary* const locations = invoke->GetLocations(); |
| |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); |
| DCHECK(locations->WillCall() && locations->Intrinsified()); |
| |
| // Native code uses the soft float ABI. |
| __ Vmov(RegisterFrom(locations->GetTemp(0)), |
| RegisterFrom(locations->GetTemp(1)), |
| InputDRegisterAt(invoke, 0)); |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| __ Vmov(OutputDRegister(invoke), |
| RegisterFrom(locations->GetTemp(0)), |
| RegisterFrom(locations->GetTemp(1))); |
| } |
| |
| static void GenFPFPToFPCall(HInvoke* invoke, |
| ArmVIXLAssembler* assembler, |
| CodeGeneratorARMVIXL* codegen, |
| QuickEntrypointEnum entry) { |
| LocationSummary* const locations = invoke->GetLocations(); |
| |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); |
| DCHECK(locations->WillCall() && locations->Intrinsified()); |
| |
| // Native code uses the soft float ABI. |
| __ Vmov(RegisterFrom(locations->GetTemp(0)), |
| RegisterFrom(locations->GetTemp(1)), |
| InputDRegisterAt(invoke, 0)); |
| __ Vmov(RegisterFrom(locations->GetTemp(2)), |
| RegisterFrom(locations->GetTemp(3)), |
| InputDRegisterAt(invoke, 1)); |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| __ Vmov(OutputDRegister(invoke), |
| RegisterFrom(locations->GetTemp(0)), |
| RegisterFrom(locations->GetTemp(1))); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) { |
| GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathPow(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathPow(HInvoke* invoke) { |
| GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickPow); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) { |
| GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) { |
| CreateLongToLongLocationsWithOverlap(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); |
| vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); |
| vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); |
| vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); |
| |
| __ Rbit(out_reg_lo, in_reg_hi); |
| __ Rbit(out_reg_hi, in_reg_lo); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateLongToLongLocationsWithOverlap(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); |
| vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); |
| vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); |
| vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); |
| |
| __ Rev(out_reg_lo, in_reg_hi); |
| __ Rev(out_reg_hi, in_reg_lo); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0)); |
| } |
| |
| static void GenBitCount(HInvoke* instr, DataType::Type type, ArmVIXLAssembler* assembler) { |
| DCHECK(DataType::IsIntOrLongType(type)) << type; |
| DCHECK_EQ(instr->GetType(), DataType::Type::kInt32); |
| DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type); |
| |
| bool is_long = type == DataType::Type::kInt64; |
| LocationSummary* locations = instr->GetLocations(); |
| Location in = locations->InAt(0); |
| vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in); |
| vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0; |
| vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0)); |
| vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0)); |
| vixl32::Register out_r = OutputRegister(instr); |
| |
| // Move data from core register(s) to temp D-reg for bit count calculation, then move back. |
| // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg, |
| // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency, |
| // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'. |
| __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0| |
| __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c| |
| __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c| |
| __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c| |
| if (is_long) { |
| __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c| |
| } |
| __ Vmov(out_r, tmp_s); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(invoke, DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) { |
| VisitIntegerBitCount(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(invoke, DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| static void GenHighestOneBit(HInvoke* invoke, |
| DataType::Type type, |
| CodeGeneratorARMVIXL* codegen) { |
| DCHECK(DataType::IsIntOrLongType(type)); |
| |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp = temps.Acquire(); |
| |
| if (type == DataType::Type::kInt64) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| vixl32::Register in_reg_lo = LowRegisterFrom(in); |
| vixl32::Register in_reg_hi = HighRegisterFrom(in); |
| vixl32::Register out_reg_lo = LowRegisterFrom(out); |
| vixl32::Register out_reg_hi = HighRegisterFrom(out); |
| |
| __ Mov(temp, 0x80000000); // Modified immediate. |
| __ Clz(out_reg_lo, in_reg_lo); |
| __ Clz(out_reg_hi, in_reg_hi); |
| __ Lsr(out_reg_lo, temp, out_reg_lo); |
| __ Lsrs(out_reg_hi, temp, out_reg_hi); |
| |
| // Discard result for lowest 32 bits if highest 32 bits are not zero. |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that the output is in a low register, so that a 16-bit MOV |
| // encoding can be used. If output is in a high register, then we generate |
| // 4 more bytes of code to avoid a branch. |
| Operand mov_src(0); |
| if (!out_reg_lo.IsLow()) { |
| __ Mov(LeaveFlags, temp, 0); |
| mov_src = Operand(temp); |
| } |
| ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(), |
| 2 * vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| __ it(ne); |
| __ mov(ne, out_reg_lo, mov_src); |
| } else { |
| vixl32::Register out = OutputRegister(invoke); |
| vixl32::Register in = InputRegisterAt(invoke, 0); |
| |
| __ Mov(temp, 0x80000000); // Modified immediate. |
| __ Clz(out, in); |
| __ Lsr(out, temp, out); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| GenHighestOneBit(invoke, DataType::Type::kInt32, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) { |
| CreateLongToLongLocationsWithOverlap(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) { |
| GenHighestOneBit(invoke, DataType::Type::kInt64, codegen_); |
| } |
| |
| static void GenLowestOneBit(HInvoke* invoke, |
| DataType::Type type, |
| CodeGeneratorARMVIXL* codegen) { |
| DCHECK(DataType::IsIntOrLongType(type)); |
| |
| ArmVIXLAssembler* assembler = codegen->GetAssembler(); |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp = temps.Acquire(); |
| |
| if (type == DataType::Type::kInt64) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| vixl32::Register in_reg_lo = LowRegisterFrom(in); |
| vixl32::Register in_reg_hi = HighRegisterFrom(in); |
| vixl32::Register out_reg_lo = LowRegisterFrom(out); |
| vixl32::Register out_reg_hi = HighRegisterFrom(out); |
| |
| __ Rsb(out_reg_hi, in_reg_hi, 0); |
| __ Rsb(out_reg_lo, in_reg_lo, 0); |
| __ And(out_reg_hi, out_reg_hi, in_reg_hi); |
| // The result of this operation is 0 iff in_reg_lo is 0 |
| __ Ands(out_reg_lo, out_reg_lo, in_reg_lo); |
| |
| // Discard result for highest 32 bits if lowest 32 bits are not zero. |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that the output is in a low register, so that a 16-bit MOV |
| // encoding can be used. If output is in a high register, then we generate |
| // 4 more bytes of code to avoid a branch. |
| Operand mov_src(0); |
| if (!out_reg_lo.IsLow()) { |
| __ Mov(LeaveFlags, temp, 0); |
| mov_src = Operand(temp); |
| } |
| ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(), |
| 2 * vixl32::k16BitT32InstructionSizeInBytes, |
| CodeBufferCheckScope::kExactSize); |
| __ it(ne); |
| __ mov(ne, out_reg_hi, mov_src); |
| } else { |
| vixl32::Register out = OutputRegister(invoke); |
| vixl32::Register in = InputRegisterAt(invoke, 0); |
| |
| __ Rsb(temp, in, 0); |
| __ And(out, temp, in); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(invoke, DataType::Type::kInt32, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) { |
| CreateLongToLongLocationsWithOverlap(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(invoke, DataType::Type::kInt64, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| // Temporary registers to store lengths of strings and for calculations. |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); |
| |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. |
| vixl32::Register srcObj = InputRegisterAt(invoke, 0); |
| vixl32::Register srcBegin = InputRegisterAt(invoke, 1); |
| vixl32::Register srcEnd = InputRegisterAt(invoke, 2); |
| vixl32::Register dstObj = InputRegisterAt(invoke, 3); |
| vixl32::Register dstBegin = InputRegisterAt(invoke, 4); |
| |
| vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0)); |
| vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1)); |
| vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2)); |
| |
| vixl32::Label done, compressed_string_loop; |
| vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done); |
| // dst to be copied. |
| __ Add(dst_ptr, dstObj, data_offset); |
| __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1)); |
| |
| __ Subs(num_chr, srcEnd, srcBegin); |
| // Early out for valid zero-length retrievals. |
| __ B(eq, final_label, /* is_far_target= */ false); |
| |
| // src range to copy. |
| __ Add(src_ptr, srcObj, value_offset); |
| |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| vixl32::Register temp; |
| vixl32::Label compressed_string_preloop; |
| if (mirror::kUseStringCompression) { |
| // Location of count in string. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| temp = temps.Acquire(); |
| // String's length. |
| __ Ldr(temp, MemOperand(srcObj, count_offset)); |
| __ Tst(temp, 1); |
| temps.Release(temp); |
| __ B(eq, &compressed_string_preloop, /* is_far_target= */ false); |
| } |
| __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1)); |
| |
| // Do the copy. |
| vixl32::Label loop, remainder; |
| |
| temp = temps.Acquire(); |
| // Save repairing the value of num_chr on the < 4 character path. |
| __ Subs(temp, num_chr, 4); |
| __ B(lt, &remainder, /* is_far_target= */ false); |
| |
| // Keep the result of the earlier subs, we are going to fetch at least 4 characters. |
| __ Mov(num_chr, temp); |
| |
| // Main loop used for longer fetches loads and stores 4x16-bit characters at a time. |
| // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code |
| // to rectify these everywhere this intrinsic applies.) |
| __ Bind(&loop); |
| __ Ldr(temp, MemOperand(src_ptr, char_size * 2)); |
| __ Subs(num_chr, num_chr, 4); |
| __ Str(temp, MemOperand(dst_ptr, char_size * 2)); |
| __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex)); |
| __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex)); |
| temps.Release(temp); |
| __ B(ge, &loop, /* is_far_target= */ false); |
| |
| __ Adds(num_chr, num_chr, 4); |
| __ B(eq, final_label, /* is_far_target= */ false); |
| |
| // Main loop for < 4 character case and remainder handling. Loads and stores one |
| // 16-bit Java character at a time. |
| __ Bind(&remainder); |
| temp = temps.Acquire(); |
| __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex)); |
| __ Subs(num_chr, num_chr, 1); |
| __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex)); |
| temps.Release(temp); |
| __ B(gt, &remainder, /* is_far_target= */ false); |
| |
| if (mirror::kUseStringCompression) { |
| __ B(final_label); |
| |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. |
| __ Bind(&compressed_string_preloop); |
| __ Add(src_ptr, src_ptr, srcBegin); |
| __ Bind(&compressed_string_loop); |
| temp = temps.Acquire(); |
| __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex)); |
| __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex)); |
| temps.Release(temp); |
| __ Subs(num_chr, num_chr, 1); |
| __ B(gt, &compressed_string_loop, /* is_far_target= */ false); |
| } |
| |
| if (done.IsReferenced()) { |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) { |
| ArmVIXLAssembler* const assembler = GetAssembler(); |
| const vixl32::Register out = OutputRegister(invoke); |
| // Shifting left by 1 bit makes the value encodable as an immediate operand; |
| // we don't care about the sign bit anyway. |
| constexpr uint32_t infinity = kPositiveInfinityFloat << 1U; |
| |
| __ Vmov(out, InputSRegisterAt(invoke, 0)); |
| // We don't care about the sign bit, so shift left. |
| __ Lsl(out, out, 1); |
| __ Eor(out, out, infinity); |
| codegen_->GenerateConditionWithZero(kCondEQ, out, out); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) { |
| ArmVIXLAssembler* const assembler = GetAssembler(); |
| const vixl32::Register out = OutputRegister(invoke); |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| const vixl32::Register temp = temps.Acquire(); |
| // The highest 32 bits of double precision positive infinity separated into |
| // two constants encodable as immediate operands. |
| constexpr uint32_t infinity_high = 0x7f000000U; |
| constexpr uint32_t infinity_high2 = 0x00f00000U; |
| |
| static_assert((infinity_high | infinity_high2) == |
| static_cast<uint32_t>(kPositiveInfinityDouble >> 32U), |
| "The constants do not add up to the high 32 bits of double " |
| "precision positive infinity."); |
| __ Vmov(temp, out, InputDRegisterAt(invoke, 0)); |
| __ Eor(out, out, infinity_high); |
| __ Eor(out, out, infinity_high2); |
| // We don't care about the sign bit, so shift left. |
| __ Orr(out, temp, Operand(out, vixl32::LSL, 1)); |
| codegen_->GenerateConditionWithZero(kCondEQ, out, out); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathCeil(HInvoke* invoke) { |
| if (features_.HasARMv8AInstructions()) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathCeil(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); |
| __ Vrintp(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitMathFloor(HInvoke* invoke) { |
| if (features_.HasARMv8AInstructions()) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitMathFloor(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); |
| __ Vrintm(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitIntegerValueOf(HInvoke* invoke) { |
| InvokeRuntimeCallingConventionARMVIXL calling_convention; |
| IntrinsicVisitor::ComputeIntegerValueOfLocations( |
| invoke, |
| codegen_, |
| LocationFrom(r0), |
| LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitIntegerValueOf(HInvoke* invoke) { |
| IntrinsicVisitor::IntegerValueOfInfo info = |
| IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); |
| LocationSummary* locations = invoke->GetLocations(); |
| ArmVIXLAssembler* const assembler = GetAssembler(); |
| |
| vixl32::Register out = RegisterFrom(locations->Out()); |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| if (invoke->InputAt(0)->IsConstant()) { |
| int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); |
| if (static_cast<uint32_t>(value - info.low) < info.length) { |
| // Just embed the j.l.Integer in the code. |
| DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); |
| codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); |
| } else { |
| DCHECK(locations->CanCall()); |
| // Allocate and initialize a new j.l.Integer. |
| // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the |
| // JIT object table. |
| codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), |
| info.integer_boot_image_offset); |
| __ Mov(temp, value); |
| assembler->StoreToOffset(kStoreWord, temp, out, info.value_offset); |
| // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation |
| // one. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| } else { |
| DCHECK(locations->CanCall()); |
| vixl32::Register in = RegisterFrom(locations->InAt(0)); |
| // Check bounds of our cache. |
| __ Add(out, in, -info.low); |
| __ Cmp(out, info.length); |
| vixl32::Label allocate, done; |
| __ B(hs, &allocate, /* is_far_target= */ false); |
| // If the value is within the bounds, load the j.l.Integer directly from the array. |
| codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference); |
| codegen_->LoadFromShiftedRegOffset(DataType::Type::kReference, locations->Out(), temp, out); |
| assembler->MaybeUnpoisonHeapReference(out); |
| __ B(&done); |
| __ Bind(&allocate); |
| // Otherwise allocate and initialize a new j.l.Integer. |
| codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), |
| info.integer_boot_image_offset); |
| assembler->StoreToOffset(kStoreWord, in, out, info.value_offset); |
| // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation |
| // one. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitThreadInterrupted(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitThreadInterrupted(HInvoke* invoke) { |
| ArmVIXLAssembler* assembler = GetAssembler(); |
| vixl32::Register out = RegisterFrom(invoke->GetLocations()->Out()); |
| int32_t offset = Thread::InterruptedOffset<kArmPointerSize>().Int32Value(); |
| __ Ldr(out, MemOperand(tr, offset)); |
| UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); |
| vixl32::Register temp = temps.Acquire(); |
| vixl32::Label done; |
| vixl32::Label* const final_label = codegen_->GetFinalLabel(invoke, &done); |
| __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false); |
| __ Dmb(vixl32::ISH); |
| __ Mov(temp, 0); |
| assembler->StoreToOffset(kStoreWord, temp, tr, offset); |
| __ Dmb(vixl32::ISH); |
| if (done.IsReferenced()) { |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARMVIXL::VisitReachabilityFence(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void IntrinsicCodeGeneratorARMVIXL::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } |
| |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe? |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure. |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, ReferenceGetReferent) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerDivideUnsigned) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32Update) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateBytes) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateByteBuffer) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16ToFloat) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16ToHalf) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Floor) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Ceil) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Rint) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Greater) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16GreaterEquals) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Less) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16LessEquals) |
| |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOf); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOfAfter); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferAppend); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferLength); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferToString); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendObject); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendString); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendCharSequence); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendCharArray); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendBoolean); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendChar); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendInt); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendLong); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendFloat); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendDouble); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderLength); |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderToString); |
| |
| // 1.8. |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject) |
| |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleFullFence) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleAcquireFence) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleReleaseFence) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleLoadLoadFence) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleStoreStoreFence) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, MethodHandleInvokeExact) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, MethodHandleInvoke) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndExchange) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndExchangeAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndExchangeRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndSet) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGet) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndAdd) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndAddAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndAddRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseAnd) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseAndAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseAndRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseOr) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseOrAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseOrRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseXor) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseXorAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseXorRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndSet) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndSetAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndSetRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetOpaque) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetVolatile) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSet) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSetOpaque) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSetRelease) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSetVolatile) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSet) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSetAcquire) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSetPlain) |
| UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSetRelease) |
| |
| UNREACHABLE_INTRINSICS(ARMVIXL) |
| |
| #undef __ |
| |
| } // namespace arm |
| } // namespace art |