blob: ae8e892e29a9840edacea44d132bfde9a9c86ac5 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_SPACE_VALGRIND_MALLOC_SPACE_INL_H_
#define ART_RUNTIME_GC_SPACE_VALGRIND_MALLOC_SPACE_INL_H_
#include "valgrind_malloc_space.h"
#include <memcheck/memcheck.h>
#include "valgrind_settings.h"
namespace art {
namespace gc {
namespace space {
namespace valgrind_details {
template <size_t kValgrindRedZoneBytes, bool kUseObjSizeForUsable>
inline mirror::Object* AdjustForValgrind(void* obj_with_rdz, size_t num_bytes,
size_t bytes_allocated, size_t usable_size,
size_t* bytes_allocated_out, size_t* usable_size_out) {
if (bytes_allocated_out != nullptr) {
*bytes_allocated_out = bytes_allocated;
}
// This cuts over-provision and is a trade-off between testing the over-provisioning code paths
// vs checking overflows in the regular paths.
if (usable_size_out != nullptr) {
if (kUseObjSizeForUsable) {
*usable_size_out = num_bytes;
} else {
*usable_size_out = usable_size - 2 * kValgrindRedZoneBytes;
}
}
// Left redzone.
VALGRIND_MAKE_MEM_NOACCESS(obj_with_rdz, kValgrindRedZoneBytes);
// Make requested memory readable.
// (If the allocator assumes memory is zeroed out, we might get UNDEFINED warnings, so make
// everything DEFINED initially.)
mirror::Object* result = reinterpret_cast<mirror::Object*>(
reinterpret_cast<uint8_t*>(obj_with_rdz) + kValgrindRedZoneBytes);
VALGRIND_MAKE_MEM_DEFINED(result, num_bytes);
// Right redzone. Assumes that if bytes_allocated > usable_size, then the difference is
// management data at the upper end, and for simplicity we will not protect that.
// At the moment, this fits RosAlloc (no management data in a slot, usable_size == alloc_size)
// and DlMalloc (allocation_size = (usable_size == num_bytes) + 4, 4 is management)
VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<uint8_t*>(result) + num_bytes,
usable_size - (num_bytes + kValgrindRedZoneBytes));
return result;
}
inline size_t GetObjSizeNoThreadSafety(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS {
return obj->SizeOf<kVerifyNone>();
}
} // namespace valgrind_details
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
mirror::Object*
ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::AllocWithGrowth(
Thread* self, size_t num_bytes, size_t* bytes_allocated_out, size_t* usable_size_out) {
size_t bytes_allocated;
size_t usable_size;
void* obj_with_rdz = S::AllocWithGrowth(self, num_bytes + 2 * kValgrindRedZoneBytes,
&bytes_allocated, &usable_size);
if (obj_with_rdz == nullptr) {
return nullptr;
}
return valgrind_details::AdjustForValgrind<kValgrindRedZoneBytes,
kUseObjSizeForUsable>(obj_with_rdz, num_bytes,
bytes_allocated, usable_size,
bytes_allocated_out,
usable_size_out);
}
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
mirror::Object* ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::Alloc(
Thread* self, size_t num_bytes, size_t* bytes_allocated_out, size_t* usable_size_out) {
size_t bytes_allocated;
size_t usable_size;
void* obj_with_rdz = S::Alloc(self, num_bytes + 2 * kValgrindRedZoneBytes,
&bytes_allocated, &usable_size);
if (obj_with_rdz == nullptr) {
return nullptr;
}
return valgrind_details::AdjustForValgrind<kValgrindRedZoneBytes,
kUseObjSizeForUsable>(obj_with_rdz, num_bytes,
bytes_allocated, usable_size,
bytes_allocated_out,
usable_size_out);
}
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
mirror::Object* ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::AllocThreadUnsafe(
Thread* self, size_t num_bytes, size_t* bytes_allocated_out, size_t* usable_size_out) {
size_t bytes_allocated;
size_t usable_size;
void* obj_with_rdz = S::AllocThreadUnsafe(self, num_bytes + 2 * kValgrindRedZoneBytes,
&bytes_allocated, &usable_size);
if (obj_with_rdz == nullptr) {
return nullptr;
}
return valgrind_details::AdjustForValgrind<kValgrindRedZoneBytes,
kUseObjSizeForUsable>(obj_with_rdz, num_bytes,
bytes_allocated, usable_size,
bytes_allocated_out,
usable_size_out);
}
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
size_t ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::AllocationSize(
mirror::Object* obj, size_t* usable_size) {
size_t result = S::AllocationSize(reinterpret_cast<mirror::Object*>(
reinterpret_cast<uint8_t*>(obj) - (kAdjustForRedzoneInAllocSize ? kValgrindRedZoneBytes : 0)),
usable_size);
if (usable_size != nullptr) {
if (kUseObjSizeForUsable) {
*usable_size = valgrind_details::GetObjSizeNoThreadSafety(obj);
} else {
*usable_size = *usable_size - 2 * kValgrindRedZoneBytes;
}
}
return result;
}
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
size_t ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::Free(
Thread* self, mirror::Object* ptr) {
void* obj_after_rdz = reinterpret_cast<void*>(ptr);
uint8_t* obj_with_rdz = reinterpret_cast<uint8_t*>(obj_after_rdz) - kValgrindRedZoneBytes;
// Make redzones undefined.
size_t usable_size;
size_t allocation_size = AllocationSize(ptr, &usable_size);
// Unprotect the allocation.
// Use the obj-size-for-usable flag to determine whether usable_size is the more important one,
// e.g., whether there's data in the allocation_size (and usable_size can't be trusted).
if (kUseObjSizeForUsable) {
VALGRIND_MAKE_MEM_UNDEFINED(obj_with_rdz, allocation_size);
} else {
VALGRIND_MAKE_MEM_UNDEFINED(obj_with_rdz, usable_size + 2 * kValgrindRedZoneBytes);
}
return S::Free(self, reinterpret_cast<mirror::Object*>(obj_with_rdz));
}
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
size_t ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::FreeList(
Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
size_t freed = 0;
for (size_t i = 0; i < num_ptrs; i++) {
freed += Free(self, ptrs[i]);
ptrs[i] = nullptr;
}
return freed;
}
template <typename S,
size_t kValgrindRedZoneBytes,
bool kAdjustForRedzoneInAllocSize,
bool kUseObjSizeForUsable>
template <typename... Params>
ValgrindMallocSpace<S,
kValgrindRedZoneBytes,
kAdjustForRedzoneInAllocSize,
kUseObjSizeForUsable>::ValgrindMallocSpace(
MemMap* mem_map, size_t initial_size, Params... params) : S(mem_map, initial_size, params...) {
VALGRIND_MAKE_MEM_UNDEFINED(mem_map->Begin() + initial_size,
mem_map->Size() - initial_size);
}
} // namespace space
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_SPACE_VALGRIND_MALLOC_SPACE_INL_H_