| // Copyright 2011 Google Inc. All Rights Reserved. |
| |
| #ifndef ART_SRC_ASSEMBLER_H_ |
| #define ART_SRC_ASSEMBLER_H_ |
| |
| #include <vector> |
| |
| #include "constants.h" |
| #include "logging.h" |
| #include "macros.h" |
| #include "managed_register.h" |
| #include "memory_region.h" |
| #include "offsets.h" |
| |
| namespace art { |
| |
| class Assembler; |
| class AssemblerBuffer; |
| class AssemblerFixup; |
| |
| namespace arm { |
| class ArmAssembler; |
| } |
| namespace x86 { |
| class X86Assembler; |
| } |
| |
| class Label { |
| public: |
| Label() : position_(0) {} |
| |
| ~Label() { |
| // Assert if label is being destroyed with unresolved branches pending. |
| CHECK(!IsLinked()); |
| } |
| |
| // Returns the position for bound and linked labels. Cannot be used |
| // for unused labels. |
| int Position() const { |
| CHECK(!IsUnused()); |
| return IsBound() ? -position_ - kPointerSize : position_ - kPointerSize; |
| } |
| |
| int LinkPosition() const { |
| CHECK(IsLinked()); |
| return position_ - kWordSize; |
| } |
| |
| bool IsBound() const { return position_ < 0; } |
| bool IsUnused() const { return position_ == 0; } |
| bool IsLinked() const { return position_ > 0; } |
| |
| private: |
| int position_; |
| |
| void Reinitialize() { |
| position_ = 0; |
| } |
| |
| void BindTo(int position) { |
| CHECK(!IsBound()); |
| position_ = -position - kPointerSize; |
| CHECK(IsBound()); |
| } |
| |
| void LinkTo(int position) { |
| CHECK(!IsBound()); |
| position_ = position + kPointerSize; |
| CHECK(IsLinked()); |
| } |
| |
| friend class arm::ArmAssembler; |
| friend class x86::X86Assembler; |
| |
| DISALLOW_COPY_AND_ASSIGN(Label); |
| }; |
| |
| |
| // Assembler fixups are positions in generated code that require processing |
| // after the code has been copied to executable memory. This includes building |
| // relocation information. |
| class AssemblerFixup { |
| public: |
| virtual void Process(const MemoryRegion& region, int position) = 0; |
| virtual ~AssemblerFixup() {} |
| |
| private: |
| AssemblerFixup* previous_; |
| int position_; |
| |
| AssemblerFixup* previous() const { return previous_; } |
| void set_previous(AssemblerFixup* previous) { previous_ = previous; } |
| |
| int position() const { return position_; } |
| void set_position(int position) { position_ = position; } |
| |
| friend class AssemblerBuffer; |
| }; |
| |
| // Parent of all queued slow paths, emitted during finalization |
| class SlowPath { |
| public: |
| SlowPath() : next_(NULL) {} |
| virtual ~SlowPath() {} |
| |
| Label* Continuation() { return &continuation_; } |
| Label* Entry() { return &entry_; } |
| // Generate code for slow path |
| virtual void Emit(Assembler *sp_asm) = 0; |
| |
| protected: |
| // Entry branched to by fast path |
| Label entry_; |
| // Optional continuation that is branched to at the end of the slow path |
| Label continuation_; |
| // Next in linked list of slow paths |
| SlowPath *next_; |
| |
| friend class AssemblerBuffer; |
| DISALLOW_COPY_AND_ASSIGN(SlowPath); |
| }; |
| |
| class AssemblerBuffer { |
| public: |
| AssemblerBuffer(); |
| ~AssemblerBuffer(); |
| |
| // Basic support for emitting, loading, and storing. |
| template<typename T> void Emit(T value) { |
| CHECK(HasEnsuredCapacity()); |
| *reinterpret_cast<T*>(cursor_) = value; |
| cursor_ += sizeof(T); |
| } |
| |
| template<typename T> T Load(size_t position) { |
| CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); |
| return *reinterpret_cast<T*>(contents_ + position); |
| } |
| |
| template<typename T> void Store(size_t position, T value) { |
| CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); |
| *reinterpret_cast<T*>(contents_ + position) = value; |
| } |
| |
| // Emit a fixup at the current location. |
| void EmitFixup(AssemblerFixup* fixup) { |
| fixup->set_previous(fixup_); |
| fixup->set_position(Size()); |
| fixup_ = fixup; |
| } |
| |
| void EnqueueSlowPath(SlowPath* slowpath) { |
| if (slow_path_ == NULL) { |
| slow_path_ = slowpath; |
| } else { |
| SlowPath* cur = slow_path_; |
| for ( ; cur->next_ != NULL ; cur = cur->next_) {} |
| cur->next_ = slowpath; |
| } |
| } |
| |
| void EmitSlowPaths(Assembler* sp_asm) { |
| SlowPath* cur = slow_path_; |
| SlowPath* next = NULL; |
| slow_path_ = NULL; |
| for ( ; cur != NULL ; cur = next) { |
| cur->Emit(sp_asm); |
| next = cur->next_; |
| delete cur; |
| } |
| } |
| |
| // Get the size of the emitted code. |
| size_t Size() const { |
| CHECK_GE(cursor_, contents_); |
| return cursor_ - contents_; |
| } |
| |
| byte* contents() const { return contents_; } |
| |
| // Copy the assembled instructions into the specified memory block |
| // and apply all fixups. |
| void FinalizeInstructions(const MemoryRegion& region); |
| |
| // To emit an instruction to the assembler buffer, the EnsureCapacity helper |
| // must be used to guarantee that the underlying data area is big enough to |
| // hold the emitted instruction. Usage: |
| // |
| // AssemblerBuffer buffer; |
| // AssemblerBuffer::EnsureCapacity ensured(&buffer); |
| // ... emit bytes for single instruction ... |
| |
| #ifdef DEBUG |
| |
| class EnsureCapacity { |
| public: |
| explicit EnsureCapacity(AssemblerBuffer* buffer) { |
| if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); |
| // In debug mode, we save the assembler buffer along with the gap |
| // size before we start emitting to the buffer. This allows us to |
| // check that any single generated instruction doesn't overflow the |
| // limit implied by the minimum gap size. |
| buffer_ = buffer; |
| gap_ = ComputeGap(); |
| // Make sure that extending the capacity leaves a big enough gap |
| // for any kind of instruction. |
| CHECK_GE(gap_, kMinimumGap); |
| // Mark the buffer as having ensured the capacity. |
| CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. |
| buffer->has_ensured_capacity_ = true; |
| } |
| |
| ~EnsureCapacity() { |
| // Unmark the buffer, so we cannot emit after this. |
| buffer_->has_ensured_capacity_ = false; |
| // Make sure the generated instruction doesn't take up more |
| // space than the minimum gap. |
| int delta = gap_ - ComputeGap(); |
| CHECK_LE(delta, kMinimumGap); |
| } |
| |
| private: |
| AssemblerBuffer* buffer_; |
| int gap_; |
| |
| int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } |
| }; |
| |
| bool has_ensured_capacity_; |
| bool HasEnsuredCapacity() const { return has_ensured_capacity_; } |
| |
| #else |
| |
| class EnsureCapacity { |
| public: |
| explicit EnsureCapacity(AssemblerBuffer* buffer) { |
| if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); |
| } |
| }; |
| |
| // When building the C++ tests, assertion code is enabled. To allow |
| // asserting that the user of the assembler buffer has ensured the |
| // capacity needed for emitting, we add a dummy method in non-debug mode. |
| bool HasEnsuredCapacity() const { return true; } |
| |
| #endif |
| |
| // Returns the position in the instruction stream. |
| int GetPosition() { return cursor_ - contents_; } |
| |
| private: |
| // The limit is set to kMinimumGap bytes before the end of the data area. |
| // This leaves enough space for the longest possible instruction and allows |
| // for a single, fast space check per instruction. |
| static const int kMinimumGap = 32; |
| |
| byte* contents_; |
| byte* cursor_; |
| byte* limit_; |
| AssemblerFixup* fixup_; |
| bool fixups_processed_; |
| |
| // Head of linked list of slow paths |
| SlowPath* slow_path_; |
| |
| byte* cursor() const { return cursor_; } |
| byte* limit() const { return limit_; } |
| size_t Capacity() const { |
| CHECK_GE(limit_, contents_); |
| return (limit_ - contents_) + kMinimumGap; |
| } |
| |
| // Process the fixup chain starting at the given fixup. The offset is |
| // non-zero for fixups in the body if the preamble is non-empty. |
| void ProcessFixups(const MemoryRegion& region); |
| |
| // Compute the limit based on the data area and the capacity. See |
| // description of kMinimumGap for the reasoning behind the value. |
| static byte* ComputeLimit(byte* data, size_t capacity) { |
| return data + capacity - kMinimumGap; |
| } |
| |
| void ExtendCapacity(); |
| |
| friend class AssemblerFixup; |
| }; |
| |
| class Assembler { |
| public: |
| static Assembler* Create(InstructionSet instruction_set); |
| |
| // Emit slow paths queued during assembly |
| void EmitSlowPaths() { buffer_.EmitSlowPaths(this); } |
| |
| // Size of generated code |
| size_t CodeSize() const { return buffer_.Size(); } |
| |
| // Copy instructions out of assembly buffer into the given region of memory |
| void FinalizeInstructions(const MemoryRegion& region) { |
| buffer_.FinalizeInstructions(region); |
| } |
| |
| // Emit code that will create an activation on the stack |
| virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg, |
| const std::vector<ManagedRegister>& callee_save_regs) = 0; |
| |
| // Emit code that will remove an activation from the stack |
| virtual void RemoveFrame(size_t frame_size, |
| const std::vector<ManagedRegister>& callee_save_regs) = 0; |
| |
| virtual void IncreaseFrameSize(size_t adjust) = 0; |
| virtual void DecreaseFrameSize(size_t adjust) = 0; |
| |
| // Store routines |
| virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0; |
| virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0; |
| virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0; |
| |
| virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, |
| ManagedRegister scratch) = 0; |
| |
| virtual void StoreImmediateToThread(ThreadOffset dest, uint32_t imm, |
| ManagedRegister scratch) = 0; |
| |
| virtual void StoreStackOffsetToThread(ThreadOffset thr_offs, |
| FrameOffset fr_offs, |
| ManagedRegister scratch) = 0; |
| |
| virtual void StoreStackPointerToThread(ThreadOffset thr_offs) = 0; |
| |
| virtual void StoreSpanning(FrameOffset dest, ManagedRegister src, |
| FrameOffset in_off, ManagedRegister scratch) = 0; |
| |
| // Load routines |
| virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0; |
| |
| virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0; |
| |
| virtual void LoadRef(ManagedRegister dest, ManagedRegister base, |
| MemberOffset offs) = 0; |
| |
| virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, |
| Offset offs) = 0; |
| |
| virtual void LoadRawPtrFromThread(ManagedRegister dest, |
| ThreadOffset offs) = 0; |
| |
| // Copying routines |
| virtual void Move(ManagedRegister dest, ManagedRegister src) = 0; |
| |
| virtual void CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset thr_offs, |
| ManagedRegister scratch) = 0; |
| |
| virtual void CopyRawPtrToThread(ThreadOffset thr_offs, FrameOffset fr_offs, |
| ManagedRegister scratch) = 0; |
| |
| virtual void CopyRef(FrameOffset dest, FrameOffset src, |
| ManagedRegister scratch) = 0; |
| |
| virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, |
| unsigned int size) = 0; |
| |
| virtual void MemoryBarrier(ManagedRegister scratch) = 0; |
| |
| // Exploit fast access in managed code to Thread::Current() |
| virtual void GetCurrentThread(ManagedRegister tr) = 0; |
| virtual void GetCurrentThread(FrameOffset dest_offset, |
| ManagedRegister scratch) = 0; |
| |
| // Set up out_reg to hold a Object** into the SIRT, or to be NULL if the |
| // value is null and null_allowed. in_reg holds a possibly stale reference |
| // that can be used to avoid loading the SIRT entry to see if the value is |
| // NULL. |
| virtual void CreateSirtEntry(ManagedRegister out_reg, FrameOffset sirt_offset, |
| ManagedRegister in_reg, bool null_allowed) = 0; |
| |
| // Set up out_off to hold a Object** into the SIRT, or to be NULL if the |
| // value is null and null_allowed. |
| virtual void CreateSirtEntry(FrameOffset out_off, FrameOffset sirt_offset, |
| ManagedRegister scratch, bool null_allowed) = 0; |
| |
| // src holds a SIRT entry (Object**) load this into dst |
| virtual void LoadReferenceFromSirt(ManagedRegister dst, |
| ManagedRegister src) = 0; |
| |
| // Heap::VerifyObject on src. In some cases (such as a reference to this) we |
| // know that src may not be null. |
| virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0; |
| virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0; |
| |
| // Call to address held at [base+offset] |
| virtual void Call(ManagedRegister base, Offset offset, |
| ManagedRegister scratch) = 0; |
| virtual void Call(FrameOffset base, Offset offset, |
| ManagedRegister scratch) = 0; |
| virtual void Call(ThreadOffset offset, ManagedRegister scratch) = 0; |
| |
| // Generate code to check if Thread::Current()->suspend_count_ is non-zero |
| // and branch to a SuspendSlowPath if it is. The SuspendSlowPath will continue |
| // at the next instruction. |
| virtual void SuspendPoll(ManagedRegister scratch, ManagedRegister return_reg, |
| FrameOffset return_save_location, |
| size_t return_size) = 0; |
| |
| // Generate code to check if Thread::Current()->exception_ is non-null |
| // and branch to a ExceptionSlowPath if it is. |
| virtual void ExceptionPoll(ManagedRegister scratch) = 0; |
| |
| virtual ~Assembler() {} |
| |
| protected: |
| Assembler() : buffer_() {} |
| |
| AssemblerBuffer buffer_; |
| }; |
| |
| } // namespace art |
| |
| #include "assembler_x86.h" |
| #include "assembler_arm.h" |
| |
| #endif // ART_SRC_ASSEMBLER_H_ |