blob: cf064ecbe3957bc2907fe6bcc110b6b5ebd5f7a0 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_x86.h"
#include <limits>
#include "arch/x86/instruction_set_features_x86.h"
#include "art_method.h"
#include "base/bit_utils.h"
#include "code_generator_x86.h"
#include "data_type-inl.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "intrinsics_utils.h"
#include "lock_word.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/reference.h"
#include "mirror/string.h"
#include "mirror/var_handle.h"
#include "scoped_thread_state_change-inl.h"
#include "thread-current-inl.h"
#include "utils/x86/assembler_x86.h"
#include "utils/x86/constants_x86.h"
namespace art {
namespace x86 {
IntrinsicLocationsBuilderX86::IntrinsicLocationsBuilderX86(CodeGeneratorX86* codegen)
: allocator_(codegen->GetGraph()->GetAllocator()),
codegen_(codegen) {
}
X86Assembler* IntrinsicCodeGeneratorX86::GetAssembler() {
return down_cast<X86Assembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorX86::GetAllocator() {
return codegen_->GetGraph()->GetAllocator();
}
bool IntrinsicLocationsBuilderX86::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
return res->Intrinsified();
}
using IntrinsicSlowPathX86 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86>;
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
class ReadBarrierSystemArrayCopySlowPathX86 : public SlowPathCode {
public:
explicit ReadBarrierSystemArrayCopySlowPathX86(HInstruction* instruction)
: SlowPathCode(instruction) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
DCHECK(instruction_->IsInvokeStaticOrDirect())
<< "Unexpected instruction in read barrier arraycopy slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
int32_t element_size = DataType::Size(DataType::Type::kReference);
uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
Register src = locations->InAt(0).AsRegister<Register>();
Location src_pos = locations->InAt(1);
Register dest = locations->InAt(2).AsRegister<Register>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Location temp1_loc = locations->GetTemp(0);
Register temp1 = temp1_loc.AsRegister<Register>();
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
Register temp3 = locations->GetTemp(2).AsRegister<Register>();
__ Bind(GetEntryLabel());
// In this code path, registers `temp1`, `temp2`, and `temp3`
// (resp.) are not used for the base source address, the base
// destination address, and the end source address (resp.), as in
// other SystemArrayCopy intrinsic code paths. Instead they are
// (resp.) used for:
// - the loop index (`i`);
// - the source index (`src_index`) and the loaded (source)
// reference (`value`); and
// - the destination index (`dest_index`).
// i = 0
__ xorl(temp1, temp1);
NearLabel loop;
__ Bind(&loop);
// value = src_array[i + src_pos]
if (src_pos.IsConstant()) {
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
int32_t adjusted_offset = offset + constant * element_size;
__ movl(temp2, Address(src, temp1, ScaleFactor::TIMES_4, adjusted_offset));
} else {
__ leal(temp2, Address(src_pos.AsRegister<Register>(), temp1, ScaleFactor::TIMES_1, 0));
__ movl(temp2, Address(src, temp2, ScaleFactor::TIMES_4, offset));
}
__ MaybeUnpoisonHeapReference(temp2);
// TODO: Inline the mark bit check before calling the runtime?
// value = ReadBarrier::Mark(value)
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
// (See ReadBarrierMarkSlowPathX86::EmitNativeCode for more
// explanations.)
DCHECK_NE(temp2, ESP);
DCHECK(0 <= temp2 && temp2 < kNumberOfCpuRegisters) << temp2;
int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(temp2);
// This runtime call does not require a stack map.
x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
__ MaybePoisonHeapReference(temp2);
// dest_array[i + dest_pos] = value
if (dest_pos.IsConstant()) {
int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
int32_t adjusted_offset = offset + constant * element_size;
__ movl(Address(dest, temp1, ScaleFactor::TIMES_4, adjusted_offset), temp2);
} else {
__ leal(temp3, Address(dest_pos.AsRegister<Register>(), temp1, ScaleFactor::TIMES_1, 0));
__ movl(Address(dest, temp3, ScaleFactor::TIMES_4, offset), temp2);
}
// ++i
__ addl(temp1, Immediate(1));
// if (i != length) goto loop
x86_codegen->GenerateIntCompare(temp1_loc, length);
__ j(kNotEqual, &loop);
__ jmp(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86);
};
#undef __
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is64bit) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
if (is64bit) {
locations->AddTemp(Location::RequiresFpuRegister());
}
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is64bit) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
if (is64bit) {
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
if (is64bit) {
// Need to use the temporary.
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movsd(temp, input.AsFpuRegister<XmmRegister>());
__ movd(output.AsRegisterPairLow<Register>(), temp);
__ psrlq(temp, Immediate(32));
__ movd(output.AsRegisterPairHigh<Register>(), temp);
} else {
__ movd(output.AsRegister<Register>(), input.AsFpuRegister<XmmRegister>());
}
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
if (is64bit) {
// Need to use the temporary.
XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
__ movd(temp1, input.AsRegisterPairLow<Register>());
__ movd(temp2, input.AsRegisterPairHigh<Register>());
__ punpckldq(temp1, temp2);
__ movsd(output.AsFpuRegister<XmmRegister>(), temp1);
} else {
__ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<Register>());
}
}
void IntrinsicLocationsBuilderX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke, /* is64bit= */ true);
}
void IntrinsicLocationsBuilderX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke, /* is64bit= */ true);
}
void IntrinsicCodeGeneratorX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
void IntrinsicCodeGeneratorX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke, /* is64bit= */ false);
}
void IntrinsicLocationsBuilderX86::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke, /* is64bit= */ false);
}
void IntrinsicCodeGeneratorX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
void IntrinsicCodeGeneratorX86::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
static void CreateLongToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateLongToLongLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
static void GenReverseBytes(LocationSummary* locations,
DataType::Type size,
X86Assembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
switch (size) {
case DataType::Type::kInt16:
// TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
__ bswapl(out);
__ sarl(out, Immediate(16));
break;
case DataType::Type::kInt32:
__ bswapl(out);
break;
default:
LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitLongReverseBytes(HInvoke* invoke) {
CreateLongToLongLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitLongReverseBytes(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Location input = locations->InAt(0);
Register input_lo = input.AsRegisterPairLow<Register>();
Register input_hi = input.AsRegisterPairHigh<Register>();
Location output = locations->Out();
Register output_lo = output.AsRegisterPairLow<Register>();
Register output_hi = output.AsRegisterPairHigh<Register>();
X86Assembler* assembler = GetAssembler();
// Assign the inputs to the outputs, mixing low/high.
__ movl(output_lo, input_hi);
__ movl(output_hi, input_lo);
__ bswapl(output_lo);
__ bswapl(output_hi);
}
void IntrinsicLocationsBuilderX86::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitShortReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
void IntrinsicLocationsBuilderX86::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
GetAssembler()->sqrtsd(out, in);
}
static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorX86* codegen) {
// Do we have instruction support?
if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) {
return;
}
CreateFPToFPLocations(allocator, invoke);
}
static void GenSSE41FPToFPIntrinsic(HInvoke* invoke, X86Assembler* assembler, int round_mode) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(!locations->WillCall());
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
__ roundsd(out, in, Immediate(round_mode));
}
void IntrinsicLocationsBuilderX86::VisitMathCeil(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitMathCeil(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 2);
}
void IntrinsicLocationsBuilderX86::VisitMathFloor(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitMathFloor(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 1);
}
void IntrinsicLocationsBuilderX86::VisitMathRint(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitMathRint(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 0);
}
void IntrinsicLocationsBuilderX86::VisitMathRoundFloat(HInvoke* invoke) {
// Do we have instruction support?
if (!codegen_->GetInstructionSetFeatures().HasSSE4_1()) {
return;
}
HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect();
DCHECK(static_or_direct != nullptr);
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
if (static_or_direct->HasSpecialInput() &&
invoke->InputAt(
static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) {
locations->SetInAt(1, Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicCodeGeneratorX86::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(!locations->WillCall());
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
Register out = locations->Out().AsRegister<Register>();
NearLabel skip_incr, done;
X86Assembler* assembler = GetAssembler();
// Since no direct x86 rounding instruction matches the required semantics,
// this intrinsic is implemented as follows:
// result = floor(in);
// if (in - result >= 0.5f)
// result = result + 1.0f;
__ movss(t2, in);
__ roundss(t1, in, Immediate(1));
__ subss(t2, t1);
if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) {
// Direct constant area available.
HX86ComputeBaseMethodAddress* method_address =
invoke->InputAt(1)->AsX86ComputeBaseMethodAddress();
Register constant_area = locations->InAt(1).AsRegister<Register>();
__ comiss(t2, codegen_->LiteralInt32Address(bit_cast<int32_t, float>(0.5f),
method_address,
constant_area));
__ j(kBelow, &skip_incr);
__ addss(t1, codegen_->LiteralInt32Address(bit_cast<int32_t, float>(1.0f),
method_address,
constant_area));
__ Bind(&skip_incr);
} else {
// No constant area: go through stack.
__ pushl(Immediate(bit_cast<int32_t, float>(0.5f)));
__ pushl(Immediate(bit_cast<int32_t, float>(1.0f)));
__ comiss(t2, Address(ESP, 4));
__ j(kBelow, &skip_incr);
__ addss(t1, Address(ESP, 0));
__ Bind(&skip_incr);
__ addl(ESP, Immediate(8));
}
// Final conversion to an integer. Unfortunately this also does not have a
// direct x86 instruction, since NaN should map to 0 and large positive
// values need to be clipped to the extreme value.
__ movl(out, Immediate(kPrimIntMax));
__ cvtsi2ss(t2, out);
__ comiss(t1, t2);
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
__ movl(out, Immediate(0)); // does not change flags
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
__ cvttss2si(out, t1);
__ Bind(&done);
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
}
static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86* codegen, QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(locations->WillCall());
DCHECK(invoke->IsInvokeStaticOrDirect());
X86Assembler* assembler = codegen->GetAssembler();
// We need some place to pass the parameters.
__ subl(ESP, Immediate(16));
__ cfi().AdjustCFAOffset(16);
// Pass the parameters at the bottom of the stack.
__ movsd(Address(ESP, 0), XMM0);
// If we have a second parameter, pass it next.
if (invoke->GetNumberOfArguments() == 2) {
__ movsd(Address(ESP, 8), XMM1);
}
// Now do the actual call.
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
// Extract the return value from the FP stack.
__ fstpl(Address(ESP, 0));
__ movsd(XMM0, Address(ESP, 0));
// And clean up the stack.
__ addl(ESP, Immediate(16));
__ cfi().AdjustCFAOffset(-16);
}
static void CreateLowestOneBitLocations(ArenaAllocator* allocator, bool is_long, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
if (is_long) {
locations->SetInAt(0, Location::RequiresRegister());
} else {
locations->SetInAt(0, Location::Any());
}
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
static void GenLowestOneBit(X86Assembler* assembler,
CodeGeneratorX86* codegen,
bool is_long,
HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
Location out_loc = locations->Out();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
if (is_long) {
__ xorl(out_loc.AsRegisterPairLow<Register>(), out_loc.AsRegisterPairLow<Register>());
__ xorl(out_loc.AsRegisterPairHigh<Register>(), out_loc.AsRegisterPairHigh<Register>());
} else {
__ xorl(out_loc.AsRegister<Register>(), out_loc.AsRegister<Register>());
}
return;
}
// Nonzero value.
value = is_long ? CTZ(static_cast<uint64_t>(value))
: CTZ(static_cast<uint32_t>(value));
if (is_long) {
if (value >= 32) {
int shift = value-32;
codegen->Load32BitValue(out_loc.AsRegisterPairLow<Register>(), 0);
codegen->Load32BitValue(out_loc.AsRegisterPairHigh<Register>(), 1 << shift);
} else {
codegen->Load32BitValue(out_loc.AsRegisterPairLow<Register>(), 1 << value);
codegen->Load32BitValue(out_loc.AsRegisterPairHigh<Register>(), 0);
}
} else {
codegen->Load32BitValue(out_loc.AsRegister<Register>(), 1 << value);
}
return;
}
// Handle non constant case
if (is_long) {
DCHECK(src.IsRegisterPair());
Register src_lo = src.AsRegisterPairLow<Register>();
Register src_hi = src.AsRegisterPairHigh<Register>();
Register out_lo = out_loc.AsRegisterPairLow<Register>();
Register out_hi = out_loc.AsRegisterPairHigh<Register>();
__ movl(out_lo, src_lo);
__ movl(out_hi, src_hi);
__ negl(out_lo);
__ adcl(out_hi, Immediate(0));
__ negl(out_hi);
__ andl(out_lo, src_lo);
__ andl(out_hi, src_hi);
} else {
if (codegen->GetInstructionSetFeatures().HasAVX2() && src.IsRegister()) {
Register out = out_loc.AsRegister<Register>();
__ blsi(out, src.AsRegister<Register>());
} else {
Register out = out_loc.AsRegister<Register>();
// Do tmp & -tmp
if (src.IsRegister()) {
__ movl(out, src.AsRegister<Register>());
} else {
DCHECK(src.IsStackSlot());
__ movl(out, Address(ESP, src.GetStackIndex()));
}
__ negl(out);
if (src.IsRegister()) {
__ andl(out, src.AsRegister<Register>());
} else {
__ andl(out, Address(ESP, src.GetStackIndex()));
}
}
}
}
void IntrinsicLocationsBuilderX86::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCos);
}
void IntrinsicLocationsBuilderX86::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSin);
}
void IntrinsicLocationsBuilderX86::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAcos);
}
void IntrinsicLocationsBuilderX86::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAsin);
}
void IntrinsicLocationsBuilderX86::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan);
}
void IntrinsicLocationsBuilderX86::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
}
void IntrinsicLocationsBuilderX86::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCosh);
}
void IntrinsicLocationsBuilderX86::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExp);
}
void IntrinsicLocationsBuilderX86::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
}
void IntrinsicLocationsBuilderX86::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog);
}
void IntrinsicLocationsBuilderX86::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog10);
}
void IntrinsicLocationsBuilderX86::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSinh);
}
void IntrinsicLocationsBuilderX86::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTan);
}
void IntrinsicLocationsBuilderX86::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTanh);
}
void IntrinsicLocationsBuilderX86::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateLowestOneBitLocations(allocator_, /*is_long=*/ false, invoke);
}
void IntrinsicCodeGeneratorX86::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(GetAssembler(), codegen_, /*is_long=*/ false, invoke);
}
void IntrinsicLocationsBuilderX86::VisitLongLowestOneBit(HInvoke* invoke) {
CreateLowestOneBitLocations(allocator_, /*is_long=*/ true, invoke);
}
void IntrinsicCodeGeneratorX86::VisitLongLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(GetAssembler(), codegen_, /*is_long=*/ true, invoke);
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
}
void IntrinsicLocationsBuilderX86::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathAtan2(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan2);
}
void IntrinsicLocationsBuilderX86::VisitMathPow(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathPow(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickPow);
}
void IntrinsicLocationsBuilderX86::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathHypot(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickHypot);
}
void IntrinsicLocationsBuilderX86::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMathNextAfter(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
}
void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyChar(HInvoke* invoke) {
// We need at least two of the positions or length to be an integer constant,
// or else we won't have enough free registers.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
int num_constants =
((src_pos != nullptr) ? 1 : 0)
+ ((dest_pos != nullptr) ? 1 : 0)
+ ((length != nullptr) ? 1 : 0);
if (num_constants < 2) {
// Not enough free registers.
return;
}
// As long as we are checking, we might as well check to see if the src and dest
// positions are >= 0.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// And since we are already checking, check the length too.
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0) {
// Just call as normal.
return;
}
}
// Okay, it is safe to generate inline code.
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
locations->AddTemp(Location::RegisterLocation(ESI));
locations->AddTemp(Location::RegisterLocation(EDI));
locations->AddTemp(Location::RegisterLocation(ECX));
}
static void CheckPosition(X86Assembler* assembler,
Location pos,
Register input,
Location length,
SlowPathCode* slow_path,
Register temp,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
if (length.IsConstant()) {
__ cmpl(Address(input, length_offset),
Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(Address(input, length_offset), length.AsRegister<Register>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
} else {
// Check that length(input) >= pos.
__ movl(temp, Address(input, length_offset));
__ subl(temp, Immediate(pos_const));
__ j(kLess, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(temp, length.AsRegister<Register>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
Register pos_reg = pos.AsRegister<Register>();
__ testl(pos_reg, pos_reg);
__ j(kNotEqual, slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
Register pos_reg = pos.AsRegister<Register>();
__ testl(pos_reg, pos_reg);
__ j(kLess, slow_path->GetEntryLabel());
// Check that pos <= length(input).
__ cmpl(Address(input, length_offset), pos_reg);
__ j(kLess, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= length.
__ movl(temp, Address(input, length_offset));
__ subl(temp, pos_reg);
if (length.IsConstant()) {
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(temp, length.AsRegister<Register>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
}
void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyChar(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register src = locations->InAt(0).AsRegister<Register>();
Location srcPos = locations->InAt(1);
Register dest = locations->InAt(2).AsRegister<Register>();
Location destPos = locations->InAt(3);
Location length = locations->InAt(4);
// Temporaries that we need for MOVSW.
Register src_base = locations->GetTemp(0).AsRegister<Register>();
DCHECK_EQ(src_base, ESI);
Register dest_base = locations->GetTemp(1).AsRegister<Register>();
DCHECK_EQ(dest_base, EDI);
Register count = locations->GetTemp(2).AsRegister<Register>();
DCHECK_EQ(count, ECX);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(slow_path);
// Bail out if the source and destination are the same (to handle overlap).
__ cmpl(src, dest);
__ j(kEqual, slow_path->GetEntryLabel());
// Bail out if the source is null.
__ testl(src, src);
__ j(kEqual, slow_path->GetEntryLabel());
// Bail out if the destination is null.
__ testl(dest, dest);
__ j(kEqual, slow_path->GetEntryLabel());
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant()) {
__ cmpl(length.AsRegister<Register>(), length.AsRegister<Register>());
__ j(kLess, slow_path->GetEntryLabel());
}
// We need the count in ECX.
if (length.IsConstant()) {
__ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ movl(count, length.AsRegister<Register>());
}
// Validity checks: source. Use src_base as a temporary register.
CheckPosition(assembler, srcPos, src, Location::RegisterLocation(count), slow_path, src_base);
// Validity checks: dest. Use src_base as a temporary register.
CheckPosition(assembler, destPos, dest, Location::RegisterLocation(count), slow_path, src_base);
// Okay, everything checks out. Finally time to do the copy.
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
if (srcPos.IsConstant()) {
int32_t srcPos_const = srcPos.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_base, Address(src, char_size * srcPos_const + data_offset));
} else {
__ leal(src_base, Address(src, srcPos.AsRegister<Register>(),
ScaleFactor::TIMES_2, data_offset));
}
if (destPos.IsConstant()) {
int32_t destPos_const = destPos.GetConstant()->AsIntConstant()->GetValue();
__ leal(dest_base, Address(dest, char_size * destPos_const + data_offset));
} else {
__ leal(dest_base, Address(dest, destPos.AsRegister<Register>(),
ScaleFactor::TIMES_2, data_offset));
}
// Do the move.
__ rep_movsw();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86::VisitStringCompareTo(HInvoke* invoke) {
// The inputs plus one temp.
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(EAX));
}
void IntrinsicCodeGeneratorX86::VisitStringCompareTo(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
Register argument = locations->InAt(1).AsRegister<Register>();
__ testl(argument, argument);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Request temporary registers, ECX and EDI needed for repe_cmpsl instruction.
locations->AddTemp(Location::RegisterLocation(ECX));
locations->AddTemp(Location::RegisterLocation(EDI));
// Set output, ESI needed for repe_cmpsl instruction anyways.
locations->SetOut(Location::RegisterLocation(ESI), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorX86::VisitStringEquals(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = locations->InAt(0).AsRegister<Register>();
Register arg = locations->InAt(1).AsRegister<Register>();
Register ecx = locations->GetTemp(0).AsRegister<Register>();
Register edi = locations->GetTemp(1).AsRegister<Register>();
Register esi = locations->Out().AsRegister<Register>();
NearLabel end, return_true, return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ testl(arg, arg);
__ j(kEqual, &return_false);
}
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
//
// As the String class is expected to be non-movable, we can read the class
// field from String.equals' arguments without read barriers.
AssertNonMovableStringClass();
// Also, because we use the loaded class references only to compare them, we
// don't need to unpoison them.
// /* HeapReference<Class> */ ecx = str->klass_
__ movl(ecx, Address(str, class_offset));
// if (ecx != /* HeapReference<Class> */ arg->klass_) return false
__ cmpl(ecx, Address(arg, class_offset));
__ j(kNotEqual, &return_false);
}
// Reference equality check, return true if same reference.
__ cmpl(str, arg);
__ j(kEqual, &return_true);
// Load length and compression flag of receiver string.
__ movl(ecx, Address(str, count_offset));
// Check if lengths and compression flags are equal, return false if they're not.
// Two identical strings will always have same compression style since
// compression style is decided on alloc.
__ cmpl(ecx, Address(arg, count_offset));
__ j(kNotEqual, &return_false);
// Return true if strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ jecxz(&return_true);
if (mirror::kUseStringCompression) {
NearLabel string_uncompressed;
// Extract length and differentiate between both compressed or both uncompressed.
// Different compression style is cut above.
__ shrl(ecx, Immediate(1));
__ j(kCarrySet, &string_uncompressed);
// Divide string length by 2, rounding up, and continue as if uncompressed.
__ addl(ecx, Immediate(1));
__ shrl(ecx, Immediate(1));
__ Bind(&string_uncompressed);
}
// Load starting addresses of string values into ESI/EDI as required for repe_cmpsl instruction.
__ leal(esi, Address(str, value_offset));
__ leal(edi, Address(arg, value_offset));
// Divide string length by 2 to compare characters 2 at a time and adjust for lengths not
// divisible by 2.
__ addl(ecx, Immediate(1));
__ shrl(ecx, Immediate(1));
// Assertions that must hold in order to compare strings 2 characters (uncompressed)
// or 4 characters (compressed) at a time.
DCHECK_ALIGNED(value_offset, 4);
static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
// Loop to compare strings two characters at a time starting at the beginning of the string.
__ repe_cmpsl();
// If strings are not equal, zero flag will be cleared.
__ j(kNotEqual, &return_false);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ movl(esi, Immediate(1));
__ jmp(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ xorl(esi, esi);
__ Bind(&end);
}
static void CreateStringIndexOfLocations(HInvoke* invoke,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
// The data needs to be in EDI for scasw. So request that the string is there, anyways.
locations->SetInAt(0, Location::RegisterLocation(EDI));
// If we look for a constant char, we'll still have to copy it into EAX. So just request the
// allocator to do that, anyways. We can still do the constant check by checking the parameter
// of the instruction explicitly.
// Note: This works as we don't clobber EAX anywhere.
locations->SetInAt(1, Location::RegisterLocation(EAX));
if (!start_at_zero) {
locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
}
// As we clobber EDI during execution anyways, also use it as the output.
locations->SetOut(Location::SameAsFirstInput());
// repne scasw uses ECX as the counter.
locations->AddTemp(Location::RegisterLocation(ECX));
// Need another temporary to be able to compute the result.
locations->AddTemp(Location::RequiresRegister());
if (mirror::kUseStringCompression) {
// Need another temporary to be able to save unflagged string length.
locations->AddTemp(Location::RequiresRegister());
}
}
static void GenerateStringIndexOf(HInvoke* invoke,
X86Assembler* assembler,
CodeGeneratorX86* codegen,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
Register string_obj = locations->InAt(0).AsRegister<Register>();
Register search_value = locations->InAt(1).AsRegister<Register>();
Register counter = locations->GetTemp(0).AsRegister<Register>();
Register string_length = locations->GetTemp(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
// Only used when string compression feature is on.
Register string_length_flagged;
// Check our assumptions for registers.
DCHECK_EQ(string_obj, EDI);
DCHECK_EQ(search_value, EAX);
DCHECK_EQ(counter, ECX);
DCHECK_EQ(out, EDI);
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCode* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
std::numeric_limits<uint16_t>::max()) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen->AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
__ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen->AddSlowPath(slow_path);
__ j(kAbove, slow_path->GetEntryLabel());
}
// From here down, we know that we are looking for a char that fits in 16 bits.
// Location of reference to data array within the String object.
int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int32_t count_offset = mirror::String::CountOffset().Int32Value();
// Load the count field of the string containing the length and compression flag.
__ movl(string_length, Address(string_obj, count_offset));
// Do a zero-length check. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
// TODO: Support jecxz.
NearLabel not_found_label;
__ testl(string_length, string_length);
__ j(kEqual, &not_found_label);
if (mirror::kUseStringCompression) {
string_length_flagged = locations->GetTemp(2).AsRegister<Register>();
__ movl(string_length_flagged, string_length);
// Extract the length and shift out the least significant bit used as compression flag.
__ shrl(string_length, Immediate(1));
}
if (start_at_zero) {
// Number of chars to scan is the same as the string length.
__ movl(counter, string_length);
// Move to the start of the string.
__ addl(string_obj, Immediate(value_offset));
} else {
Register start_index = locations->InAt(2).AsRegister<Register>();
// Do a start_index check.
__ cmpl(start_index, string_length);
__ j(kGreaterEqual, &not_found_label);
// Ensure we have a start index >= 0;
__ xorl(counter, counter);
__ cmpl(start_index, Immediate(0));
__ cmovl(kGreater, counter, start_index);
if (mirror::kUseStringCompression) {
NearLabel modify_counter, offset_uncompressed_label;
__ testl(string_length_flagged, Immediate(1));
__ j(kNotZero, &offset_uncompressed_label);
// Move to the start of the string: string_obj + value_offset + start_index.
__ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset));
__ jmp(&modify_counter);
// Move to the start of the string: string_obj + value_offset + 2 * start_index.
__ Bind(&offset_uncompressed_label);
__ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
// Now update ecx (the repne scasw work counter). We have string.length - start_index left to
// compare.
__ Bind(&modify_counter);
} else {
__ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
}
__ negl(counter);
__ leal(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
}
if (mirror::kUseStringCompression) {
NearLabel uncompressed_string_comparison;
NearLabel comparison_done;
__ testl(string_length_flagged, Immediate(1));
__ j(kNotZero, &uncompressed_string_comparison);
// Check if EAX (search_value) is ASCII.
__ cmpl(search_value, Immediate(127));
__ j(kGreater, &not_found_label);
// Comparing byte-per-byte.
__ repne_scasb();
__ jmp(&comparison_done);
// Everything is set up for repne scasw:
// * Comparison address in EDI.
// * Counter in ECX.
__ Bind(&uncompressed_string_comparison);
__ repne_scasw();
__ Bind(&comparison_done);
} else {
__ repne_scasw();
}
// Did we find a match?
__ j(kNotEqual, &not_found_label);
// Yes, we matched. Compute the index of the result.
__ subl(string_length, counter);
__ leal(out, Address(string_length, -1));
NearLabel done;
__ jmp(&done);
// Failed to match; return -1.
__ Bind(&not_found_label);
__ movl(out, Immediate(-1));
// And join up at the end.
__ Bind(&done);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86::VisitStringIndexOf(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true);
}
void IntrinsicCodeGeneratorX86::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
}
void IntrinsicLocationsBuilderX86::VisitStringIndexOfAfter(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false);
}
void IntrinsicCodeGeneratorX86::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
}
void IntrinsicLocationsBuilderX86::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterLocation(EAX));
}
void IntrinsicCodeGeneratorX86::VisitStringNewStringFromBytes(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register byte_array = locations->InAt(0).AsRegister<Register>();
__ testl(byte_array, byte_array);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(EAX));
}
void IntrinsicCodeGeneratorX86::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
void IntrinsicLocationsBuilderX86::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(EAX));
}
void IntrinsicCodeGeneratorX86::VisitStringNewStringFromString(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register string_to_copy = locations->InAt(0).AsRegister<Register>();
__ testl(string_to_copy, string_to_copy);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86::VisitStringGetCharsNoCheck(HInvoke* invoke) {
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
// Place srcEnd in ECX to save a move below.
locations->SetInAt(2, Location::RegisterLocation(ECX));
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
// We don't have enough registers to also grab ECX, so handle below.
locations->AddTemp(Location::RegisterLocation(ESI));
locations->AddTemp(Location::RegisterLocation(EDI));
}
void IntrinsicCodeGeneratorX86::VisitStringGetCharsNoCheck(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
size_t char_component_size = DataType::Size(DataType::Type::kUint16);
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
// Location of char array data in string.
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
Register obj = locations->InAt(0).AsRegister<Register>();
Location srcBegin = locations->InAt(1);
int srcBegin_value =
srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
Register srcEnd = locations->InAt(2).AsRegister<Register>();
Register dst = locations->InAt(3).AsRegister<Register>();
Register dstBegin = locations->InAt(4).AsRegister<Register>();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
// Compute the number of chars (words) to move.
// Save ECX, since we don't know if it will be used later.
__ pushl(ECX);
int stack_adjust = kX86WordSize;
__ cfi().AdjustCFAOffset(stack_adjust);
DCHECK_EQ(srcEnd, ECX);
if (srcBegin.IsConstant()) {
__ subl(ECX, Immediate(srcBegin_value));
} else {
DCHECK(srcBegin.IsRegister());
__ subl(ECX, srcBegin.AsRegister<Register>());
}
NearLabel done;
if (mirror::kUseStringCompression) {
// Location of count in string
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
DCHECK_EQ(c_char_size, 1u);
__ pushl(EAX);
__ cfi().AdjustCFAOffset(stack_adjust);
NearLabel copy_loop, copy_uncompressed;
__ testl(Address(obj, count_offset), Immediate(1));
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ j(kNotZero, &copy_uncompressed);
// Compute the address of the source string by adding the number of chars from
// the source beginning to the value offset of a string.
__ leal(ESI, CodeGeneratorX86::ArrayAddress(obj, srcBegin, TIMES_1, value_offset));
// Start the loop to copy String's value to Array of Char.
__ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
__ Bind(&copy_loop);
__ jecxz(&done);
// Use EAX temporary (convert byte from ESI to word).
// TODO: Use LODSB/STOSW (not supported by X86Assembler) with AH initialized to 0.
__ movzxb(EAX, Address(ESI, 0));
__ movw(Address(EDI, 0), EAX);
__ leal(EDI, Address(EDI, char_size));
__ leal(ESI, Address(ESI, c_char_size));
// TODO: Add support for LOOP to X86Assembler.
__ subl(ECX, Immediate(1));
__ jmp(&copy_loop);
__ Bind(&copy_uncompressed);
}
// Do the copy for uncompressed string.
// Compute the address of the destination buffer.
__ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
__ leal(ESI, CodeGeneratorX86::ArrayAddress(obj, srcBegin, TIMES_2, value_offset));
__ rep_movsw();
__ Bind(&done);
if (mirror::kUseStringCompression) {
// Restore EAX.
__ popl(EAX);
__ cfi().AdjustCFAOffset(-stack_adjust);
}
// Restore ECX.
__ popl(ECX);
__ cfi().AdjustCFAOffset(-stack_adjust);
}
static void GenPeek(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) {
Register address = locations->InAt(0).AsRegisterPairLow<Register>();
Location out_loc = locations->Out();
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case DataType::Type::kInt8:
__ movsxb(out_loc.AsRegister<Register>(), Address(address, 0));
break;
case DataType::Type::kInt16:
__ movsxw(out_loc.AsRegister<Register>(), Address(address, 0));
break;
case DataType::Type::kInt32:
__ movl(out_loc.AsRegister<Register>(), Address(address, 0));
break;
case DataType::Type::kInt64:
__ movl(out_loc.AsRegisterPairLow<Register>(), Address(address, 0));
__ movl(out_loc.AsRegisterPairHigh<Register>(), Address(address, 4));
break;
default:
LOG(FATAL) << "Type not recognized for peek: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86::VisitMemoryPeekByte(HInvoke* invoke) {
CreateLongToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPeekByte(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateLongToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPeekIntNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateLongToLongLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPeekLongNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateLongToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPeekShortNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
static void CreateLongIntToVoidLocations(ArenaAllocator* allocator,
DataType::Type size,
HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* value = invoke->InputAt(1);
if (size == DataType::Type::kInt8) {
locations->SetInAt(1, Location::ByteRegisterOrConstant(EDX, value));
} else {
locations->SetInAt(1, Location::RegisterOrConstant(value));
}
}
static void GenPoke(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) {
Register address = locations->InAt(0).AsRegisterPairLow<Register>();
Location value_loc = locations->InAt(1);
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case DataType::Type::kInt8:
if (value_loc.IsConstant()) {
__ movb(Address(address, 0),
Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ movb(Address(address, 0), value_loc.AsRegister<ByteRegister>());
}
break;
case DataType::Type::kInt16:
if (value_loc.IsConstant()) {
__ movw(Address(address, 0),
Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ movw(Address(address, 0), value_loc.AsRegister<Register>());
}
break;
case DataType::Type::kInt32:
if (value_loc.IsConstant()) {
__ movl(Address(address, 0),
Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ movl(Address(address, 0), value_loc.AsRegister<Register>());
}
break;
case DataType::Type::kInt64:
if (value_loc.IsConstant()) {
int64_t value = value_loc.GetConstant()->AsLongConstant()->GetValue();
__ movl(Address(address, 0), Immediate(Low32Bits(value)));
__ movl(Address(address, 4), Immediate(High32Bits(value)));
} else {
__ movl(Address(address, 0), value_loc.AsRegisterPairLow<Register>());
__ movl(Address(address, 4), value_loc.AsRegisterPairHigh<Register>());
}
break;
default:
LOG(FATAL) << "Type not recognized for poke: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86::VisitMemoryPokeByte(HInvoke* invoke) {
CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt8, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPokeByte(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPokeIntNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPokeLongNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt16, invoke);
}
void IntrinsicCodeGeneratorX86::VisitMemoryPokeShortNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
void IntrinsicLocationsBuilderX86::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86::VisitThreadCurrentThread(HInvoke* invoke) {
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
GetAssembler()->fs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86PointerSize>()));
}
static void GenUnsafeGet(HInvoke* invoke,
DataType::Type type,
bool is_volatile,
CodeGeneratorX86* codegen) {
X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
Location base_loc = locations->InAt(1);
Register base = base_loc.AsRegister<Register>();
Location offset_loc = locations->InAt(2);
Register offset = offset_loc.AsRegisterPairLow<Register>();
Location output_loc = locations->Out();
switch (type) {
case DataType::Type::kInt32: {
Register output = output_loc.AsRegister<Register>();
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
}
case DataType::Type::kReference: {
Register output = output_loc.AsRegister<Register>();
if (kEmitCompilerReadBarrier) {
if (kUseBakerReadBarrier) {
Address src(base, offset, ScaleFactor::TIMES_1, 0);
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke, output_loc, base, src, /* needs_null_check= */ false);
} else {
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
codegen->GenerateReadBarrierSlow(
invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
}
} else {
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
__ MaybeUnpoisonHeapReference(output);
}
break;
}
case DataType::Type::kInt64: {
Register output_lo = output_loc.AsRegisterPairLow<Register>();
Register output_hi = output_loc.AsRegisterPairHigh<Register>();
if (is_volatile) {
// Need to use a XMM to read atomically.
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movsd(temp, Address(base, offset, ScaleFactor::TIMES_1, 0));
__ movd(output_lo, temp);
__ psrlq(temp, Immediate(32));
__ movd(output_hi, temp);
} else {
__ movl(output_lo, Address(base, offset, ScaleFactor::TIMES_1, 0));
__ movl(output_hi, Address(base, offset, ScaleFactor::TIMES_1, 4));
}
}
break;
default:
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator,
HInvoke* invoke,
DataType::Type type,
bool is_volatile) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
if (type == DataType::Type::kInt64) {
if (is_volatile) {
// Need to use XMM to read volatile.
locations->AddTemp(Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
} else {
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
}
}
void IntrinsicLocationsBuilderX86::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(
allocator_, invoke, DataType::Type::kInt32, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32, /* is_volatile= */ true);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(
allocator_, invoke, DataType::Type::kInt64, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64, /* is_volatile= */ true);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(
allocator_, invoke, DataType::Type::kReference, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(
allocator_, invoke, DataType::Type::kReference, /* is_volatile= */ true);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_);
}
static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator,
DataType::Type type,
HInvoke* invoke,
bool is_volatile) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (type == DataType::Type::kReference) {
// Need temp registers for card-marking.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
// Ensure the value is in a byte register.
locations->AddTemp(Location::RegisterLocation(ECX));
} else if (type == DataType::Type::kInt64 && is_volatile) {
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
}
void IntrinsicLocationsBuilderX86::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kInt32, invoke, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kInt32, invoke, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kInt32, invoke, /* is_volatile= */ true);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kReference, invoke, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kReference, invoke, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kReference, invoke, /* is_volatile= */ true);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kInt64, invoke, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kInt64, invoke, /* is_volatile= */ false);
}
void IntrinsicLocationsBuilderX86::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(
allocator_, DataType::Type::kInt64, invoke, /* is_volatile= */ true);
}
// We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
// memory model.
static void GenUnsafePut(LocationSummary* locations,
DataType::Type type,
bool is_volatile,
CodeGeneratorX86* codegen) {
X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler());
Register base = locations->InAt(1).AsRegister<Register>();
Register offset = locations->InAt(2).AsRegisterPairLow<Register>();
Location value_loc = locations->InAt(3);
if (type == DataType::Type::kInt64) {
Register value_lo = value_loc.AsRegisterPairLow<Register>();
Register value_hi = value_loc.AsRegisterPairHigh<Register>();
if (is_volatile) {
XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
__ movd(temp1, value_lo);
__ movd(temp2, value_hi);
__ punpckldq(temp1, temp2);
__ movsd(Address(base, offset, ScaleFactor::TIMES_1, 0), temp1);
} else {
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_lo);
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 4), value_hi);
}
} else if (kPoisonHeapReferences && type == DataType::Type::kReference) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ movl(temp, value_loc.AsRegister<Register>());
__ PoisonHeapReference(temp);
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
} else {
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_loc.AsRegister<Register>());
}
if (is_volatile) {
codegen->MemoryFence();
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(),
locations->GetTemp(1).AsRegister<Register>(),
base,
value_loc.AsRegister<Register>(),
value_can_be_null);
}
}
void IntrinsicCodeGeneratorX86::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
}
static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator,
DataType::Type type,
HInvoke* invoke) {
bool can_call = kEmitCompilerReadBarrier &&
kUseBakerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
// Offset is a long, but in 32 bit mode, we only need the low word.
// Can we update the invoke here to remove a TypeConvert to Long?
locations->SetInAt(2, Location::RequiresRegister());
// Expected value must be in EAX or EDX:EAX.
// For long, new value must be in ECX:EBX.
if (type == DataType::Type::kInt64) {
locations->SetInAt(3, Location::RegisterPairLocation(EAX, EDX));
locations->SetInAt(4, Location::RegisterPairLocation(EBX, ECX));
} else {
locations->SetInAt(3, Location::RegisterLocation(EAX));
locations->SetInAt(4, Location::RequiresRegister());
}
// Force a byte register for the output.
locations->SetOut(Location::RegisterLocation(EAX));
if (type == DataType::Type::kReference) {
// Need temporary registers for card-marking, and possibly for
// (Baker) read barrier.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
// Need a byte register for marking.
locations->AddTemp(Location::RegisterLocation(ECX));
}
}
void IntrinsicLocationsBuilderX86::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeCASLong(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke);
}
static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86* codegen) {
X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
Register base = locations->InAt(1).AsRegister<Register>();
Register offset = locations->InAt(2).AsRegisterPairLow<Register>();
Location out = locations->Out();
DCHECK_EQ(out.AsRegister<Register>(), EAX);
// The address of the field within the holding object.
Address field_addr(base, offset, ScaleFactor::TIMES_1, 0);
if (type == DataType::Type::kReference) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
Location temp1_loc = locations->GetTemp(0);
Register temp1 = temp1_loc.AsRegister<Register>();
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
Register expected = locations->InAt(3).AsRegister<Register>();
// Ensure `expected` is in EAX (required by the CMPXCHG instruction).
DCHECK_EQ(expected, EAX);
Register value = locations->InAt(4).AsRegister<Register>();
// Mark card for object assuming new value is stored.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Need to make sure the reference stored in the field is a to-space
// one before attempting the CAS or the CAS could fail incorrectly.
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
temp1_loc, // Unused, used only as a "temporary" within the read barrier.
base,
field_addr,
/* needs_null_check= */ false,
/* always_update_field= */ true,
&temp2);
}
bool base_equals_value = (base == value);
if (kPoisonHeapReferences) {
if (base_equals_value) {
// If `base` and `value` are the same register location, move
// `value` to a temporary register. This way, poisoning
// `value` won't invalidate `base`.
value = temp1;
__ movl(value, base);
}
// Check that the register allocator did not assign the location
// of `expected` (EAX) to `value` nor to `base`, so that heap
// poisoning (when enabled) works as intended below.
// - If `value` were equal to `expected`, both references would
// be poisoned twice, meaning they would not be poisoned at
// all, as heap poisoning uses address negation.
// - If `base` were equal to `expected`, poisoning `expected`
// would invalidate `base`.
DCHECK_NE(value, expected);
DCHECK_NE(base, expected);
__ PoisonHeapReference(expected);
__ PoisonHeapReference(value);
}
__ LockCmpxchgl(field_addr, value);
// LOCK CMPXCHG has full barrier semantics, and we don't need
// scheduling barriers at this time.
// Convert ZF into the Boolean result.
__ setb(kZero, out.AsRegister<Register>());
__ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>());
// If heap poisoning is enabled, we need to unpoison the values
// that were poisoned earlier.
if (kPoisonHeapReferences) {
if (base_equals_value) {
// `value` has been moved to a temporary register, no need to
// unpoison it.
} else {
// Ensure `value` is different from `out`, so that unpoisoning
// the former does not invalidate the latter.
DCHECK_NE(value, out.AsRegister<Register>());
__ UnpoisonHeapReference(value);
}
// Do not unpoison the reference contained in register
// `expected`, as it is the same as register `out` (EAX).
}
} else {
if (type == DataType::Type::kInt32) {
// Ensure the expected value is in EAX (required by the CMPXCHG
// instruction).
DCHECK_EQ(locations->InAt(3).AsRegister<Register>(), EAX);
__ LockCmpxchgl(field_addr, locations->InAt(4).AsRegister<Register>());
} else if (type == DataType::Type::kInt64) {
// Ensure the expected value is in EAX:EDX and that the new
// value is in EBX:ECX (required by the CMPXCHG8B instruction).
DCHECK_EQ(locations->InAt(3).AsRegisterPairLow<Register>(), EAX);
DCHECK_EQ(locations->InAt(3).AsRegisterPairHigh<Register>(), EDX);
DCHECK_EQ(locations->InAt(4).AsRegisterPairLow<Register>(), EBX);
DCHECK_EQ(locations->InAt(4).AsRegisterPairHigh<Register>(), ECX);
__ LockCmpxchg8b(field_addr);
} else {
LOG(FATAL) << "Unexpected CAS type " << type;
}
// LOCK CMPXCHG/LOCK CMPXCHG8B have full barrier semantics, and we
// don't need scheduling barriers at this time.
// Convert ZF into the Boolean result.
__ setb(kZero, out.AsRegister<Register>());
__ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>());
}
}
void IntrinsicCodeGeneratorX86::VisitUnsafeCASInt(HInvoke* invoke) {
GenCAS(DataType::Type::kInt32, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeCASLong(HInvoke* invoke) {
GenCAS(DataType::Type::kInt64, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
GenCAS(DataType::Type::kReference, invoke, codegen_);
}
void IntrinsicLocationsBuilderX86::VisitIntegerReverse(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits(Register reg, Register temp, int32_t shift, int32_t mask,
X86Assembler* assembler) {
Immediate imm_shift(shift);
Immediate imm_mask(mask);
__ movl(temp, reg);
__ shrl(reg, imm_shift);
__ andl(temp, imm_mask);
__ andl(reg, imm_mask);
__ shll(temp, imm_shift);
__ orl(reg, temp);
}
void IntrinsicCodeGeneratorX86::VisitIntegerReverse(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register reg = locations->InAt(0).AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
* x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
* x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
*/
__ bswapl(reg);
SwapBits(reg, temp, 1, 0x55555555, assembler);
SwapBits(reg, temp, 2, 0x33333333, assembler);
SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
}
void IntrinsicLocationsBuilderX86::VisitLongReverse(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86::VisitLongReverse(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register reg_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register reg_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
// We want to swap high/low, then bswap each one, and then do the same
// as a 32 bit reverse.
// Exchange high and low.
__ movl(temp, reg_low);
__ movl(reg_low, reg_high);
__ movl(reg_high, temp);
// bit-reverse low
__ bswapl(reg_low);
SwapBits(reg_low, temp, 1, 0x55555555, assembler);
SwapBits(reg_low, temp, 2, 0x33333333, assembler);
SwapBits(reg_low, temp, 4, 0x0f0f0f0f, assembler);
// bit-reverse high
__ bswapl(reg_high);
SwapBits(reg_high, temp, 1, 0x55555555, assembler);
SwapBits(reg_high, temp, 2, 0x33333333, assembler);
SwapBits(reg_high, temp, 4, 0x0f0f0f0f, assembler);
}
static void CreateBitCountLocations(
ArenaAllocator* allocator, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) {
if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
// Do nothing if there is no popcnt support. This results in generating
// a call for the intrinsic rather than direct code.
return;
}
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
if (is_long) {
locations->AddTemp(Location::RequiresRegister());
}
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenBitCount(X86Assembler* assembler,
CodeGeneratorX86* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
Register out = locations->Out().AsRegister<Register>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
int32_t result = is_long
? POPCOUNT(static_cast<uint64_t>(value))
: POPCOUNT(static_cast<uint32_t>(value));
codegen->Load32BitValue(out, result);
return;
}
// Handle the non-constant cases.
if (!is_long) {
if (src.IsRegister()) {
__ popcntl(out, src.AsRegister<Register>());
} else {
DCHECK(src.IsStackSlot());
__ popcntl(out, Address(ESP, src.GetStackIndex()));
}
} else {
// The 64-bit case needs to worry about two parts.
Register temp = locations->GetTemp(0).AsRegister<Register>();
if (src.IsRegisterPair()) {
__ popcntl(temp, src.AsRegisterPairLow<Register>());
__ popcntl(out, src.AsRegisterPairHigh<Register>());
} else {
DCHECK(src.IsDoubleStackSlot());
__ popcntl(temp, Address(ESP, src.GetStackIndex()));
__ popcntl(out, Address(ESP, src.GetHighStackIndex(kX86WordSize)));
}
__ addl(out, temp);
}
}
void IntrinsicLocationsBuilderX86::VisitIntegerBitCount(HInvoke* invoke) {
CreateBitCountLocations(allocator_, codegen_, invoke, /* is_long= */ false);
}
void IntrinsicCodeGeneratorX86::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86::VisitLongBitCount(HInvoke* invoke) {
CreateBitCountLocations(allocator_, codegen_, invoke, /* is_long= */ true);
}
void IntrinsicCodeGeneratorX86::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true);
}
static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_long) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
if (is_long) {
locations->SetInAt(0, Location::RequiresRegister());
} else {
locations->SetInAt(0, Location::Any());
}
locations->SetOut(Location::RequiresRegister());
}
static void GenLeadingZeros(X86Assembler* assembler,
CodeGeneratorX86* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
Register out = locations->Out().AsRegister<Register>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
value = is_long ? 64 : 32;
} else {
value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
}
codegen->Load32BitValue(out, value);
return;
}
// Handle the non-constant cases.
if (!is_long) {
if (src.IsRegister()) {
__ bsrl(out, src.AsRegister<Register>());
} else {
DCHECK(src.IsStackSlot());
__ bsrl(out, Address(ESP, src.GetStackIndex()));
}
// BSR sets ZF if the input was zero, and the output is undefined.
NearLabel all_zeroes, done;
__ j(kEqual, &all_zeroes);
// Correct the result from BSR to get the final CLZ result.
__ xorl(out, Immediate(31));
__ jmp(&done);
// Fix the zero case with the expected result.
__ Bind(&all_zeroes);
__ movl(out, Immediate(32));
__ Bind(&done);
return;
}
// 64 bit case needs to worry about both parts of the register.
DCHECK(src.IsRegisterPair());
Register src_lo = src.AsRegisterPairLow<Register>();
Register src_hi = src.AsRegisterPairHigh<Register>();
NearLabel handle_low, done, all_zeroes;
// Is the high word zero?
__ testl(src_hi, src_hi);
__ j(kEqual, &handle_low);
// High word is not zero. We know that the BSR result is defined in this case.
__ bsrl(out, src_hi);
// Correct the result from BSR to get the final CLZ result.
__ xorl(out, Immediate(31));
__ jmp(&done);
// High word was zero. We have to compute the low word count and add 32.
__ Bind(&handle_low);
__ bsrl(out, src_lo);
__ j(kEqual, &all_zeroes);
// We had a valid result. Use an XOR to both correct the result and add 32.
__ xorl(out, Immediate(63));
__ jmp(&done);
// All zero case.
__ Bind(&all_zeroes);
__ movl(out, Immediate(64));
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateLeadingZeroLocations(allocator_, invoke, /* is_long= */ false);
}
void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateLeadingZeroLocations(allocator_, invoke, /* is_long= */ true);
}
void IntrinsicCodeGeneratorX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
}
static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_long) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
if (is_long) {
locations->SetInAt(0, Location::RequiresRegister());
} else {
locations->SetInAt(0, Location::Any());
}
locations->SetOut(Location::RequiresRegister());
}
static void GenTrailingZeros(X86Assembler* assembler,
CodeGeneratorX86* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
Register out = locations->Out().AsRegister<Register>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
value = is_long ? 64 : 32;
} else {
value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
}
codegen->Load32BitValue(out, value);
return;
}
// Handle the non-constant cases.
if (!is_long) {
if (src.IsRegister()) {
__ bsfl(out, src.AsRegister<Register>());
} else {
DCHECK(src.IsStackSlot());
__ bsfl(out, Address(ESP, src.GetStackIndex()));
}
// BSF sets ZF if the input was zero, and the output is undefined.
NearLabel done;
__ j(kNotEqual, &done);
// Fix the zero case with the expected result.
__ movl(out, Immediate(32));
__ Bind(&done);
return;
}
// 64 bit case needs to worry about both parts of the register.
DCHECK(src.IsRegisterPair());
Register src_lo = src.AsRegisterPairLow<Register>();
Register src_hi = src.AsRegisterPairHigh<Register>();
NearLabel done, all_zeroes;
// If the low word is zero, then ZF will be set. If not, we have the answer.
__ bsfl(out, src_lo);
__ j(kNotEqual, &done);
// Low word was zero. We have to compute the high word count and add 32.
__ bsfl(out, src_hi);
__ j(kEqual, &all_zeroes);
// We had a valid result. Add 32 to account for the low word being zero.
__ addl(out, Immediate(32));
__ jmp(&done);
// All zero case.
__ Bind(&all_zeroes);
__ movl(out, Immediate(64));
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateTrailingZeroLocations(allocator_, invoke, /* is_long= */ false);
}
void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateTrailingZeroLocations(allocator_, invoke, /* is_long= */ true);
}
void IntrinsicCodeGeneratorX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
}
static bool IsSameInput(HInstruction* instruction, size_t input0, size_t input1) {
return instruction->InputAt(input0) == instruction->InputAt(input1);
}
// Compute base address for the System.arraycopy intrinsic in `base`.
static void GenSystemArrayCopyBaseAddress(X86Assembler* assembler,
DataType::Type type,
const Register& array,
const Location& pos,
const Register& base) {
// This routine is only used by the SystemArrayCopy intrinsic at the
// moment. We can allow DataType::Type::kReference as `type` to implement
// the SystemArrayCopyChar intrinsic.
DCHECK_EQ(type, DataType::Type::kReference);
const int32_t element_size = DataType::Size(type);
const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type));
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
if (pos.IsConstant()) {
int32_t constant = pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(base, Address(array, element_size * constant + data_offset));
} else {
__ leal(base, Address(array, pos.AsRegister<Register>(), scale_factor, data_offset));
}
}
// Compute end source address for the System.arraycopy intrinsic in `end`.
static void GenSystemArrayCopyEndAddress(X86Assembler* assembler,
DataType::Type type,
const Location& copy_length,
const Register& base,
const Register& end) {
// This routine is only used by the SystemArrayCopy intrinsic at the
// moment. We can allow DataType::Type::kReference as `type` to implement
// the SystemArrayCopyChar intrinsic.
DCHECK_EQ(type, DataType::Type::kReference);
const int32_t element_size = DataType::Size(type);
const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type));
if (copy_length.IsConstant()) {
int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
__ leal(end, Address(base, element_size * constant));
} else {
__ leal(end, Address(base, copy_length.AsRegister<Register>(), scale_factor, 0));
}
}
void IntrinsicLocationsBuilderX86::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
if (invoke->GetLocations() != nullptr) {
// Need a byte register for marking.
invoke->GetLocations()->SetTempAt(1, Location::RegisterLocation(ECX));
static constexpr size_t kSrc = 0;
static constexpr size_t kSrcPos = 1;
static constexpr size_t kDest = 2;
static constexpr size_t kDestPos = 3;
static constexpr size_t kLength = 4;
if (!invoke->InputAt(kSrcPos)->IsIntConstant() &&
!invoke->InputAt(kDestPos)->IsIntConstant() &&
!invoke->InputAt(kLength)->IsIntConstant()) {
if (!IsSameInput(invoke, kSrcPos, kDestPos) &&
!IsSameInput(invoke, kSrcPos, kLength) &&
!IsSameInput(invoke, kDestPos, kLength) &&
!IsSameInput(invoke, kSrc, kDest)) {
// Not enough registers, make the length also take a stack slot.
invoke->GetLocations()->SetInAt(kLength, Location::Any());
}
}
}
}
void IntrinsicCodeGeneratorX86::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
Register src = locations->InAt(0).AsRegister<Register>();
Location src_pos = locations->InAt(1);
Register dest = locations->InAt(2).AsRegister<Register>();
Location dest_pos = locations->InAt(3);
Location length_arg = locations->InAt(4);
Location length = length_arg;
Location temp1_loc = locations->GetTemp(0);
Register temp1 = temp1_loc.AsRegister<Register>();
Location temp2_loc = locations->GetTemp(1);
Register temp2 = temp2_loc.AsRegister<Register>();
SlowPathCode* intrinsic_slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(intrinsic_slow_path);
NearLabel conditions_on_positions_validated;
SystemArrayCopyOptimizations optimizations(invoke);
// If source and destination are the same, we go to slow path if we need to do
// forward copying.
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
if (optimizations.GetDestinationIsSource()) {
// Checked when building locations.
DCHECK_GE(src_pos_constant, dest_pos_constant);
} else if (src_pos_constant < dest_pos_constant) {
__ cmpl(src, dest);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmpl(src, dest);
__ j(kNotEqual, &conditions_on_positions_validated);
}
__ cmpl(dest_pos.AsRegister<Register>(), Immediate(src_pos_constant));
__ j(kGreater, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmpl(src, dest);
__ j(kNotEqual, &conditions_on_positions_validated);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ cmpl(src_pos.AsRegister<Register>(), Immediate(dest_pos_constant));
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
} else {
__ cmpl(src_pos.AsRegister<Register>(), dest_pos.AsRegister<Register>());
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
}
}
__ Bind(&conditions_on_positions_validated);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ testl(src, src);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ testl(dest, dest);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
Location temp3_loc = locations->GetTemp(2);
Register temp3 = temp3_loc.AsRegister<Register>();
if (length.IsStackSlot()) {
__ movl(temp3, Address(ESP, length.GetStackIndex()));
length = Location::RegisterLocation(temp3);
}
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant() &&
!optimizations.GetCountIsSourceLength() &&
!optimizations.GetCountIsDestinationLength()) {
__ testl(length.AsRegister<Register>(), length.AsRegister<Register>());
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
}
// Validity checks: source.
CheckPosition(assembler,
src_pos,
src,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsSourceLength());
// Validity checks: dest.
CheckPosition(assembler,
dest_pos,
dest,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsDestinationLength());
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false);
// Bail out if the source is not a non primitive array.
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false);
__ testl(temp1, temp1);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp1` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ temp1 = src->klass_
__ movl(temp1, Address(src, class_offset));
__ MaybeUnpoisonHeapReference(temp1);
// Bail out if the source is not a non primitive array.
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ movl(temp1, Address(temp1, component_offset));
__ testl(temp1, temp1);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp1);
}
__ cmpw(Address(temp1, primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
if (length.Equals(Location::RegisterLocation(temp3))) {
// When Baker read barriers are enabled, register `temp3`,
// which in the present case contains the `length` parameter,
// will be overwritten below. Make the `length` location
// reference the original stack location; it will be moved
// back to `temp3` later if necessary.
DCHECK(length_arg.IsStackSlot());
length = length_arg;
}
// /* HeapReference<Class> */ temp1 = dest->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false);
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
//
// Register `temp1` is not trashed by the read barrier emitted
// by GenerateFieldLoadWithBakerReadBarrier below, as that
// method produces a call to a ReadBarrierMarkRegX entry point,
// which saves all potentially live registers, including
// temporaries such a `temp1`.
// /* HeapReference<Class> */ temp2 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp2_loc, temp1, component_offset, /* needs_null_check= */ false);
__ testl(temp2, temp2);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp2` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
__ cmpw(Address(temp2, primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
// For the same reason given earlier, `temp1` is not trashed by the
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
// /* HeapReference<Class> */ temp2 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false);
// Note: if heap poisoning is on, we are comparing two unpoisoned references here.
__ cmpl(temp1, temp2);
if (optimizations.GetDestinationIsTypedObjectArray()) {
NearLabel do_copy;
__ j(kEqual, &do_copy);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false);
// We do not need to emit a read barrier for the following
// heap reference load, as `temp1` is only used in a
// comparison with null below, and this reference is not
// kept afterwards.
__ cmpl(Address(temp1, super_offset), Immediate(0));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
} else {
// Non read barrier code.
// /* HeapReference<Class> */ temp1 = dest->klass_
__ movl(temp1, Address(dest, class_offset));
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
__ MaybeUnpoisonHeapReference(temp1);
// Bail out if the destination is not a non primitive array.
// /* HeapReference<Class> */ temp2 = temp1->component_type_
__ movl(temp2, Address(temp1, component_offset));
__ testl(temp2, temp2);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp2);
__ cmpw(Address(temp2, primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
// Re-poison the heap reference to make the compare instruction below
// compare two poisoned references.
__ PoisonHeapReference(temp1);
}
// Note: if heap poisoning is on, we are comparing two poisoned references here.
__ cmpl(temp1, Address(src, class_offset));
if (optimizations.GetDestinationIsTypedObjectArray()) {
NearLabel do_copy;
__ j(kEqual, &do_copy);
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ movl(temp1, Address(temp1, component_offset));
__ MaybeUnpoisonHeapReference(temp1);
__ cmpl(Address(temp1, super_offset), Immediate(0));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false);
__ testl(temp1, temp1);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `temp1` has been unpoisoned
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ temp1 = src->klass_
__ movl(temp1, Address(src, class_offset));
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ movl(temp1, Address(temp1, component_offset));
__ testl(temp1, temp1);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp1);
}
__ cmpw(Address(temp1, primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
const DataType::Type type = DataType::Type::kReference;
const int32_t element_size = DataType::Size(type);
// Compute the base source address in `temp1`.
GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// If it is needed (in the case of the fast-path loop), the base
// destination address is computed later, as `temp2` is used for
// intermediate computations.
// Compute the end source address in `temp3`.
if (length.IsStackSlot()) {
// Location `length` is again pointing at a stack slot, as
// register `temp3` (which was containing the length parameter
// earlier) has been overwritten; restore it now
DCHECK(length.Equals(length_arg));
__ movl(temp3, Address(ESP, length.GetStackIndex()));
length = Location::RegisterLocation(temp3);
}
GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
// SystemArrayCopy implementation for Baker read barriers (see
// also CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier):
//
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// for (size_t i = 0; i != length; ++i) {
// dest_array[dest_pos + i] =
// MaybePoison(ReadBarrier::Mark(MaybeUnpoison(src_array[src_pos + i])));
// }
// } else {
// // Fast-path copy.
// do {
// *dest_ptr++ = *src_ptr++;
// } while (src_ptr != end_ptr)
// }
// }
NearLabel loop, done;
// Don't enter copy loop if `length == 0`.
__ cmpl(temp1, temp3);
__ j(kEqual, &done);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
// if (rb_state == ReadBarrier::GrayState())
// goto slow_path;
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
// Load fence to prevent load-load reordering.
// Note that this is a no-op, thanks to the x86 memory model.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
// Slow path used to copy array when `src` is gray.
SlowPathCode* read_barrier_slow_path =
new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86(invoke);
codegen_->AddSlowPath(read_barrier_slow_path);
// We have done the "if" of the gray bit check above, now branch based on the flags.
__ j(kNotZero, read_barrier_slow_path->GetEntryLabel());
// Fast-path copy.
// Compute the base destination address in `temp2`.
GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
__ Bind(&loop);
__ pushl(Address(temp1, 0));
__ cfi().AdjustCFAOffset(4);
__ popl(Address(temp2, 0));
__ cfi().AdjustCFAOffset(-4);
__ addl(temp1, Immediate(element_size));
__ addl(temp2, Immediate(element_size));
__ cmpl(temp1, temp3);
__ j(kNotEqual, &loop);
__ Bind(read_barrier_slow_path->GetExitLabel());
__ Bind(&done);
} else {
// Non read barrier code.
// Compute the base destination address in `temp2`.
GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
// Compute the end source address in `temp3`.
GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
NearLabel loop, done;
__ cmpl(temp1, temp3);
__ j(kEqual, &done);
__ Bind(&loop);
__ pushl(Address(temp1, 0));
__ cfi().AdjustCFAOffset(4);
__ popl(Address(temp2, 0));
__ cfi().AdjustCFAOffset(-4);
__ addl(temp1, Immediate(element_size));
__ addl(temp2, Immediate(element_size));
__ cmpl(temp1, temp3);
__ j(kNotEqual, &loop);
__ Bind(&done);
}
// We only need one card marking on the destination array.
codegen_->MarkGCCard(temp1, temp2, dest, Register(kNoRegister), /* value_can_be_null= */ false);
__ Bind(intrinsic_slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86::VisitIntegerValueOf(HInvoke* invoke) {
DCHECK(invoke->IsInvokeStaticOrDirect());
InvokeRuntimeCallingConvention calling_convention;
IntrinsicVisitor::ComputeIntegerValueOfLocations(
invoke,
codegen_,
Location::RegisterLocation(EAX),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
LocationSummary* locations = invoke->GetLocations();
if (locations != nullptr) {
HInvokeStaticOrDirect* invoke_static_or_direct = invoke->AsInvokeStaticOrDirect();
if (invoke_static_or_direct->HasSpecialInput() &&
invoke->InputAt(invoke_static_or_direct->GetSpecialInputIndex())
->IsX86ComputeBaseMethodAddress()) {
locations->SetInAt(invoke_static_or_direct->GetSpecialInputIndex(),
Location::RequiresRegister());
}
}
}
void IntrinsicCodeGeneratorX86::VisitIntegerValueOf(HInvoke* invoke) {
DCHECK(invoke->IsInvokeStaticOrDirect());
IntrinsicVisitor::IntegerValueOfInfo info =
IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
LocationSummary* locations = invoke->GetLocations();
X86Assembler* assembler = GetAssembler();
Register out = locations->Out().AsRegister<Register>();
InvokeRuntimeCallingConvention calling_convention;
if (invoke->InputAt(0)->IsConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (static_cast<uint32_t>(value - info.low) < info.length) {
// Just embed the j.l.Integer in the code.
DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
codegen_->LoadBootImageAddress(
out, info.value_boot_image_reference, invoke->AsInvokeStaticOrDirect());
} else {
DCHECK(locations->CanCall());
// Allocate and initialize a new j.l.Integer.
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
// JIT object table.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ movl(Address(out, info.value_offset), Immediate(value));
}
} else {
DCHECK(locations->CanCall());
Register in = locations->InAt(0).AsRegister<Register>();
// Check bounds of our cache.
__ leal(out, Address(in, -info.low));
__ cmpl(out, Immediate(info.length));
NearLabel allocate, done;
__ j(kAboveEqual, &allocate);
// If the value is within the bounds, load the j.l.Integer directly from the array.
constexpr size_t kElementSize = sizeof(mirror::HeapReference<mirror::Object>);
static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>),
"Check heap reference size.");
if (codegen_->GetCompilerOptions().IsBootImage()) {
DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
size_t method_address_index = invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex();
HX86ComputeBaseMethodAddress* method_address =
invoke->InputAt(method_address_index)->AsX86ComputeBaseMethodAddress();
DCHECK(method_address != nullptr);
Register method_address_reg =
invoke->GetLocations()->InAt(method_address_index).AsRegister<Register>();
__ movl(out,
Address(method_address_reg, out, TIMES_4, CodeGeneratorX86::kPlaceholder32BitOffset));
codegen_->RecordBootImageIntrinsicPatch(method_address, info.array_data_boot_image_reference);
} else {
// Note: We're about to clobber the index in `out`, so we need to use `in` and
// adjust the offset accordingly.
uint32_t mid_array_boot_image_offset =
info.array_data_boot_image_reference - info.low * kElementSize;
codegen_->LoadBootImageAddress(
out, mid_array_boot_image_offset, invoke->AsInvokeStaticOrDirect());
DCHECK_NE(out, in);
__ movl(out, Address(out, in, TIMES_4, 0));
}
__ MaybeUnpoisonHeapReference(out);
__ jmp(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new j.l.Integer.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ movl(Address(out, info.value_offset), in);
__ Bind(&done);
}
}
void IntrinsicLocationsBuilderX86::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86::VisitThreadInterrupted(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
Address address = Address::Absolute(Thread::InterruptedOffset<kX86PointerSize>().Int32Value());
NearLabel done;
__ fs()->movl(out, address);
__ testl(out, out);
__ j(kEqual, &done);
__ fs()->movl(address, Immediate(0));
codegen_->MemoryFence();
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86::VisitReachabilityFence(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
}
void IntrinsicCodeGeneratorX86::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
void IntrinsicLocationsBuilderX86::VisitIntegerDivideUnsigned(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
// Intel uses edx:eax as the dividend.
locations->AddTemp(Location::RegisterLocation(EDX));
}
void IntrinsicCodeGeneratorX86::VisitIntegerDivideUnsigned(HInvoke* invoke) {
X86Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Register edx = locations->GetTemp(0).AsRegister<Register>();
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(EAX, first.AsRegister<Register>());
DCHECK_EQ(EAX, out.AsRegister<Register>());
DCHECK_EQ(EDX, edx);
// Check if divisor is zero, bail to managed implementation to handle.
__ testl(second_reg, second_reg);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
__ xorl(edx, edx);
__ divl(second_reg);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86::VisitVarHandleGet(HInvoke* invoke) {
// The only read barrier implementation supporting the
// VarHandleGet intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
DataType::Type type = invoke->GetType();
if (type == DataType::Type::kVoid) {
// Return type should not be void for get.
return;
}
if (invoke->GetNumberOfArguments() == 1u) {
// Static field get
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations = new (allocator) LocationSummary(
invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
switch (DataType::Kind(type)) {
case DataType::Type::kInt64:
locations->AddTemp(Location::RequiresRegister());
FALLTHROUGH_INTENDED;
case DataType::Type::kInt32:
case DataType::Type::kReference:
locations->SetOut(Location::RequiresRegister());
break;
default:
DCHECK(DataType::IsFloatingPointType(type));
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
}
// TODO: support instance fields, arrays, etc.
}
void IntrinsicCodeGeneratorX86::VisitVarHandleGet(HInvoke* invoke) {
// The only read barrier implementation supporting the
// VarHandleGet intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
X86Assembler* assembler = codegen_->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register varhandle_object = locations->InAt(0).AsRegister<Register>();
const uint32_t access_modes_bitmask_offset =
mirror::VarHandle::AccessModesBitMaskOffset().Uint32Value();
mirror::VarHandle::AccessMode access_mode =
mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic());
const uint32_t access_mode_bit = 1u << static_cast<uint32_t>(access_mode);
const uint32_t coordtype0_offset = mirror::VarHandle::CoordinateType0Offset().Uint32Value();
const uint32_t var_type_offset = mirror::VarHandle::VarTypeOffset().Uint32Value();
const uint32_t primitive_type_offset = mirror::Class::PrimitiveTypeOffset().Uint32Value();
DataType::Type type = invoke->GetType();
const uint32_t primitive_type = static_cast<uint32_t>(DataTypeToPrimitive(type));
DCHECK_NE(type, DataType::Type::kVoid);
Register temp = locations->GetTemp(0).AsRegister<Register>();
InstructionCodeGeneratorX86* instr_codegen =
down_cast<InstructionCodeGeneratorX86*>(codegen_->GetInstructionVisitor());
// If the access mode is not supported, bail to runtime implementation to handle
__ testl(Address(varhandle_object, access_modes_bitmask_offset), Immediate(access_mode_bit));
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kZero, slow_path->GetEntryLabel());
// Check that the varhandle references a static field by checking that coordinateType0 == null.
// Do not emit read barrier (or unpoison the reference) for comparing to null.
__ cmpl(Address(varhandle_object, coordtype0_offset), Immediate(0));
__ j(kNotEqual, slow_path->GetEntryLabel());
// Check the varType.primitiveType against the type we're trying to retrieve. Reference types
// are also checked later by a HCheckCast node as an additional check.
// We do not need a read barrier when loading a reference only for loading a constant field
// through the reference.
__ movl(temp, Address(varhandle_object, var_type_offset));
__ MaybeUnpoisonHeapReference(temp);
__ cmpw(Address(temp, primitive_type_offset), Immediate(primitive_type));
__ j(kNotEqual, slow_path->GetEntryLabel());
Location out = locations->Out();
// Use 'out' as a temporary register if it's a core register
Register offset =
out.IsRegister() ? out.AsRegister<Register>() : locations->GetTemp(1).AsRegister<Register>();
const uint32_t artfield_offset = mirror::FieldVarHandle::ArtFieldOffset().Uint32Value();
const uint32_t offset_offset = ArtField::OffsetOffset().Uint32Value();
const uint32_t declaring_class_offset = ArtField::DeclaringClassOffset().Uint32Value();
// Load the ArtField, the offset and declaring class
__ movl(temp, Address(varhandle_object, artfield_offset));
__ movl(offset, Address(temp, offset_offset));
instr_codegen->GenerateGcRootFieldLoad(invoke,
Location::RegisterLocation(temp),
Address(temp, declaring_class_offset),
/* fixup_label= */ nullptr,
kCompilerReadBarrierOption);
// Load the value from the field
CodeGeneratorX86* codegen_x86 = down_cast<CodeGeneratorX86*>(codegen_);
if (type == DataType::Type::kReference) {
if (kCompilerReadBarrierOption == kWithReadBarrier) {
codegen_x86->GenerateReferenceLoadWithBakerReadBarrier(invoke,
out,
temp,
Address(temp, offset, TIMES_1, 0),
/* needs_null_check= */ false);
} else {
__ movl(out.AsRegister<Register>(), Address(temp, offset, TIMES_1, 0));
__ MaybeUnpoisonHeapReference(out.AsRegister<Register>());
}
} else {
codegen_x86->MoveFromMemory(type, out, temp, offset);
}
__ Bind(slow_path->GetExitLabel());
}
UNIMPLEMENTED_INTRINSIC(X86, MathRoundDouble)
UNIMPLEMENTED_INTRINSIC(X86, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(X86, FloatIsInfinite)
UNIMPLEMENTED_INTRINSIC(X86, DoubleIsInfinite)
UNIMPLEMENTED_INTRINSIC(X86, IntegerHighestOneBit)
UNIMPLEMENTED_INTRINSIC(X86, LongHighestOneBit)
UNIMPLEMENTED_INTRINSIC(X86, CRC32Update)
UNIMPLEMENTED_INTRINSIC(X86, CRC32UpdateBytes)
UNIMPLEMENTED_INTRINSIC(X86, CRC32UpdateByteBuffer)
UNIMPLEMENTED_INTRINSIC(X86, FP16ToFloat)
UNIMPLEMENTED_INTRINSIC(X86, FP16ToHalf)
UNIMPLEMENTED_INTRINSIC(X86, FP16Floor)
UNIMPLEMENTED_INTRINSIC(X86, FP16Ceil)
UNIMPLEMENTED_INTRINSIC(X86, FP16Rint)
UNIMPLEMENTED_INTRINSIC(X86, FP16Greater)
UNIMPLEMENTED_INTRINSIC(X86, FP16GreaterEquals)
UNIMPLEMENTED_INTRINSIC(X86, FP16Less)
UNIMPLEMENTED_INTRINSIC(X86, FP16LessEquals)
UNIMPLEMENTED_INTRINSIC(X86, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(X86, StringStringIndexOfAfter);
UNIMPLEMENTED_INTRINSIC(X86, StringBufferAppend);
UNIMPLEMENTED_INTRINSIC(X86, StringBufferLength);
UNIMPLEMENTED_INTRINSIC(X86, StringBufferToString);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendObject);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendString);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendCharSequence);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendCharArray);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendBoolean);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendChar);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendInt);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendLong);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendFloat);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderAppendDouble);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderLength);
UNIMPLEMENTED_INTRINSIC(X86, StringBuilderToString);
// 1.8.
UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetObject)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleFullFence)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleAcquireFence)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleReleaseFence)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleLoadLoadFence)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleStoreStoreFence)
UNIMPLEMENTED_INTRINSIC(X86, MethodHandleInvokeExact)
UNIMPLEMENTED_INTRINSIC(X86, MethodHandleInvoke)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleCompareAndExchange)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleCompareAndExchangeAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleCompareAndExchangeRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleCompareAndSet)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndAdd)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndAddAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndAddRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseAnd)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseAndAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseAndRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseOr)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseOrAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseOrRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseXor)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseXorAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndBitwiseXorRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndSet)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndSetAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetAndSetRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetOpaque)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleGetVolatile)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleSet)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleSetOpaque)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleSetRelease)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleSetVolatile)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleWeakCompareAndSet)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleWeakCompareAndSetAcquire)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleWeakCompareAndSetPlain)
UNIMPLEMENTED_INTRINSIC(X86, VarHandleWeakCompareAndSetRelease)
UNREACHABLE_INTRINSICS(X86)
#undef __
} // namespace x86
} // namespace art