| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "linker/arm64/relative_patcher_arm64.h" |
| |
| #include "arch/arm64/asm_support_arm64.h" |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "compiled_method-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "heap_poisoning.h" |
| #include "linker/linker_patch.h" |
| #include "linker/output_stream.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object.h" |
| #include "oat.h" |
| #include "oat_quick_method_header.h" |
| #include "read_barrier.h" |
| #include "utils/arm64/assembler_arm64.h" |
| |
| namespace art { |
| namespace linker { |
| |
| namespace { |
| |
| // Maximum positive and negative displacement for method call measured from the patch location. |
| // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from |
| // the ARM64 PC pointing to the BL.) |
| constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u; |
| constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27); |
| |
| // Maximum positive and negative displacement for a conditional branch measured from the patch |
| // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4] |
| // measured from the ARM64 PC pointing to the B.cond.) |
| constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u; |
| constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20); |
| |
| // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes. |
| constexpr uint32_t kAdrpThunkSize = 8u; |
| |
| inline bool IsAdrpPatch(const LinkerPatch& patch) { |
| switch (patch.GetType()) { |
| case LinkerPatch::Type::kCall: |
| case LinkerPatch::Type::kCallRelative: |
| case LinkerPatch::Type::kBakerReadBarrierBranch: |
| return false; |
| case LinkerPatch::Type::kMethodRelative: |
| case LinkerPatch::Type::kMethodBssEntry: |
| case LinkerPatch::Type::kTypeRelative: |
| case LinkerPatch::Type::kTypeClassTable: |
| case LinkerPatch::Type::kTypeBssEntry: |
| case LinkerPatch::Type::kStringRelative: |
| case LinkerPatch::Type::kStringInternTable: |
| case LinkerPatch::Type::kStringBssEntry: |
| return patch.LiteralOffset() == patch.PcInsnOffset(); |
| } |
| } |
| |
| inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) { |
| if (num_adrp == 0u) { |
| return 0u; |
| } |
| uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size; |
| return kAdrpThunkSize * num_adrp + alignment_bytes; |
| } |
| |
| } // anonymous namespace |
| |
| Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider, |
| const Arm64InstructionSetFeatures* features) |
| : ArmBaseRelativePatcher(provider, kArm64), |
| fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()), |
| reserved_adrp_thunks_(0u), |
| processed_adrp_thunks_(0u) { |
| if (fix_cortex_a53_843419_) { |
| adrp_thunk_locations_.reserve(16u); |
| current_method_thunks_.reserve(16u * kAdrpThunkSize); |
| } |
| } |
| |
| uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset, |
| const CompiledMethod* compiled_method, |
| MethodReference method_ref) { |
| if (!fix_cortex_a53_843419_) { |
| DCHECK(adrp_thunk_locations_.empty()); |
| return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u); |
| } |
| |
| // Add thunks for previous method if any. |
| if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { |
| size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; |
| offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks; |
| reserved_adrp_thunks_ = adrp_thunk_locations_.size(); |
| } |
| |
| // Count the number of ADRP insns as the upper bound on the number of thunks needed |
| // and use it to reserve space for other linker patches. |
| size_t num_adrp = 0u; |
| DCHECK(compiled_method != nullptr); |
| for (const LinkerPatch& patch : compiled_method->GetPatches()) { |
| if (IsAdrpPatch(patch)) { |
| ++num_adrp; |
| } |
| } |
| ArrayRef<const uint8_t> code = compiled_method->GetQuickCode(); |
| uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size()); |
| offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space); |
| if (num_adrp == 0u) { |
| return offset; |
| } |
| |
| // Now that we have the actual offset where the code will be placed, locate the ADRP insns |
| // that actually require the thunk. |
| uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader)); |
| uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size()); |
| DCHECK(compiled_method != nullptr); |
| for (const LinkerPatch& patch : compiled_method->GetPatches()) { |
| if (IsAdrpPatch(patch)) { |
| uint32_t patch_offset = quick_code_offset + patch.LiteralOffset(); |
| if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) { |
| adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset); |
| thunk_offset += kAdrpThunkSize; |
| } |
| } |
| } |
| return offset; |
| } |
| |
| uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) { |
| if (!fix_cortex_a53_843419_) { |
| DCHECK(adrp_thunk_locations_.empty()); |
| } else { |
| // Add thunks for the last method if any. |
| if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { |
| size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; |
| offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks; |
| reserved_adrp_thunks_ = adrp_thunk_locations_.size(); |
| } |
| } |
| return ArmBaseRelativePatcher::ReserveSpaceEnd(offset); |
| } |
| |
| uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) { |
| if (fix_cortex_a53_843419_) { |
| if (!current_method_thunks_.empty()) { |
| uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64); |
| if (kIsDebugBuild) { |
| CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); |
| size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; |
| CHECK_LE(num_thunks, processed_adrp_thunks_); |
| for (size_t i = 0u; i != num_thunks; ++i) { |
| const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i]; |
| CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize); |
| } |
| } |
| uint32_t aligned_code_delta = aligned_offset - offset; |
| if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) { |
| return 0u; |
| } |
| if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) { |
| return 0u; |
| } |
| offset = aligned_offset + current_method_thunks_.size(); |
| current_method_thunks_.clear(); |
| } |
| } |
| return ArmBaseRelativePatcher::WriteThunks(out, offset); |
| } |
| |
| void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code, |
| uint32_t literal_offset, |
| uint32_t patch_offset, uint32_t |
| target_offset) { |
| DCHECK_LE(literal_offset + 4u, code->size()); |
| DCHECK_EQ(literal_offset & 3u, 0u); |
| DCHECK_EQ(patch_offset & 3u, 0u); |
| DCHECK_EQ(target_offset & 3u, 0u); |
| uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u); |
| DCHECK_EQ(displacement & 3u, 0u); |
| DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed. |
| uint32_t insn = (displacement & 0x0fffffffu) >> 2; |
| insn |= 0x94000000; // BL |
| |
| // Check that we're just overwriting an existing BL. |
| DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u); |
| // Write the new BL. |
| SetInsn(code, literal_offset, insn); |
| } |
| |
| void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code, |
| const LinkerPatch& patch, |
| uint32_t patch_offset, |
| uint32_t target_offset) { |
| DCHECK_EQ(patch_offset & 3u, 0u); |
| DCHECK_EQ(target_offset & 3u, 0u); |
| uint32_t literal_offset = patch.LiteralOffset(); |
| uint32_t insn = GetInsn(code, literal_offset); |
| uint32_t pc_insn_offset = patch.PcInsnOffset(); |
| uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu); |
| bool wide = (insn & 0x40000000) != 0; |
| uint32_t shift = wide ? 3u : 2u; |
| if (literal_offset == pc_insn_offset) { |
| // Check it's an ADRP with imm == 0 (unset). |
| DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u) |
| << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn; |
| if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() && |
| adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) { |
| DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code), |
| literal_offset, patch_offset)); |
| uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second; |
| uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu); |
| uint32_t adrp = PatchAdrp(insn, adrp_disp); |
| |
| uint32_t out_disp = thunk_offset - patch_offset; |
| DCHECK_EQ(out_disp & 3u, 0u); |
| DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed. |
| insn = (out_disp & 0x0fffffffu) >> shift; |
| insn |= 0x14000000; // B <thunk> |
| |
| uint32_t back_disp = -out_disp; |
| DCHECK_EQ(back_disp & 3u, 0u); |
| DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed. |
| uint32_t b_back = (back_disp & 0x0fffffffu) >> 2; |
| b_back |= 0x14000000; // B <back> |
| size_t thunks_code_offset = current_method_thunks_.size(); |
| current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize); |
| SetInsn(¤t_method_thunks_, thunks_code_offset, adrp); |
| SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back); |
| static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions"); |
| |
| processed_adrp_thunks_ += 1u; |
| } else { |
| insn = PatchAdrp(insn, disp); |
| } |
| // Write the new ADRP (or B to the erratum 843419 thunk). |
| SetInsn(code, literal_offset, insn); |
| } else { |
| if ((insn & 0xfffffc00) == 0x91000000) { |
| // ADD immediate, 64-bit with imm12 == 0 (unset). |
| if (!kEmitCompilerReadBarrier) { |
| DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative || |
| patch.GetType() == LinkerPatch::Type::kTypeRelative || |
| patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType(); |
| } else { |
| // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry. |
| DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative || |
| patch.GetType() == LinkerPatch::Type::kTypeRelative || |
| patch.GetType() == LinkerPatch::Type::kStringRelative || |
| patch.GetType() == LinkerPatch::Type::kTypeBssEntry || |
| patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType(); |
| } |
| shift = 0u; // No shift for ADD. |
| } else { |
| // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset). |
| DCHECK(patch.GetType() == LinkerPatch::Type::kMethodBssEntry || |
| patch.GetType() == LinkerPatch::Type::kTypeClassTable || |
| patch.GetType() == LinkerPatch::Type::kTypeBssEntry || |
| patch.GetType() == LinkerPatch::Type::kStringInternTable || |
| patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType(); |
| DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn; |
| } |
| if (kIsDebugBuild) { |
| uint32_t adrp = GetInsn(code, pc_insn_offset); |
| if ((adrp & 0x9f000000u) != 0x90000000u) { |
| CHECK(fix_cortex_a53_843419_); |
| CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk> |
| CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); |
| size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; |
| CHECK_LE(num_thunks, processed_adrp_thunks_); |
| uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset; |
| for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) { |
| CHECK_NE(i, processed_adrp_thunks_); |
| if (adrp_thunk_locations_[i].first == b_offset) { |
| size_t idx = num_thunks - (processed_adrp_thunks_ - i); |
| adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize); |
| break; |
| } |
| } |
| } |
| CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points |
| 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register. |
| } |
| uint32_t imm12 = (disp & 0xfffu) >> shift; |
| insn = (insn & ~(0xfffu << 10)) | (imm12 << 10); |
| SetInsn(code, literal_offset, insn); |
| } |
| } |
| |
| void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code, |
| const LinkerPatch& patch, |
| uint32_t patch_offset) { |
| DCHECK_ALIGNED(patch_offset, 4u); |
| uint32_t literal_offset = patch.LiteralOffset(); |
| DCHECK_ALIGNED(literal_offset, 4u); |
| DCHECK_LT(literal_offset, code->size()); |
| uint32_t insn = GetInsn(code, literal_offset); |
| DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched) |
| ThunkKey key = GetBakerThunkKey(patch); |
| if (kIsDebugBuild) { |
| const uint32_t encoded_data = key.GetCustomValue1(); |
| BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); |
| // Check that the next instruction matches the expected LDR. |
| switch (kind) { |
| case BakerReadBarrierKind::kField: { |
| DCHECK_GE(code->size() - literal_offset, 8u); |
| uint32_t next_insn = GetInsn(code, literal_offset + 4u); |
| // LDR (immediate) with correct base_reg. |
| CheckValidReg(next_insn & 0x1fu); // Check destination register. |
| const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); |
| CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5)); |
| break; |
| } |
| case BakerReadBarrierKind::kArray: { |
| DCHECK_GE(code->size() - literal_offset, 8u); |
| uint32_t next_insn = GetInsn(code, literal_offset + 4u); |
| // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL), |
| // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2]. |
| CheckValidReg(next_insn & 0x1fu); // Check destination register. |
| const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); |
| CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5)); |
| CheckValidReg((next_insn >> 16) & 0x1f); // Check index register |
| break; |
| } |
| case BakerReadBarrierKind::kGcRoot: { |
| DCHECK_GE(literal_offset, 4u); |
| uint32_t prev_insn = GetInsn(code, literal_offset - 4u); |
| // LDR (immediate) with correct root_reg. |
| const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); |
| CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); |
| UNREACHABLE(); |
| } |
| } |
| uint32_t target_offset = GetThunkTargetOffset(key, patch_offset); |
| DCHECK_ALIGNED(target_offset, 4u); |
| uint32_t disp = target_offset - patch_offset; |
| DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed. |
| insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23. |
| SetInsn(code, literal_offset, insn); |
| } |
| |
| #define __ assembler.GetVIXLAssembler()-> |
| |
| static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler, |
| vixl::aarch64::Register base_reg, |
| vixl::aarch64::MemOperand& lock_word, |
| vixl::aarch64::Label* slow_path) { |
| using namespace vixl::aarch64; // NOLINT(build/namespaces) |
| // Load the lock word containing the rb_state. |
| __ Ldr(ip0.W(), lock_word); |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path); |
| static_assert( |
| BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET, |
| "Field and array LDR offsets must be the same to reuse the same code."); |
| // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning). |
| static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), |
| "Field LDR must be 1 instruction (4B) before the return address label; " |
| " 2 instructions (8B) for heap poisoning."); |
| __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); |
| // Introduce a dependency on the lock_word including rb_state, |
| // to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| __ Add(base_reg, base_reg, Operand(ip0, LSR, 32)); |
| __ Br(lr); // And return back to the function. |
| // Note: The fake dependency is unnecessary for the slow path. |
| } |
| |
| // Load the read barrier introspection entrypoint in register `entrypoint`. |
| static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler, |
| vixl::aarch64::Register entrypoint) { |
| using vixl::aarch64::MemOperand; |
| using vixl::aarch64::ip0; |
| // Thread Register. |
| const vixl::aarch64::Register tr = vixl::aarch64::x19; |
| |
| // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. |
| DCHECK_EQ(ip0.GetCode(), 16u); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); |
| __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); |
| } |
| |
| void Arm64RelativePatcher::CompileBakerReadBarrierThunk(arm64::Arm64Assembler& assembler, |
| uint32_t encoded_data) { |
| using namespace vixl::aarch64; // NOLINT(build/namespaces) |
| BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); |
| switch (kind) { |
| case BakerReadBarrierKind::kField: { |
| // Check if the holder is gray and, if not, add fake dependency to the base register |
| // and return to the LDR instruction to load the reference. Otherwise, use introspection |
| // to load the reference and call the entrypoint (in IP1) that performs further checks |
| // on the reference and marks it if needed. |
| auto base_reg = |
| Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); |
| CheckValidReg(base_reg.GetCode()); |
| auto holder_reg = |
| Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| CheckValidReg(holder_reg.GetCode()); |
| UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); |
| temps.Exclude(ip0, ip1); |
| // If base_reg differs from holder_reg, the offset was too large and we must have |
| // emitted an explicit null check before the load. Otherwise, we need to null-check |
| // the holder as we do not necessarily do that check before going to the thunk. |
| vixl::aarch64::Label throw_npe; |
| if (holder_reg.Is(base_reg)) { |
| __ Cbz(holder_reg.W(), &throw_npe); |
| } |
| vixl::aarch64::Label slow_path; |
| MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); |
| EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); |
| __ Bind(&slow_path); |
| MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); |
| __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset. |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset. |
| __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference. |
| // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. |
| __ Br(ip1); // Jump to the entrypoint. |
| if (holder_reg.Is(base_reg)) { |
| // Add null check slow path. The stack map is at the address pointed to by LR. |
| __ Bind(&throw_npe); |
| int32_t offset = GetThreadOffset<kArm64PointerSize>(kQuickThrowNullPointer).Int32Value(); |
| __ Ldr(ip0, MemOperand(/* Thread* */ vixl::aarch64::x19, offset)); |
| __ Br(ip0); |
| } |
| break; |
| } |
| case BakerReadBarrierKind::kArray: { |
| auto base_reg = |
| Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); |
| CheckValidReg(base_reg.GetCode()); |
| DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); |
| temps.Exclude(ip0, ip1); |
| vixl::aarch64::Label slow_path; |
| int32_t data_offset = |
| mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); |
| MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); |
| DCHECK_LT(lock_word.GetOffset(), 0); |
| EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); |
| __ Bind(&slow_path); |
| MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); |
| __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset. |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set). |
| __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create |
| // a switch case target based on the index register. |
| __ Mov(ip0, base_reg); // Move the base register to ip0. |
| __ Br(ip1); // Jump to the entrypoint's array switch case. |
| break; |
| } |
| case BakerReadBarrierKind::kGcRoot: { |
| // Check if the reference needs to be marked and if so (i.e. not null, not marked yet |
| // and it does not have a forwarding address), call the correct introspection entrypoint; |
| // otherwise return the reference (or the extracted forwarding address). |
| // There is no gray bit check for GC roots. |
| auto root_reg = |
| Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); |
| CheckValidReg(root_reg.GetCode()); |
| DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); |
| temps.Exclude(ip0, ip1); |
| vixl::aarch64::Label return_label, not_marked, forwarding_address; |
| __ Cbz(root_reg, &return_label); |
| MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value()); |
| __ Ldr(ip0.W(), lock_word); |
| __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked); |
| __ Bind(&return_label); |
| __ Br(lr); |
| __ Bind(¬_marked); |
| __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1)); |
| __ B(&forwarding_address, mi); |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to |
| // art_quick_read_barrier_mark_introspection_gc_roots. |
| __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET)); |
| __ Mov(ip0.W(), root_reg); |
| __ Br(ip1); |
| __ Bind(&forwarding_address); |
| __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift); |
| __ Br(lr); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); |
| UNREACHABLE(); |
| } |
| } |
| |
| std::vector<uint8_t> Arm64RelativePatcher::CompileThunk(const ThunkKey& key) { |
| ArenaPool pool; |
| ArenaAllocator arena(&pool); |
| arm64::Arm64Assembler assembler(&arena); |
| |
| switch (key.GetType()) { |
| case ThunkType::kMethodCall: { |
| // The thunk just uses the entry point in the ArtMethod. This works even for calls |
| // to the generic JNI and interpreter trampolines. |
| Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArm64PointerSize).Int32Value()); |
| assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); |
| break; |
| } |
| case ThunkType::kBakerReadBarrier: { |
| CompileBakerReadBarrierThunk(assembler, key.GetCustomValue1()); |
| break; |
| } |
| } |
| |
| // Ensure we emit the literal pool. |
| assembler.FinalizeCode(); |
| std::vector<uint8_t> thunk_code(assembler.CodeSize()); |
| MemoryRegion code(thunk_code.data(), thunk_code.size()); |
| assembler.FinalizeInstructions(code); |
| return thunk_code; |
| } |
| |
| std::string Arm64RelativePatcher::GetThunkDebugName(const ThunkKey& key) { |
| switch (key.GetType()) { |
| case ThunkType::kMethodCall: |
| return "MethodCallThunk"; |
| |
| case ThunkType::kBakerReadBarrier: { |
| uint32_t encoded_data = key.GetCustomValue1(); |
| BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); |
| std::ostringstream oss; |
| oss << "BakerReadBarrierThunk"; |
| switch (kind) { |
| case BakerReadBarrierKind::kField: |
| oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) |
| << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); |
| break; |
| case BakerReadBarrierKind::kArray: |
| oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); |
| DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| break; |
| case BakerReadBarrierKind::kGcRoot: |
| oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); |
| DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| break; |
| } |
| return oss.str(); |
| } |
| } |
| } |
| |
| #undef __ |
| |
| uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) { |
| switch (key.GetType()) { |
| case ThunkType::kMethodCall: |
| return kMaxMethodCallPositiveDisplacement; |
| case ThunkType::kBakerReadBarrier: |
| return kMaxBcondPositiveDisplacement; |
| } |
| } |
| |
| uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) { |
| switch (key.GetType()) { |
| case ThunkType::kMethodCall: |
| return kMaxMethodCallNegativeDisplacement; |
| case ThunkType::kBakerReadBarrier: |
| return kMaxBcondNegativeDisplacement; |
| } |
| } |
| |
| uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) { |
| return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg. |
| // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30. |
| ((disp & 0x00003000u) << (29 - 12)) | |
| // The next 16 bits are encoded in bits 5-22. |
| ((disp & 0xffffc000u) >> (12 + 2 - 5)) | |
| // Since the target_offset is based on the beginning of the oat file and the |
| // image space precedes the oat file, the target_offset into image space will |
| // be negative yet passed as uint32_t. Therefore we limit the displacement |
| // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from |
| // the highest bit of the displacement. This is encoded in bit 23. |
| ((disp & 0x80000000u) >> (31 - 23)); |
| } |
| |
| bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code, |
| uint32_t literal_offset, |
| uint32_t patch_offset) { |
| DCHECK_EQ(patch_offset & 0x3u, 0u); |
| if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc |
| uint32_t adrp = GetInsn(code, literal_offset); |
| DCHECK_EQ(adrp & 0x9f000000, 0x90000000); |
| uint32_t next_offset = patch_offset + 4u; |
| uint32_t next_insn = GetInsn(code, literal_offset + 4u); |
| |
| // Below we avoid patching sequences where the adrp is followed by a load which can easily |
| // be proved to be aligned. |
| |
| // First check if the next insn is the LDR using the result of the ADRP. |
| // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg. |
| if ((next_insn & 0xffc00000) == 0xb9400000 && |
| (((next_insn >> 5) ^ adrp) & 0x1f) == 0) { |
| return false; |
| } |
| |
| // And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result |
| // of the ADRP for an ADD immediate, check for that as well. We generalize a bit |
| // to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination |
| // or stores the result to a different register. |
| if ((next_insn & 0x1f000000) == 0x11000000 && |
| ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) { |
| return false; |
| } |
| |
| // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing. |
| if ((next_insn & 0xff000000) == 0x18000000) { |
| return false; |
| } |
| |
| // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8. |
| if ((next_insn & 0xff000000) == 0x58000000) { |
| bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0; |
| return !is_aligned_load; |
| } |
| |
| // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is |
| // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size. |
| if ((next_insn & 0xbfc003e0) == 0xb94003e0) { |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) { |
| DCHECK_LE(offset + 4u, code->size()); |
| DCHECK_EQ(offset & 3u, 0u); |
| uint8_t* addr = &(*code)[offset]; |
| addr[0] = (value >> 0) & 0xff; |
| addr[1] = (value >> 8) & 0xff; |
| addr[2] = (value >> 16) & 0xff; |
| addr[3] = (value >> 24) & 0xff; |
| } |
| |
| uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) { |
| DCHECK_LE(offset + 4u, code.size()); |
| DCHECK_EQ(offset & 3u, 0u); |
| const uint8_t* addr = &code[offset]; |
| return |
| (static_cast<uint32_t>(addr[0]) << 0) + |
| (static_cast<uint32_t>(addr[1]) << 8) + |
| (static_cast<uint32_t>(addr[2]) << 16)+ |
| (static_cast<uint32_t>(addr[3]) << 24); |
| } |
| |
| template <typename Alloc> |
| uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) { |
| return GetInsn(ArrayRef<const uint8_t>(*code), offset); |
| } |
| |
| } // namespace linker |
| } // namespace art |