| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "instruction_builder.h" |
| |
| #include "art_method-inl.h" |
| #include "base/arena_bit_vector.h" |
| #include "base/bit_vector-inl.h" |
| #include "block_builder.h" |
| #include "bytecode_utils.h" |
| #include "class_linker.h" |
| #include "data_type-inl.h" |
| #include "dex_instruction-inl.h" |
| #include "driver/compiler_driver-inl.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "driver/compiler_options.h" |
| #include "imtable-inl.h" |
| #include "mirror/dex_cache.h" |
| #include "optimizing_compiler_stats.h" |
| #include "quicken_info.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "sharpening.h" |
| #include "ssa_builder.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { |
| return block_builder_->GetBlockAt(dex_pc); |
| } |
| |
| inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { |
| ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; |
| const size_t vregs = graph_->GetNumberOfVRegs(); |
| if (locals->size() == vregs) { |
| return locals; |
| } |
| return GetLocalsForWithAllocation(block, locals, vregs); |
| } |
| |
| ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation( |
| HBasicBlock* block, |
| ScopedArenaVector<HInstruction*>* locals, |
| const size_t vregs) { |
| DCHECK_NE(locals->size(), vregs); |
| locals->resize(vregs, nullptr); |
| if (block->IsCatchBlock()) { |
| // We record incoming inputs of catch phis at throwing instructions and |
| // must therefore eagerly create the phis. Phis for undefined vregs will |
| // be deleted when the first throwing instruction with the vreg undefined |
| // is encountered. Unused phis will be removed by dead phi analysis. |
| for (size_t i = 0; i < vregs; ++i) { |
| // No point in creating the catch phi if it is already undefined at |
| // the first throwing instruction. |
| HInstruction* current_local_value = (*current_locals_)[i]; |
| if (current_local_value != nullptr) { |
| HPhi* phi = new (allocator_) HPhi( |
| allocator_, |
| i, |
| 0, |
| current_local_value->GetType()); |
| block->AddPhi(phi); |
| (*locals)[i] = phi; |
| } |
| } |
| } |
| return locals; |
| } |
| |
| inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { |
| ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block); |
| return (*locals)[local]; |
| } |
| |
| void HInstructionBuilder::InitializeBlockLocals() { |
| current_locals_ = GetLocalsFor(current_block_); |
| |
| if (current_block_->IsCatchBlock()) { |
| // Catch phis were already created and inputs collected from throwing sites. |
| if (kIsDebugBuild) { |
| // Make sure there was at least one throwing instruction which initialized |
| // locals (guaranteed by HGraphBuilder) and that all try blocks have been |
| // visited already (from HTryBoundary scoping and reverse post order). |
| bool catch_block_visited = false; |
| for (HBasicBlock* current : graph_->GetReversePostOrder()) { |
| if (current == current_block_) { |
| catch_block_visited = true; |
| } else if (current->IsTryBlock()) { |
| const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); |
| if (try_entry.HasExceptionHandler(*current_block_)) { |
| DCHECK(!catch_block_visited) << "Catch block visited before its try block."; |
| } |
| } |
| } |
| DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) |
| << "No instructions throwing into a live catch block."; |
| } |
| } else if (current_block_->IsLoopHeader()) { |
| // If the block is a loop header, we know we only have visited the pre header |
| // because we are visiting in reverse post order. We create phis for all initialized |
| // locals from the pre header. Their inputs will be populated at the end of |
| // the analysis. |
| for (size_t local = 0; local < current_locals_->size(); ++local) { |
| HInstruction* incoming = |
| ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); |
| if (incoming != nullptr) { |
| HPhi* phi = new (allocator_) HPhi( |
| allocator_, |
| local, |
| 0, |
| incoming->GetType()); |
| current_block_->AddPhi(phi); |
| (*current_locals_)[local] = phi; |
| } |
| } |
| |
| // Save the loop header so that the last phase of the analysis knows which |
| // blocks need to be updated. |
| loop_headers_.push_back(current_block_); |
| } else if (current_block_->GetPredecessors().size() > 0) { |
| // All predecessors have already been visited because we are visiting in reverse post order. |
| // We merge the values of all locals, creating phis if those values differ. |
| for (size_t local = 0; local < current_locals_->size(); ++local) { |
| bool one_predecessor_has_no_value = false; |
| bool is_different = false; |
| HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); |
| |
| for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { |
| HInstruction* current = ValueOfLocalAt(predecessor, local); |
| if (current == nullptr) { |
| one_predecessor_has_no_value = true; |
| break; |
| } else if (current != value) { |
| is_different = true; |
| } |
| } |
| |
| if (one_predecessor_has_no_value) { |
| // If one predecessor has no value for this local, we trust the verifier has |
| // successfully checked that there is a store dominating any read after this block. |
| continue; |
| } |
| |
| if (is_different) { |
| HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); |
| HPhi* phi = new (allocator_) HPhi( |
| allocator_, |
| local, |
| current_block_->GetPredecessors().size(), |
| first_input->GetType()); |
| for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { |
| HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); |
| phi->SetRawInputAt(i, pred_value); |
| } |
| current_block_->AddPhi(phi); |
| value = phi; |
| } |
| (*current_locals_)[local] = value; |
| } |
| } |
| } |
| |
| void HInstructionBuilder::PropagateLocalsToCatchBlocks() { |
| const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); |
| for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { |
| ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); |
| DCHECK_EQ(handler_locals->size(), current_locals_->size()); |
| for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { |
| HInstruction* handler_value = (*handler_locals)[vreg]; |
| if (handler_value == nullptr) { |
| // Vreg was undefined at a previously encountered throwing instruction |
| // and the catch phi was deleted. Do not record the local value. |
| continue; |
| } |
| DCHECK(handler_value->IsPhi()); |
| |
| HInstruction* local_value = (*current_locals_)[vreg]; |
| if (local_value == nullptr) { |
| // This is the first instruction throwing into `catch_block` where |
| // `vreg` is undefined. Delete the catch phi. |
| catch_block->RemovePhi(handler_value->AsPhi()); |
| (*handler_locals)[vreg] = nullptr; |
| } else { |
| // Vreg has been defined at all instructions throwing into `catch_block` |
| // encountered so far. Record the local value in the catch phi. |
| handler_value->AsPhi()->AddInput(local_value); |
| } |
| } |
| } |
| } |
| |
| void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { |
| current_block_->AddInstruction(instruction); |
| InitializeInstruction(instruction); |
| } |
| |
| void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { |
| if (current_block_->GetInstructions().IsEmpty()) { |
| current_block_->AddInstruction(instruction); |
| } else { |
| current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); |
| } |
| InitializeInstruction(instruction); |
| } |
| |
| void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { |
| if (instruction->NeedsEnvironment()) { |
| HEnvironment* environment = new (allocator_) HEnvironment( |
| allocator_, |
| current_locals_->size(), |
| graph_->GetArtMethod(), |
| instruction->GetDexPc(), |
| instruction); |
| environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_)); |
| instruction->SetRawEnvironment(environment); |
| } |
| } |
| |
| HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) { |
| HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference); |
| if (!ref->CanBeNull()) { |
| return ref; |
| } |
| |
| HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc); |
| AppendInstruction(null_check); |
| return null_check; |
| } |
| |
| void HInstructionBuilder::SetLoopHeaderPhiInputs() { |
| for (size_t i = loop_headers_.size(); i > 0; --i) { |
| HBasicBlock* block = loop_headers_[i - 1]; |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| size_t vreg = phi->GetRegNumber(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| HInstruction* value = ValueOfLocalAt(predecessor, vreg); |
| if (value == nullptr) { |
| // Vreg is undefined at this predecessor. Mark it dead and leave with |
| // fewer inputs than predecessors. SsaChecker will fail if not removed. |
| phi->SetDead(); |
| break; |
| } else { |
| phi->AddInput(value); |
| } |
| } |
| } |
| } |
| } |
| |
| static bool IsBlockPopulated(HBasicBlock* block) { |
| if (block->IsLoopHeader()) { |
| // Suspend checks were inserted into loop headers during building of dominator tree. |
| DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); |
| return block->GetFirstInstruction() != block->GetLastInstruction(); |
| } else { |
| return !block->GetInstructions().IsEmpty(); |
| } |
| } |
| |
| bool HInstructionBuilder::Build() { |
| locals_for_.resize( |
| graph_->GetBlocks().size(), |
| ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder))); |
| |
| // Find locations where we want to generate extra stackmaps for native debugging. |
| // This allows us to generate the info only at interesting points (for example, |
| // at start of java statement) rather than before every dex instruction. |
| const bool native_debuggable = compiler_driver_ != nullptr && |
| compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); |
| ArenaBitVector* native_debug_info_locations = nullptr; |
| if (native_debuggable) { |
| native_debug_info_locations = FindNativeDebugInfoLocations(); |
| } |
| |
| for (HBasicBlock* block : graph_->GetReversePostOrder()) { |
| current_block_ = block; |
| uint32_t block_dex_pc = current_block_->GetDexPc(); |
| |
| InitializeBlockLocals(); |
| |
| if (current_block_->IsEntryBlock()) { |
| InitializeParameters(); |
| AppendInstruction(new (allocator_) HSuspendCheck(0u)); |
| AppendInstruction(new (allocator_) HGoto(0u)); |
| continue; |
| } else if (current_block_->IsExitBlock()) { |
| AppendInstruction(new (allocator_) HExit()); |
| continue; |
| } else if (current_block_->IsLoopHeader()) { |
| HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc()); |
| current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); |
| // This is slightly odd because the loop header might not be empty (TryBoundary). |
| // But we're still creating the environment with locals from the top of the block. |
| InsertInstructionAtTop(suspend_check); |
| } |
| |
| if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { |
| // Synthetic block that does not need to be populated. |
| DCHECK(IsBlockPopulated(current_block_)); |
| continue; |
| } |
| |
| DCHECK(!IsBlockPopulated(current_block_)); |
| |
| uint32_t quicken_index = 0; |
| if (CanDecodeQuickenedInfo()) { |
| quicken_index = block_builder_->GetQuickenIndex(block_dex_pc); |
| } |
| |
| for (const DexInstructionPcPair& pair : code_item_.Instructions(block_dex_pc)) { |
| if (current_block_ == nullptr) { |
| // The previous instruction ended this block. |
| break; |
| } |
| |
| const uint32_t dex_pc = pair.DexPc(); |
| if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { |
| // This dex_pc starts a new basic block. |
| break; |
| } |
| |
| if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) { |
| PropagateLocalsToCatchBlocks(); |
| } |
| |
| if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { |
| AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc)); |
| } |
| |
| if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) { |
| return false; |
| } |
| |
| if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) { |
| ++quicken_index; |
| } |
| } |
| |
| if (current_block_ != nullptr) { |
| // Branching instructions clear current_block, so we know the last |
| // instruction of the current block is not a branching instruction. |
| // We add an unconditional Goto to the next block. |
| DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); |
| AppendInstruction(new (allocator_) HGoto()); |
| } |
| } |
| |
| SetLoopHeaderPhiInputs(); |
| |
| return true; |
| } |
| |
| ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() { |
| // The callback gets called when the line number changes. |
| // In other words, it marks the start of new java statement. |
| struct Callback { |
| static bool Position(void* ctx, const DexFile::PositionInfo& entry) { |
| static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_); |
| return false; |
| } |
| }; |
| const uint32_t num_instructions = code_item_.insns_size_in_code_units_; |
| ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_, |
| num_instructions, |
| /* expandable */ false, |
| kArenaAllocGraphBuilder); |
| locations->ClearAllBits(); |
| dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations); |
| // Instruction-specific tweaks. |
| IterationRange<DexInstructionIterator> instructions = code_item_.Instructions(); |
| for (const DexInstructionPcPair& inst : instructions) { |
| switch (inst->Opcode()) { |
| case Instruction::MOVE_EXCEPTION: { |
| // Stop in native debugger after the exception has been moved. |
| // The compiler also expects the move at the start of basic block so |
| // we do not want to interfere by inserting native-debug-info before it. |
| locations->ClearBit(inst.DexPc()); |
| DexInstructionIterator next = std::next(DexInstructionIterator(inst)); |
| DCHECK(next.DexPc() != inst.DexPc()); |
| if (next != instructions.end()) { |
| locations->SetBit(next.DexPc()); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| return locations; |
| } |
| |
| HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const { |
| HInstruction* value = (*current_locals_)[reg_number]; |
| DCHECK(value != nullptr); |
| |
| // If the operation requests a specific type, we make sure its input is of that type. |
| if (type != value->GetType()) { |
| if (DataType::IsFloatingPointType(type)) { |
| value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type); |
| } else if (type == DataType::Type::kReference) { |
| value = ssa_builder_->GetReferenceTypeEquivalent(value); |
| } |
| DCHECK(value != nullptr); |
| } |
| |
| return value; |
| } |
| |
| void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { |
| DataType::Type stored_type = stored_value->GetType(); |
| DCHECK_NE(stored_type, DataType::Type::kVoid); |
| |
| // Storing into vreg `reg_number` may implicitly invalidate the surrounding |
| // registers. Consider the following cases: |
| // (1) Storing a wide value must overwrite previous values in both `reg_number` |
| // and `reg_number+1`. We store `nullptr` in `reg_number+1`. |
| // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` |
| // must invalidate it. We store `nullptr` in `reg_number-1`. |
| // Consequently, storing a wide value into the high vreg of another wide value |
| // will invalidate both `reg_number-1` and `reg_number+1`. |
| |
| if (reg_number != 0) { |
| HInstruction* local_low = (*current_locals_)[reg_number - 1]; |
| if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) { |
| // The vreg we are storing into was previously the high vreg of a pair. |
| // We need to invalidate its low vreg. |
| DCHECK((*current_locals_)[reg_number] == nullptr); |
| (*current_locals_)[reg_number - 1] = nullptr; |
| } |
| } |
| |
| (*current_locals_)[reg_number] = stored_value; |
| if (DataType::Is64BitType(stored_type)) { |
| // We are storing a pair. Invalidate the instruction in the high vreg. |
| (*current_locals_)[reg_number + 1] = nullptr; |
| } |
| } |
| |
| void HInstructionBuilder::InitializeParameters() { |
| DCHECK(current_block_->IsEntryBlock()); |
| |
| // outer_compilation_unit_ is null only when unit testing. |
| if (outer_compilation_unit_ == nullptr) { |
| return; |
| } |
| |
| const char* shorty = dex_compilation_unit_->GetShorty(); |
| uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); |
| uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); |
| uint16_t parameter_index = 0; |
| |
| const DexFile::MethodId& referrer_method_id = |
| dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); |
| if (!dex_compilation_unit_->IsStatic()) { |
| // Add the implicit 'this' argument, not expressed in the signature. |
| HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_, |
| referrer_method_id.class_idx_, |
| parameter_index++, |
| DataType::Type::kReference, |
| /* is_this */ true); |
| AppendInstruction(parameter); |
| UpdateLocal(locals_index++, parameter); |
| number_of_parameters--; |
| current_this_parameter_ = parameter; |
| } else { |
| DCHECK(current_this_parameter_ == nullptr); |
| } |
| |
| const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); |
| const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); |
| for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { |
| HParameterValue* parameter = new (allocator_) HParameterValue( |
| *dex_file_, |
| arg_types->GetTypeItem(shorty_pos - 1).type_idx_, |
| parameter_index++, |
| DataType::FromShorty(shorty[shorty_pos]), |
| /* is_this */ false); |
| ++shorty_pos; |
| AppendInstruction(parameter); |
| // Store the parameter value in the local that the dex code will use |
| // to reference that parameter. |
| UpdateLocal(locals_index++, parameter); |
| if (DataType::Is64BitType(parameter->GetType())) { |
| i++; |
| locals_index++; |
| parameter_index++; |
| } |
| } |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); |
| HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| T* comparison = new (allocator_) T(first, second, dex_pc); |
| AppendInstruction(comparison); |
| AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); |
| current_block_ = nullptr; |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); |
| T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); |
| AppendInstruction(comparison); |
| AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); |
| current_block_ = nullptr; |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Unop_12x(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| AppendInstruction(new (allocator_) T(type, first, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| void HInstructionBuilder::Conversion_12x(const Instruction& instruction, |
| DataType::Type input_type, |
| DataType::Type result_type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), input_type); |
| AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_23x(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, |
| DataType::Type type, |
| ComparisonBias bias, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), type); |
| HInstruction* second = LoadLocal(instruction.VRegC(), type); |
| AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_12x(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegA(), type); |
| HInstruction* second = LoadLocal(instruction.VRegB(), type); |
| AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); |
| if (reverse) { |
| std::swap(first, second); |
| } |
| AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| template<typename T> |
| void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { |
| HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); |
| if (reverse) { |
| std::swap(first, second); |
| } |
| AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| } |
| |
| // Does the method being compiled need any constructor barriers being inserted? |
| // (Always 'false' for methods that aren't <init>.) |
| static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) { |
| // Can be null in unit tests only. |
| if (UNLIKELY(cu == nullptr)) { |
| return false; |
| } |
| |
| Thread* self = Thread::Current(); |
| return cu->IsConstructor() |
| && !cu->IsStatic() |
| // RequiresConstructorBarrier must only be queried for <init> methods; |
| // it's effectively "false" for every other method. |
| // |
| // See CompilerDriver::RequiresConstructBarrier for more explanation. |
| && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); |
| } |
| |
| // Returns true if `block` has only one successor which starts at the next |
| // dex_pc after `instruction` at `dex_pc`. |
| static bool IsFallthroughInstruction(const Instruction& instruction, |
| uint32_t dex_pc, |
| HBasicBlock* block) { |
| uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); |
| return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; |
| } |
| |
| void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); |
| DexSwitchTable table(instruction, dex_pc); |
| |
| if (table.GetNumEntries() == 0) { |
| // Empty Switch. Code falls through to the next block. |
| DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); |
| AppendInstruction(new (allocator_) HGoto(dex_pc)); |
| } else if (table.ShouldBuildDecisionTree()) { |
| for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { |
| HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); |
| HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc); |
| AppendInstruction(comparison); |
| AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); |
| |
| if (!it.IsLast()) { |
| current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); |
| } |
| } |
| } else { |
| AppendInstruction( |
| new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); |
| } |
| |
| current_block_ = nullptr; |
| } |
| |
| void HInstructionBuilder::BuildReturn(const Instruction& instruction, |
| DataType::Type type, |
| uint32_t dex_pc) { |
| if (type == DataType::Type::kVoid) { |
| // Only <init> (which is a return-void) could possibly have a constructor fence. |
| // This may insert additional redundant constructor fences from the super constructors. |
| // TODO: remove redundant constructor fences (b/36656456). |
| if (RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)) { |
| // Compiling instance constructor. |
| DCHECK_STREQ("<init>", graph_->GetMethodName()); |
| |
| HInstruction* fence_target = current_this_parameter_; |
| DCHECK(fence_target != nullptr); |
| |
| AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_)); |
| MaybeRecordStat( |
| compilation_stats_, |
| MethodCompilationStat::kConstructorFenceGeneratedFinal); |
| } |
| AppendInstruction(new (allocator_) HReturnVoid(dex_pc)); |
| } else { |
| DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)); |
| HInstruction* value = LoadLocal(instruction.VRegA(), type); |
| AppendInstruction(new (allocator_) HReturn(value, dex_pc)); |
| } |
| current_block_ = nullptr; |
| } |
| |
| static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { |
| switch (opcode) { |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| return kStatic; |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| return kDirect; |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_QUICK: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: |
| return kVirtual; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| return kInterface; |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_SUPER: |
| return kSuper; |
| default: |
| LOG(FATAL) << "Unexpected invoke opcode: " << opcode; |
| UNREACHABLE(); |
| } |
| } |
| |
| ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); |
| Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); |
| |
| ArtMethod* resolved_method = |
| class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( |
| *dex_compilation_unit_->GetDexFile(), |
| method_idx, |
| dex_compilation_unit_->GetDexCache(), |
| class_loader, |
| graph_->GetArtMethod(), |
| invoke_type); |
| |
| if (UNLIKELY(resolved_method == nullptr)) { |
| // Clean up any exception left by type resolution. |
| soa.Self()->ClearException(); |
| return nullptr; |
| } |
| |
| // The referrer may be unresolved for AOT if we're compiling a class that cannot be |
| // resolved because, for example, we don't find a superclass in the classpath. |
| if (graph_->GetArtMethod() == nullptr) { |
| // The class linker cannot check access without a referrer, so we have to do it. |
| // Fall back to HInvokeUnresolved if the method isn't public. |
| if (!resolved_method->IsPublic()) { |
| return nullptr; |
| } |
| } |
| |
| // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. |
| // We need to look at the referrer's super class vtable. We need to do this to know if we need to |
| // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of |
| // which require runtime handling. |
| if (invoke_type == kSuper) { |
| ObjPtr<mirror::Class> compiling_class = GetCompilingClass(); |
| if (compiling_class == nullptr) { |
| // We could not determine the method's class we need to wait until runtime. |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| return nullptr; |
| } |
| ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType( |
| *dex_compilation_unit_->GetDexFile(), |
| dex_compilation_unit_->GetDexFile()->GetMethodId(method_idx).class_idx_, |
| dex_compilation_unit_->GetDexCache().Get(), |
| class_loader.Get()); |
| DCHECK(referenced_class != nullptr); // We have already resolved a method from this class. |
| if (!referenced_class->IsAssignableFrom(compiling_class)) { |
| // We cannot statically determine the target method. The runtime will throw a |
| // NoSuchMethodError on this one. |
| return nullptr; |
| } |
| ArtMethod* actual_method; |
| if (referenced_class->IsInterface()) { |
| actual_method = referenced_class->FindVirtualMethodForInterfaceSuper( |
| resolved_method, class_linker->GetImagePointerSize()); |
| } else { |
| uint16_t vtable_index = resolved_method->GetMethodIndex(); |
| actual_method = compiling_class->GetSuperClass()->GetVTableEntry( |
| vtable_index, class_linker->GetImagePointerSize()); |
| } |
| if (actual_method != resolved_method && |
| !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { |
| // The back-end code generator relies on this check in order to ensure that it will not |
| // attempt to read the dex_cache with a dex_method_index that is not from the correct |
| // dex_file. If we didn't do this check then the dex_method_index will not be updated in the |
| // builder, which means that the code-generator (and compiler driver during sharpening and |
| // inliner, maybe) might invoke an incorrect method. |
| // TODO: The actual method could still be referenced in the current dex file, so we |
| // could try locating it. |
| // TODO: Remove the dex_file restriction. |
| return nullptr; |
| } |
| if (!actual_method->IsInvokable()) { |
| // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub |
| // could resolve the callee to the wrong method. |
| return nullptr; |
| } |
| resolved_method = actual_method; |
| } |
| |
| return resolved_method; |
| } |
| |
| static bool IsStringConstructor(ArtMethod* method) { |
| ScopedObjectAccess soa(Thread::Current()); |
| return method->GetDeclaringClass()->IsStringClass() && method->IsConstructor(); |
| } |
| |
| bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, |
| uint32_t dex_pc, |
| uint32_t method_idx, |
| uint32_t number_of_vreg_arguments, |
| bool is_range, |
| uint32_t* args, |
| uint32_t register_index) { |
| InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); |
| const char* descriptor = dex_file_->GetMethodShorty(method_idx); |
| DataType::Type return_type = DataType::FromShorty(descriptor[0]); |
| |
| // Remove the return type from the 'proto'. |
| size_t number_of_arguments = strlen(descriptor) - 1; |
| if (invoke_type != kStatic) { // instance call |
| // One extra argument for 'this'. |
| number_of_arguments++; |
| } |
| |
| ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); |
| |
| if (UNLIKELY(resolved_method == nullptr)) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedMethod); |
| HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_idx, |
| invoke_type); |
| return HandleInvoke(invoke, |
| number_of_vreg_arguments, |
| args, |
| register_index, |
| is_range, |
| descriptor, |
| nullptr, /* clinit_check */ |
| true /* is_unresolved */); |
| } |
| |
| // Replace calls to String.<init> with StringFactory. |
| if (IsStringConstructor(resolved_method)) { |
| uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method); |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = { |
| HInvokeStaticOrDirect::MethodLoadKind::kStringInit, |
| HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, |
| dchecked_integral_cast<uint64_t>(string_init_entry_point) |
| }; |
| MethodReference target_method(dex_file_, method_idx); |
| HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect( |
| allocator_, |
| number_of_arguments - 1, |
| DataType::Type::kReference /*return_type */, |
| dex_pc, |
| method_idx, |
| nullptr, |
| dispatch_info, |
| invoke_type, |
| target_method, |
| HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); |
| return HandleStringInit(invoke, |
| number_of_vreg_arguments, |
| args, |
| register_index, |
| is_range, |
| descriptor); |
| } |
| |
| // Potential class initialization check, in the case of a static method call. |
| HClinitCheck* clinit_check = nullptr; |
| HInvoke* invoke = nullptr; |
| if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { |
| // By default, consider that the called method implicitly requires |
| // an initialization check of its declaring method. |
| HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement |
| = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; |
| ScopedObjectAccess soa(Thread::Current()); |
| if (invoke_type == kStatic) { |
| clinit_check = ProcessClinitCheckForInvoke( |
| dex_pc, resolved_method, &clinit_check_requirement); |
| } else if (invoke_type == kSuper) { |
| if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { |
| // Update the method index to the one resolved. Note that this may be a no-op if |
| // we resolved to the method referenced by the instruction. |
| method_idx = resolved_method->GetDexMethodIndex(); |
| } |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = { |
| HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall, |
| HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, |
| 0u |
| }; |
| MethodReference target_method(resolved_method->GetDexFile(), |
| resolved_method->GetDexMethodIndex()); |
| invoke = new (allocator_) HInvokeStaticOrDirect(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_idx, |
| resolved_method, |
| dispatch_info, |
| invoke_type, |
| target_method, |
| clinit_check_requirement); |
| } else if (invoke_type == kVirtual) { |
| ScopedObjectAccess soa(Thread::Current()); // Needed for the method index |
| invoke = new (allocator_) HInvokeVirtual(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_idx, |
| resolved_method, |
| resolved_method->GetMethodIndex()); |
| } else { |
| DCHECK_EQ(invoke_type, kInterface); |
| ScopedObjectAccess soa(Thread::Current()); // Needed for the IMT index. |
| invoke = new (allocator_) HInvokeInterface(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_idx, |
| resolved_method, |
| ImTable::GetImtIndex(resolved_method)); |
| } |
| |
| return HandleInvoke(invoke, |
| number_of_vreg_arguments, |
| args, |
| register_index, |
| is_range, |
| descriptor, |
| clinit_check, |
| false /* is_unresolved */); |
| } |
| |
| bool HInstructionBuilder::BuildInvokePolymorphic(const Instruction& instruction ATTRIBUTE_UNUSED, |
| uint32_t dex_pc, |
| uint32_t method_idx, |
| uint32_t proto_idx, |
| uint32_t number_of_vreg_arguments, |
| bool is_range, |
| uint32_t* args, |
| uint32_t register_index) { |
| const char* descriptor = dex_file_->GetShorty(proto_idx); |
| DCHECK_EQ(1 + ArtMethod::NumArgRegisters(descriptor), number_of_vreg_arguments); |
| DataType::Type return_type = DataType::FromShorty(descriptor[0]); |
| size_t number_of_arguments = strlen(descriptor); |
| HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_, |
| number_of_arguments, |
| return_type, |
| dex_pc, |
| method_idx); |
| return HandleInvoke(invoke, |
| number_of_vreg_arguments, |
| args, |
| register_index, |
| is_range, |
| descriptor, |
| nullptr /* clinit_check */, |
| false /* is_unresolved */); |
| } |
| |
| HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) { |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| HLoadClass* load_class = BuildLoadClass(type_index, dex_pc); |
| |
| HInstruction* cls = load_class; |
| Handle<mirror::Class> klass = load_class->GetClass(); |
| |
| if (!IsInitialized(klass)) { |
| cls = new (allocator_) HClinitCheck(load_class, dex_pc); |
| AppendInstruction(cls); |
| } |
| |
| // Only the access check entrypoint handles the finalizable class case. If we |
| // need access checks, then we haven't resolved the method and the class may |
| // again be finalizable. |
| QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized; |
| if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) { |
| entrypoint = kQuickAllocObjectWithChecks; |
| } |
| |
| // Consider classes we haven't resolved as potentially finalizable. |
| bool finalizable = (klass == nullptr) || klass->IsFinalizable(); |
| |
| HNewInstance* new_instance = new (allocator_) HNewInstance( |
| cls, |
| dex_pc, |
| type_index, |
| *dex_compilation_unit_->GetDexFile(), |
| finalizable, |
| entrypoint); |
| AppendInstruction(new_instance); |
| |
| return new_instance; |
| } |
| |
| void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) { |
| DCHECK(allocation != nullptr && |
| (allocation->IsNewInstance() || |
| allocation->IsNewArray())); // corresponding to "new" keyword in JLS. |
| |
| if (allocation->IsNewInstance()) { |
| // STRING SPECIAL HANDLING: |
| // ------------------------------- |
| // Strings have a real HNewInstance node but they end up always having 0 uses. |
| // All uses of a String HNewInstance are always transformed to replace their input |
| // of the HNewInstance with an input of the invoke to StringFactory. |
| // |
| // Do not emit an HConstructorFence here since it can inhibit some String new-instance |
| // optimizations (to pass checker tests that rely on those optimizations). |
| HNewInstance* new_inst = allocation->AsNewInstance(); |
| HLoadClass* load_class = new_inst->GetLoadClass(); |
| |
| Thread* self = Thread::Current(); |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> klass = load_class->GetClass(); |
| if (klass != nullptr && klass->IsStringClass()) { |
| return; |
| // Note: Do not use allocation->IsStringAlloc which requires |
| // a valid ReferenceTypeInfo, but that doesn't get made until after reference type |
| // propagation (and instruction builder is too early). |
| } |
| // (In terms of correctness, the StringFactory needs to provide its own |
| // default initialization barrier, see below.) |
| } |
| |
| // JLS 17.4.5 "Happens-before Order" describes: |
| // |
| // The default initialization of any object happens-before any other actions (other than |
| // default-writes) of a program. |
| // |
| // In our implementation the default initialization of an object to type T means |
| // setting all of its initial data (object[0..size)) to 0, and setting the |
| // object's class header (i.e. object.getClass() == T.class). |
| // |
| // In practice this fence ensures that the writes to the object header |
| // are visible to other threads if this object escapes the current thread. |
| // (and in theory the 0-initializing, but that happens automatically |
| // when new memory pages are mapped in by the OS). |
| HConstructorFence* ctor_fence = |
| new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_); |
| AppendInstruction(ctor_fence); |
| MaybeRecordStat( |
| compilation_stats_, |
| MethodCompilationStat::kConstructorFenceGeneratedNew); |
| } |
| |
| static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); |
| } |
| |
| bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const { |
| if (cls == nullptr) { |
| return false; |
| } |
| |
| // `CanAssumeClassIsLoaded` will return true if we're JITting, or will |
| // check whether the class is in an image for the AOT compilation. |
| if (cls->IsInitialized() && |
| compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { |
| return true; |
| } |
| |
| if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { |
| return true; |
| } |
| |
| // TODO: We should walk over the inlined methods, but we don't pass |
| // that information to the builder. |
| if (IsSubClass(GetCompilingClass(), cls.Get())) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( |
| uint32_t dex_pc, |
| ArtMethod* resolved_method, |
| HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { |
| Handle<mirror::Class> klass = handles_->NewHandle(resolved_method->GetDeclaringClass()); |
| |
| HClinitCheck* clinit_check = nullptr; |
| if (IsInitialized(klass)) { |
| *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; |
| } else { |
| HLoadClass* cls = BuildLoadClass(klass->GetDexTypeIndex(), |
| klass->GetDexFile(), |
| klass, |
| dex_pc, |
| /* needs_access_check */ false); |
| if (cls != nullptr) { |
| *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; |
| clinit_check = new (allocator_) HClinitCheck(cls, dex_pc); |
| AppendInstruction(clinit_check); |
| } |
| } |
| return clinit_check; |
| } |
| |
| bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke, |
| uint32_t number_of_vreg_arguments, |
| uint32_t* args, |
| uint32_t register_index, |
| bool is_range, |
| const char* descriptor, |
| size_t start_index, |
| size_t* argument_index) { |
| uint32_t descriptor_index = 1; // Skip the return type. |
| |
| for (size_t i = start_index; |
| // Make sure we don't go over the expected arguments or over the number of |
| // dex registers given. If the instruction was seen as dead by the verifier, |
| // it hasn't been properly checked. |
| (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); |
| i++, (*argument_index)++) { |
| DataType::Type type = DataType::FromShorty(descriptor[descriptor_index++]); |
| bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64); |
| if (!is_range |
| && is_wide |
| && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { |
| // Longs and doubles should be in pairs, that is, sequential registers. The verifier should |
| // reject any class where this is violated. However, the verifier only does these checks |
| // on non trivially dead instructions, so we just bailout the compilation. |
| VLOG(compiler) << "Did not compile " |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " because of non-sequential dex register pair in wide argument"; |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kNotCompiledMalformedOpcode); |
| return false; |
| } |
| HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); |
| invoke->SetArgumentAt(*argument_index, arg); |
| if (is_wide) { |
| i++; |
| } |
| } |
| |
| if (*argument_index != invoke->GetNumberOfArguments()) { |
| VLOG(compiler) << "Did not compile " |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " because of wrong number of arguments in invoke instruction"; |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kNotCompiledMalformedOpcode); |
| return false; |
| } |
| |
| if (invoke->IsInvokeStaticOrDirect() && |
| HInvokeStaticOrDirect::NeedsCurrentMethodInput( |
| invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { |
| invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); |
| (*argument_index)++; |
| } |
| |
| return true; |
| } |
| |
| bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, |
| uint32_t number_of_vreg_arguments, |
| uint32_t* args, |
| uint32_t register_index, |
| bool is_range, |
| const char* descriptor, |
| HClinitCheck* clinit_check, |
| bool is_unresolved) { |
| DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); |
| |
| size_t start_index = 0; |
| size_t argument_index = 0; |
| if (invoke->GetInvokeType() != InvokeType::kStatic) { // Instance call. |
| uint32_t obj_reg = is_range ? register_index : args[0]; |
| HInstruction* arg = is_unresolved |
| ? LoadLocal(obj_reg, DataType::Type::kReference) |
| : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc()); |
| invoke->SetArgumentAt(0, arg); |
| start_index = 1; |
| argument_index = 1; |
| } |
| |
| if (!SetupInvokeArguments(invoke, |
| number_of_vreg_arguments, |
| args, |
| register_index, |
| is_range, |
| descriptor, |
| start_index, |
| &argument_index)) { |
| return false; |
| } |
| |
| if (clinit_check != nullptr) { |
| // Add the class initialization check as last input of `invoke`. |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() |
| == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); |
| invoke->SetArgumentAt(argument_index, clinit_check); |
| argument_index++; |
| } |
| |
| AppendInstruction(invoke); |
| latest_result_ = invoke; |
| |
| return true; |
| } |
| |
| bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, |
| uint32_t number_of_vreg_arguments, |
| uint32_t* args, |
| uint32_t register_index, |
| bool is_range, |
| const char* descriptor) { |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); |
| |
| size_t start_index = 1; |
| size_t argument_index = 0; |
| if (!SetupInvokeArguments(invoke, |
| number_of_vreg_arguments, |
| args, |
| register_index, |
| is_range, |
| descriptor, |
| start_index, |
| &argument_index)) { |
| return false; |
| } |
| |
| AppendInstruction(invoke); |
| |
| // This is a StringFactory call, not an actual String constructor. Its result |
| // replaces the empty String pre-allocated by NewInstance. |
| uint32_t orig_this_reg = is_range ? register_index : args[0]; |
| HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference); |
| |
| // Replacing the NewInstance might render it redundant. Keep a list of these |
| // to be visited once it is clear whether it is has remaining uses. |
| if (arg_this->IsNewInstance()) { |
| ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); |
| } else { |
| DCHECK(arg_this->IsPhi()); |
| // NewInstance is not the direct input of the StringFactory call. It might |
| // be redundant but optimizing this case is not worth the effort. |
| } |
| |
| // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. |
| for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { |
| if ((*current_locals_)[vreg] == arg_this) { |
| (*current_locals_)[vreg] = invoke; |
| } |
| } |
| |
| return true; |
| } |
| |
| static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { |
| const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); |
| const char* type = dex_file.GetFieldTypeDescriptor(field_id); |
| return DataType::FromShorty(type[0]); |
| } |
| |
| bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put, |
| size_t quicken_index) { |
| uint32_t source_or_dest_reg = instruction.VRegA_22c(); |
| uint32_t obj_reg = instruction.VRegB_22c(); |
| uint16_t field_index; |
| if (instruction.IsQuickened()) { |
| if (!CanDecodeQuickenedInfo()) { |
| return false; |
| } |
| field_index = LookupQuickenedInfo(quicken_index); |
| } else { |
| field_index = instruction.VRegC_22c(); |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* resolved_field = ResolveField(field_index, /* is_static */ false, is_put); |
| |
| // Generate an explicit null check on the reference, unless the field access |
| // is unresolved. In that case, we rely on the runtime to perform various |
| // checks first, followed by a null check. |
| HInstruction* object = (resolved_field == nullptr) |
| ? LoadLocal(obj_reg, DataType::Type::kReference) |
| : LoadNullCheckedLocal(obj_reg, dex_pc); |
| |
| DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| HInstruction* field_set = nullptr; |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedField); |
| field_set = new (allocator_) HUnresolvedInstanceFieldSet(object, |
| value, |
| field_type, |
| field_index, |
| dex_pc); |
| } else { |
| uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); |
| field_set = new (allocator_) HInstanceFieldSet(object, |
| value, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc); |
| } |
| AppendInstruction(field_set); |
| } else { |
| HInstruction* field_get = nullptr; |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedField); |
| field_get = new (allocator_) HUnresolvedInstanceFieldGet(object, |
| field_type, |
| field_index, |
| dex_pc); |
| } else { |
| uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); |
| field_get = new (allocator_) HInstanceFieldGet(object, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc); |
| } |
| AppendInstruction(field_get); |
| UpdateLocal(source_or_dest_reg, field_get); |
| } |
| |
| return true; |
| } |
| |
| static mirror::Class* GetClassFrom(CompilerDriver* driver, |
| const DexCompilationUnit& compilation_unit) { |
| ScopedObjectAccess soa(Thread::Current()); |
| Handle<mirror::ClassLoader> class_loader = compilation_unit.GetClassLoader(); |
| Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache(); |
| |
| return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); |
| } |
| |
| mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const { |
| return GetClassFrom(compiler_driver_, *outer_compilation_unit_); |
| } |
| |
| mirror::Class* HInstructionBuilder::GetCompilingClass() const { |
| return GetClassFrom(compiler_driver_, *dex_compilation_unit_); |
| } |
| |
| bool HInstructionBuilder::IsOutermostCompilingClass(dex::TypeIndex type_index) const { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<2> hs(soa.Self()); |
| Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); |
| Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); |
| Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( |
| soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); |
| Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); |
| |
| // GetOutermostCompilingClass returns null when the class is unresolved |
| // (e.g. if it derives from an unresolved class). This is bogus knowing that |
| // we are compiling it. |
| // When this happens we cannot establish a direct relation between the current |
| // class and the outer class, so we return false. |
| // (Note that this is only used for optimizing invokes and field accesses) |
| return (cls != nullptr) && (outer_class.Get() == cls.Get()); |
| } |
| |
| void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put, |
| DataType::Type field_type) { |
| uint32_t source_or_dest_reg = instruction.VRegA_21c(); |
| uint16_t field_index = instruction.VRegB_21c(); |
| |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| AppendInstruction( |
| new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); |
| } else { |
| AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| } |
| |
| ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<2> hs(soa.Self()); |
| |
| ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); |
| Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); |
| Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); |
| |
| ArtField* resolved_field = class_linker->ResolveField(*dex_compilation_unit_->GetDexFile(), |
| field_idx, |
| dex_compilation_unit_->GetDexCache(), |
| class_loader, |
| is_static); |
| |
| if (UNLIKELY(resolved_field == nullptr)) { |
| // Clean up any exception left by type resolution. |
| soa.Self()->ClearException(); |
| return nullptr; |
| } |
| |
| // Check static/instance. The class linker has a fast path for looking into the dex cache |
| // and does not check static/instance if it hits it. |
| if (UNLIKELY(resolved_field->IsStatic() != is_static)) { |
| return nullptr; |
| } |
| |
| // Check access. |
| if (compiling_class == nullptr) { |
| if (!resolved_field->IsPublic()) { |
| return nullptr; |
| } |
| } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(), |
| resolved_field, |
| dex_compilation_unit_->GetDexCache().Get(), |
| field_idx)) { |
| return nullptr; |
| } |
| |
| if (is_put && |
| resolved_field->IsFinal() && |
| (compiling_class.Get() != resolved_field->GetDeclaringClass())) { |
| // Final fields can only be updated within their own class. |
| // TODO: Only allow it in constructors. b/34966607. |
| return nullptr; |
| } |
| |
| return resolved_field; |
| } |
| |
| bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put) { |
| uint32_t source_or_dest_reg = instruction.VRegA_21c(); |
| uint16_t field_index = instruction.VRegB_21c(); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* resolved_field = ResolveField(field_index, /* is_static */ true, is_put); |
| |
| if (resolved_field == nullptr) { |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedField); |
| DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); |
| BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); |
| return true; |
| } |
| |
| DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); |
| |
| Handle<mirror::Class> klass = handles_->NewHandle(resolved_field->GetDeclaringClass()); |
| HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(), |
| klass->GetDexFile(), |
| klass, |
| dex_pc, |
| /* needs_access_check */ false); |
| |
| if (constant == nullptr) { |
| // The class cannot be referenced from this compiled code. Generate |
| // an unresolved access. |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kUnresolvedFieldNotAFastAccess); |
| BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); |
| return true; |
| } |
| |
| HInstruction* cls = constant; |
| if (!IsInitialized(klass)) { |
| cls = new (allocator_) HClinitCheck(constant, dex_pc); |
| AppendInstruction(cls); |
| } |
| |
| uint16_t class_def_index = klass->GetDexClassDefIndex(); |
| if (is_put) { |
| // We need to keep the class alive before loading the value. |
| HInstruction* value = LoadLocal(source_or_dest_reg, field_type); |
| DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); |
| AppendInstruction(new (allocator_) HStaticFieldSet(cls, |
| value, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc)); |
| } else { |
| AppendInstruction(new (allocator_) HStaticFieldGet(cls, |
| resolved_field, |
| field_type, |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| class_def_index, |
| *dex_file_, |
| dex_pc)); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| return true; |
| } |
| |
| void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, |
| uint16_t first_vreg, |
| int64_t second_vreg_or_constant, |
| uint32_t dex_pc, |
| DataType::Type type, |
| bool second_is_constant, |
| bool isDiv) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| HInstruction* first = LoadLocal(first_vreg, type); |
| HInstruction* second = nullptr; |
| if (second_is_constant) { |
| if (type == DataType::Type::kInt32) { |
| second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); |
| } else { |
| second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); |
| } |
| } else { |
| second = LoadLocal(second_vreg_or_constant, type); |
| } |
| |
| if (!second_is_constant |
| || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0) |
| || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) { |
| second = new (allocator_) HDivZeroCheck(second, dex_pc); |
| AppendInstruction(second); |
| } |
| |
| if (isDiv) { |
| AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc)); |
| } else { |
| AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc)); |
| } |
| UpdateLocal(out_vreg, current_block_->GetLastInstruction()); |
| } |
| |
| void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, |
| uint32_t dex_pc, |
| bool is_put, |
| DataType::Type anticipated_type) { |
| uint8_t source_or_dest_reg = instruction.VRegA_23x(); |
| uint8_t array_reg = instruction.VRegB_23x(); |
| uint8_t index_reg = instruction.VRegC_23x(); |
| |
| HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc); |
| HInstruction* length = new (allocator_) HArrayLength(object, dex_pc); |
| AppendInstruction(length); |
| HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32); |
| index = new (allocator_) HBoundsCheck(index, length, dex_pc); |
| AppendInstruction(index); |
| if (is_put) { |
| HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); |
| // TODO: Insert a type check node if the type is Object. |
| HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } else { |
| HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArrayGet(aget); |
| AppendInstruction(aget); |
| UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); |
| } |
| graph_->SetHasBoundsChecks(true); |
| } |
| |
| HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, |
| dex::TypeIndex type_index, |
| uint32_t number_of_vreg_arguments, |
| bool is_range, |
| uint32_t* args, |
| uint32_t register_index) { |
| HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); |
| HLoadClass* cls = BuildLoadClass(type_index, dex_pc); |
| HNewArray* const object = new (allocator_) HNewArray(cls, length, dex_pc); |
| AppendInstruction(object); |
| |
| const char* descriptor = dex_file_->StringByTypeIdx(type_index); |
| DCHECK_EQ(descriptor[0], '[') << descriptor; |
| char primitive = descriptor[1]; |
| DCHECK(primitive == 'I' |
| || primitive == 'L' |
| || primitive == '[') << descriptor; |
| bool is_reference_array = (primitive == 'L') || (primitive == '['); |
| DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32; |
| |
| for (size_t i = 0; i < number_of_vreg_arguments; ++i) { |
| HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type); |
| HInstruction* index = graph_->GetIntConstant(i, dex_pc); |
| HArraySet* aset = new (allocator_) HArraySet(object, index, value, type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } |
| latest_result_ = object; |
| |
| return object; |
| } |
| |
| template <typename T> |
| void HInstructionBuilder::BuildFillArrayData(HInstruction* object, |
| const T* data, |
| uint32_t element_count, |
| DataType::Type anticipated_type, |
| uint32_t dex_pc) { |
| for (uint32_t i = 0; i < element_count; ++i) { |
| HInstruction* index = graph_->GetIntConstant(i, dex_pc); |
| HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); |
| HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } |
| } |
| |
| void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { |
| HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc); |
| |
| int32_t payload_offset = instruction.VRegB_31t() + dex_pc; |
| const Instruction::ArrayDataPayload* payload = |
| reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset); |
| const uint8_t* data = payload->data; |
| uint32_t element_count = payload->element_count; |
| |
| if (element_count == 0u) { |
| // For empty payload we emit only the null check above. |
| return; |
| } |
| |
| HInstruction* length = new (allocator_) HArrayLength(array, dex_pc); |
| AppendInstruction(length); |
| |
| // Implementation of this DEX instruction seems to be that the bounds check is |
| // done before doing any stores. |
| HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); |
| AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc)); |
| |
| switch (payload->element_width) { |
| case 1: |
| BuildFillArrayData(array, |
| reinterpret_cast<const int8_t*>(data), |
| element_count, |
| DataType::Type::kInt8, |
| dex_pc); |
| break; |
| case 2: |
| BuildFillArrayData(array, |
| reinterpret_cast<const int16_t*>(data), |
| element_count, |
| DataType::Type::kInt16, |
| dex_pc); |
| break; |
| case 4: |
| BuildFillArrayData(array, |
| reinterpret_cast<const int32_t*>(data), |
| element_count, |
| DataType::Type::kInt32, |
| dex_pc); |
| break; |
| case 8: |
| BuildFillWideArrayData(array, |
| reinterpret_cast<const int64_t*>(data), |
| element_count, |
| dex_pc); |
| break; |
| default: |
| LOG(FATAL) << "Unknown element width for " << payload->element_width; |
| } |
| graph_->SetHasBoundsChecks(true); |
| } |
| |
| void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, |
| const int64_t* data, |
| uint32_t element_count, |
| uint32_t dex_pc) { |
| for (uint32_t i = 0; i < element_count; ++i) { |
| HInstruction* index = graph_->GetIntConstant(i, dex_pc); |
| HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); |
| HArraySet* aset = |
| new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc); |
| ssa_builder_->MaybeAddAmbiguousArraySet(aset); |
| AppendInstruction(aset); |
| } |
| } |
| |
| static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (cls == nullptr) { |
| return TypeCheckKind::kUnresolvedCheck; |
| } else if (cls->IsInterface()) { |
| return TypeCheckKind::kInterfaceCheck; |
| } else if (cls->IsArrayClass()) { |
| if (cls->GetComponentType()->IsObjectClass()) { |
| return TypeCheckKind::kArrayObjectCheck; |
| } else if (cls->CannotBeAssignedFromOtherTypes()) { |
| return TypeCheckKind::kExactCheck; |
| } else { |
| return TypeCheckKind::kArrayCheck; |
| } |
| } else if (cls->IsFinal()) { |
| return TypeCheckKind::kExactCheck; |
| } else if (cls->IsAbstract()) { |
| return TypeCheckKind::kAbstractClassCheck; |
| } else { |
| return TypeCheckKind::kClassHierarchyCheck; |
| } |
| } |
| |
| HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) { |
| ScopedObjectAccess soa(Thread::Current()); |
| const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); |
| Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); |
| Handle<mirror::Class> klass = handles_->NewHandle(compiler_driver_->ResolveClass( |
| soa, dex_compilation_unit_->GetDexCache(), class_loader, type_index, dex_compilation_unit_)); |
| |
| bool needs_access_check = true; |
| if (klass != nullptr) { |
| if (klass->IsPublic()) { |
| needs_access_check = false; |
| } else { |
| mirror::Class* compiling_class = GetCompilingClass(); |
| if (compiling_class != nullptr && compiling_class->CanAccess(klass.Get())) { |
| needs_access_check = false; |
| } |
| } |
| } |
| |
| return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); |
| } |
| |
| HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, |
| const DexFile& dex_file, |
| Handle<mirror::Class> klass, |
| uint32_t dex_pc, |
| bool needs_access_check) { |
| // Try to find a reference in the compiling dex file. |
| const DexFile* actual_dex_file = &dex_file; |
| if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) { |
| dex::TypeIndex local_type_index = |
| klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile()); |
| if (local_type_index.IsValid()) { |
| type_index = local_type_index; |
| actual_dex_file = dex_compilation_unit_->GetDexFile(); |
| } |
| } |
| |
| // Note: `klass` must be from `handles_`. |
| HLoadClass* load_class = new (allocator_) HLoadClass( |
| graph_->GetCurrentMethod(), |
| type_index, |
| *actual_dex_file, |
| klass, |
| klass != nullptr && (klass.Get() == GetOutermostCompilingClass()), |
| dex_pc, |
| needs_access_check); |
| |
| HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class, |
| code_generator_, |
| compiler_driver_, |
| *dex_compilation_unit_); |
| |
| if (load_kind == HLoadClass::LoadKind::kInvalid) { |
| // We actually cannot reference this class, we're forced to bail. |
| return nullptr; |
| } |
| // Append the instruction first, as setting the load kind affects the inputs. |
| AppendInstruction(load_class); |
| load_class->SetLoadKind(load_kind); |
| return load_class; |
| } |
| |
| void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, |
| uint8_t destination, |
| uint8_t reference, |
| dex::TypeIndex type_index, |
| uint32_t dex_pc) { |
| HInstruction* object = LoadLocal(reference, DataType::Type::kReference); |
| HLoadClass* cls = BuildLoadClass(type_index, dex_pc); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| TypeCheckKind check_kind = ComputeTypeCheckKind(cls->GetClass()); |
| if (instruction.Opcode() == Instruction::INSTANCE_OF) { |
| AppendInstruction(new (allocator_) HInstanceOf(object, cls, check_kind, dex_pc)); |
| UpdateLocal(destination, current_block_->GetLastInstruction()); |
| } else { |
| DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); |
| // We emit a CheckCast followed by a BoundType. CheckCast is a statement |
| // which may throw. If it succeeds BoundType sets the new type of `object` |
| // for all subsequent uses. |
| AppendInstruction(new (allocator_) HCheckCast(object, cls, check_kind, dex_pc)); |
| AppendInstruction(new (allocator_) HBoundType(object, dex_pc)); |
| UpdateLocal(reference, current_block_->GetLastInstruction()); |
| } |
| } |
| |
| bool HInstructionBuilder::NeedsAccessCheck(dex::TypeIndex type_index, bool* finalizable) const { |
| return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( |
| LookupReferrerClass(), LookupResolvedType(type_index, *dex_compilation_unit_), finalizable); |
| } |
| |
| bool HInstructionBuilder::CanDecodeQuickenedInfo() const { |
| return !quicken_info_.IsNull(); |
| } |
| |
| uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) { |
| DCHECK(CanDecodeQuickenedInfo()); |
| return quicken_info_.GetData(quicken_index); |
| } |
| |
| bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, |
| uint32_t dex_pc, |
| size_t quicken_index) { |
| switch (instruction.Opcode()) { |
| case Instruction::CONST_4: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_16: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_HIGH16: { |
| int32_t register_index = instruction.VRegA(); |
| HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_16: { |
| int32_t register_index = instruction.VRegA(); |
| // Get 16 bits of constant value, sign extended to 64 bits. |
| int64_t value = instruction.VRegB_21s(); |
| value <<= 48; |
| value >>= 48; |
| HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_32: { |
| int32_t register_index = instruction.VRegA(); |
| // Get 32 bits of constant value, sign extended to 64 bits. |
| int64_t value = instruction.VRegB_31i(); |
| value <<= 32; |
| value >>= 32; |
| HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE: { |
| int32_t register_index = instruction.VRegA(); |
| HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| case Instruction::CONST_WIDE_HIGH16: { |
| int32_t register_index = instruction.VRegA(); |
| int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; |
| HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); |
| UpdateLocal(register_index, constant); |
| break; |
| } |
| |
| // Note that the SSA building will refine the types. |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| // Note that the SSA building will refine the types. |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: { |
| HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64); |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_16: |
| case Instruction::MOVE_OBJECT_FROM16: { |
| // The verifier has no notion of a null type, so a move-object of constant 0 |
| // will lead to the same constant 0 in the destination register. To mimic |
| // this behavior, we just pretend we haven't seen a type change (int to reference) |
| // for the 0 constant and phis. We rely on our type propagation to eventually get the |
| // types correct. |
| uint32_t reg_number = instruction.VRegB(); |
| HInstruction* value = (*current_locals_)[reg_number]; |
| if (value->IsIntConstant()) { |
| DCHECK_EQ(value->AsIntConstant()->GetValue(), 0); |
| } else if (value->IsPhi()) { |
| DCHECK(value->GetType() == DataType::Type::kInt32 || |
| value->GetType() == DataType::Type::kReference); |
| } else { |
| value = LoadLocal(reg_number, DataType::Type::kReference); |
| } |
| UpdateLocal(instruction.VRegA(), value); |
| break; |
| } |
| |
| case Instruction::RETURN_VOID_NO_BARRIER: |
| case Instruction::RETURN_VOID: { |
| BuildReturn(instruction, DataType::Type::kVoid, dex_pc); |
| break; |
| } |
| |
| #define IF_XX(comparison, cond) \ |
| case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ |
| case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break |
| |
| IF_XX(HEqual, EQ); |
| IF_XX(HNotEqual, NE); |
| IF_XX(HLessThan, LT); |
| IF_XX(HLessThanOrEqual, LE); |
| IF_XX(HGreaterThan, GT); |
| IF_XX(HGreaterThanOrEqual, GE); |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: { |
| AppendInstruction(new (allocator_) HGoto(dex_pc)); |
| current_block_ = nullptr; |
| break; |
| } |
| |
| case Instruction::RETURN: { |
| BuildReturn(instruction, return_type_, dex_pc); |
| break; |
| } |
| |
| case Instruction::RETURN_OBJECT: { |
| BuildReturn(instruction, return_type_, dex_pc); |
| break; |
| } |
| |
| case Instruction::RETURN_WIDE: { |
| BuildReturn(instruction, return_type_, dex_pc); |
| break; |
| } |
| |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_QUICK: { |
| uint16_t method_idx; |
| if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { |
| if (!CanDecodeQuickenedInfo()) { |
| return false; |
| } |
| method_idx = LookupQuickenedInfo(quicken_index); |
| } else { |
| method_idx = instruction.VRegB_35c(); |
| } |
| uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); |
| uint32_t args[5]; |
| instruction.GetVarArgs(args); |
| if (!BuildInvoke(instruction, dex_pc, method_idx, |
| number_of_vreg_arguments, false, args, -1)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::INVOKE_DIRECT_RANGE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| case Instruction::INVOKE_STATIC_RANGE: |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { |
| uint16_t method_idx; |
| if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { |
| if (!CanDecodeQuickenedInfo()) { |
| return false; |
| } |
| method_idx = LookupQuickenedInfo(quicken_index); |
| } else { |
| method_idx = instruction.VRegB_3rc(); |
| } |
| uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); |
| uint32_t register_index = instruction.VRegC(); |
| if (!BuildInvoke(instruction, dex_pc, method_idx, |
| number_of_vreg_arguments, true, nullptr, register_index)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::INVOKE_POLYMORPHIC: { |
| uint16_t method_idx = instruction.VRegB_45cc(); |
| uint16_t proto_idx = instruction.VRegH_45cc(); |
| uint32_t number_of_vreg_arguments = instruction.VRegA_45cc(); |
| uint32_t args[5]; |
| instruction.GetVarArgs(args); |
| return BuildInvokePolymorphic(instruction, |
| dex_pc, |
| method_idx, |
| proto_idx, |
| number_of_vreg_arguments, |
| false, |
| args, |
| -1); |
| } |
| |
| case Instruction::INVOKE_POLYMORPHIC_RANGE: { |
| uint16_t method_idx = instruction.VRegB_4rcc(); |
| uint16_t proto_idx = instruction.VRegH_4rcc(); |
| uint32_t number_of_vreg_arguments = instruction.VRegA_4rcc(); |
| uint32_t register_index = instruction.VRegC_4rcc(); |
| return BuildInvokePolymorphic(instruction, |
| dex_pc, |
| method_idx, |
| proto_idx, |
| number_of_vreg_arguments, |
| true, |
| nullptr, |
| register_index); |
| } |
| |
| case Instruction::NEG_INT: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEG_LONG: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEG_FLOAT: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEG_DOUBLE: { |
| Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOT_INT: { |
| Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOT_LONG: { |
| Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_LONG: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_FLOAT: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_DOUBLE: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_INT: { |
| Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_FLOAT: { |
| Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::LONG_TO_DOUBLE: { |
| Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_INT: { |
| Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_LONG: { |
| Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::FLOAT_TO_DOUBLE: { |
| Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_INT: { |
| Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_LONG: { |
| Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DOUBLE_TO_FLOAT: { |
| Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_BYTE: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_SHORT: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc); |
| break; |
| } |
| |
| case Instruction::INT_TO_CHAR: { |
| Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_LONG: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_DOUBLE: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_FLOAT: { |
| Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_INT: { |
| Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_LONG: { |
| Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_FLOAT: { |
| Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_DOUBLE: { |
| Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT: { |
| Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_LONG: { |
| Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_FLOAT: { |
| Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_DOUBLE: { |
| Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_INT: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_LONG: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt64, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_FLOAT: { |
| Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_DOUBLE: { |
| Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_INT: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, false, false); |
| break; |
| } |
| |
| case Instruction::REM_LONG: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt64, false, false); |
| break; |
| } |
| |
| case Instruction::REM_FLOAT: { |
| Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_DOUBLE: { |
| Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT: { |
| Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_LONG: { |
| Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_INT: { |
| Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_LONG: { |
| Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_INT: { |
| Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_LONG: { |
| Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_INT: { |
| Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_LONG: { |
| Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT: { |
| Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_LONG: { |
| Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT: { |
| Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_LONG: { |
| Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_LONG_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_DOUBLE_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_FLOAT_2ADDR: { |
| Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_INT_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_LONG_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_FLOAT_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SUB_DOUBLE_2ADDR: { |
| Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_LONG_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_FLOAT_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_DOUBLE_2ADDR: { |
| Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_INT_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt32, false, true); |
| break; |
| } |
| |
| case Instruction::DIV_LONG_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt64, false, true); |
| break; |
| } |
| |
| case Instruction::REM_INT_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt32, false, false); |
| break; |
| } |
| |
| case Instruction::REM_LONG_2ADDR: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), |
| dex_pc, DataType::Type::kInt64, false, false); |
| break; |
| } |
| |
| case Instruction::REM_FLOAT_2ADDR: { |
| Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::REM_DOUBLE_2ADDR: { |
| Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_INT_2ADDR: { |
| Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHL_LONG_2ADDR: { |
| Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_INT_2ADDR: { |
| Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_LONG_2ADDR: { |
| Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_INT_2ADDR: { |
| Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_LONG_2ADDR: { |
| Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_FLOAT_2ADDR: { |
| Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_DOUBLE_2ADDR: { |
| Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_2ADDR: { |
| Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_LONG_2ADDR: { |
| Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT_2ADDR: { |
| Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_LONG_2ADDR: { |
| Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT_2ADDR: { |
| Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_LONG_2ADDR: { |
| Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT16: { |
| Binop_22s<HAdd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_LIT16: { |
| Binop_22s<HAnd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT_LIT16: { |
| Binop_22s<HOr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT_LIT16: { |
| Binop_22s<HXor>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::RSUB_INT: { |
| Binop_22s<HSub>(instruction, true, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT_LIT16: { |
| Binop_22s<HMul>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::ADD_INT_LIT8: { |
| Binop_22b<HAdd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::AND_INT_LIT8: { |
| Binop_22b<HAnd>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::OR_INT_LIT8: { |
| Binop_22b<HOr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::XOR_INT_LIT8: { |
| Binop_22b<HXor>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::RSUB_INT_LIT8: { |
| Binop_22b<HSub>(instruction, true, dex_pc); |
| break; |
| } |
| |
| case Instruction::MUL_INT_LIT8: { |
| Binop_22b<HMul>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::DIV_INT_LIT8: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, true, true); |
| break; |
| } |
| |
| case Instruction::REM_INT_LIT16: |
| case Instruction::REM_INT_LIT8: { |
| BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), |
| dex_pc, DataType::Type::kInt32, true, false); |
| break; |
| } |
| |
| case Instruction::SHL_INT_LIT8: { |
| Binop_22b<HShl>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::SHR_INT_LIT8: { |
| Binop_22b<HShr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::USHR_INT_LIT8: { |
| Binop_22b<HUShr>(instruction, false, dex_pc); |
| break; |
| } |
| |
| case Instruction::NEW_INSTANCE: { |
| HNewInstance* new_instance = |
| BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc); |
| DCHECK(new_instance != nullptr); |
| |
| UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); |
| BuildConstructorFenceForAllocation(new_instance); |
| break; |
| } |
| |
| case Instruction::NEW_ARRAY: { |
| dex::TypeIndex type_index(instruction.VRegC_22c()); |
| HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32); |
| HLoadClass* cls = BuildLoadClass(type_index, dex_pc); |
| |
| HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc); |
| AppendInstruction(new_array); |
| UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); |
| BuildConstructorFenceForAllocation(new_array); |
| break; |
| } |
| |
| case Instruction::FILLED_NEW_ARRAY: { |
| uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); |
| dex::TypeIndex type_index(instruction.VRegB_35c()); |
| uint32_t args[5]; |
| instruction.GetVarArgs(args); |
| HNewArray* new_array = BuildFilledNewArray(dex_pc, |
| type_index, |
| number_of_vreg_arguments, |
| /* is_range */ false, |
| args, |
| /* register_index */ 0); |
| BuildConstructorFenceForAllocation(new_array); |
| break; |
| } |
| |
| case Instruction::FILLED_NEW_ARRAY_RANGE: { |
| uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); |
| dex::TypeIndex type_index(instruction.VRegB_3rc()); |
| uint32_t register_index = instruction.VRegC_3rc(); |
| HNewArray* new_array = BuildFilledNewArray(dex_pc, |
| type_index, |
| number_of_vreg_arguments, |
| /* is_range */ true, |
| /* args*/ nullptr, |
| register_index); |
| BuildConstructorFenceForAllocation(new_array); |
| break; |
| } |
| |
| case Instruction::FILL_ARRAY_DATA: { |
| BuildFillArrayData(instruction, dex_pc); |
| break; |
| } |
| |
| case Instruction::MOVE_RESULT: |
| case Instruction::MOVE_RESULT_WIDE: |
| case Instruction::MOVE_RESULT_OBJECT: { |
| DCHECK(latest_result_ != nullptr); |
| UpdateLocal(instruction.VRegA(), latest_result_); |
| latest_result_ = nullptr; |
| break; |
| } |
| |
| case Instruction::CMP_LONG: { |
| Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPG_FLOAT: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPG_DOUBLE: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPL_FLOAT: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::CMPL_DOUBLE: { |
| Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc); |
| break; |
| } |
| |
| case Instruction::NOP: |
| break; |
| |
| case Instruction::IGET: |
| case Instruction::IGET_QUICK: |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_WIDE_QUICK: |
| case Instruction::IGET_OBJECT: |
| case Instruction::IGET_OBJECT_QUICK: |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BOOLEAN_QUICK: |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_BYTE_QUICK: |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_CHAR_QUICK: |
| case Instruction::IGET_SHORT: |
| case Instruction::IGET_SHORT_QUICK: { |
| if (!BuildInstanceFieldAccess(instruction, dex_pc, false, quicken_index)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::IPUT: |
| case Instruction::IPUT_QUICK: |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_WIDE_QUICK: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::IPUT_OBJECT_QUICK: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BOOLEAN_QUICK: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_BYTE_QUICK: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_CHAR_QUICK: |
| case Instruction::IPUT_SHORT: |
| case Instruction::IPUT_SHORT_QUICK: { |
| if (!BuildInstanceFieldAccess(instruction, dex_pc, true, quicken_index)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::SGET: |
| case Instruction::SGET_WIDE: |
| case Instruction::SGET_OBJECT: |
| case Instruction::SGET_BOOLEAN: |
| case Instruction::SGET_BYTE: |
| case Instruction::SGET_CHAR: |
| case Instruction::SGET_SHORT: { |
| if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { |
| return false; |
| } |
| break; |
| } |
| |
| case Instruction::SPUT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: { |
| if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { |
| return false; |
| } |
| break; |
| } |
| |
| #define ARRAY_XX(kind, anticipated_type) \ |
| case Instruction::AGET##kind: { \ |
| BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ |
| break; \ |
| } \ |
| case Instruction::APUT##kind: { \ |
| BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ |
| break; \ |
| } |
| |
| ARRAY_XX(, DataType::Type::kInt32); |
| ARRAY_XX(_WIDE, DataType::Type::kInt64); |
| ARRAY_XX(_OBJECT, DataType::Type::kReference); |
| ARRAY_XX(_BOOLEAN, DataType::Type::kBool); |
| ARRAY_XX(_BYTE, DataType::Type::kInt8); |
| ARRAY_XX(_CHAR, DataType::Type::kUint16); |
| ARRAY_XX(_SHORT, DataType::Type::kInt16); |
| |
| case Instruction::ARRAY_LENGTH: { |
| HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc); |
| AppendInstruction(new (allocator_) HArrayLength(object, dex_pc)); |
| UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_STRING: { |
| dex::StringIndex string_index(instruction.VRegB_21c()); |
| AppendInstruction(new (allocator_) HLoadString(graph_->GetCurrentMethod(), |
| string_index, |
| *dex_file_, |
| dex_pc)); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_STRING_JUMBO: { |
| dex::StringIndex string_index(instruction.VRegB_31c()); |
| AppendInstruction(new (allocator_) HLoadString(graph_->GetCurrentMethod(), |
| string_index, |
| *dex_file_, |
| dex_pc)); |
| UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::CONST_CLASS: { |
| dex::TypeIndex type_index(instruction.VRegB_21c()); |
| BuildLoadClass(type_index, dex_pc); |
| UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); |
| break; |
| } |
| |
| case Instruction::MOVE_EXCEPTION: { |
| AppendInstruction(new (allocator_) HLoadException(dex_pc)); |
| UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); |
| AppendInstruction(new (allocator_) HClearException(dex_pc)); |
| break; |
| } |
| |
| case Instruction::THROW: { |
| HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference); |
| AppendInstruction(new (allocator_) HThrow(exception, dex_pc)); |
| // We finished building this block. Set the current block to null to avoid |
| // adding dead instructions to it. |
| current_block_ = nullptr; |
| break; |
| } |
| |
| case Instruction::INSTANCE_OF: { |
| uint8_t destination = instruction.VRegA_22c(); |
| uint8_t reference = instruction.VRegB_22c(); |
| dex::TypeIndex type_index(instruction.VRegC_22c()); |
| BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); |
| break; |
| } |
| |
| case Instruction::CHECK_CAST: { |
| uint8_t reference = instruction.VRegA_21c(); |
| dex::TypeIndex type_index(instruction.VRegB_21c()); |
| BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); |
| break; |
| } |
| |
| case Instruction::MONITOR_ENTER: { |
| AppendInstruction(new (allocator_) HMonitorOperation( |
| LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), |
| HMonitorOperation::OperationKind::kEnter, |
| dex_pc)); |
| break; |
| } |
| |
| case Instruction::MONITOR_EXIT: { |
| AppendInstruction(new (allocator_) HMonitorOperation( |
| LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), |
| HMonitorOperation::OperationKind::kExit, |
| dex_pc)); |
| break; |
| } |
| |
| case Instruction::SPARSE_SWITCH: |
| case Instruction::PACKED_SWITCH: { |
| BuildSwitch(instruction, dex_pc); |
| break; |
| } |
| |
| default: |
| VLOG(compiler) << "Did not compile " |
| << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) |
| << " because of unhandled instruction " |
| << instruction.Name(); |
| MaybeRecordStat(compilation_stats_, |
| MethodCompilationStat::kNotCompiledUnhandledInstruction); |
| return false; |
| } |
| return true; |
| } // NOLINT(readability/fn_size) |
| |
| ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType( |
| dex::TypeIndex type_index, |
| const DexCompilationUnit& compilation_unit) const { |
| return ClassLinker::LookupResolvedType( |
| type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); |
| } |
| |
| ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const { |
| // TODO: Cache the result in a Handle<mirror::Class>. |
| const DexFile::MethodId& method_id = |
| dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); |
| return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_); |
| } |
| |
| } // namespace art |