blob: 02e3f5475a4f719d0dcac5ca73cf106dbece1799 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thread_list.h"
#include <dirent.h>
#include <sys/types.h>
#include <unistd.h>
#include <map>
#include <sstream>
#include <tuple>
#include <vector>
#include "android-base/stringprintf.h"
#include "nativehelper/scoped_local_ref.h"
#include "nativehelper/scoped_utf_chars.h"
#include "unwindstack/AndroidUnwinder.h"
#include "art_field-inl.h"
#include "base/aborting.h"
#include "base/histogram-inl.h"
#include "base/mutex-inl.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "debugger.h"
#include "gc/collector/concurrent_copying.h"
#include "gc/gc_pause_listener.h"
#include "gc/heap.h"
#include "gc/reference_processor.h"
#include "gc_root.h"
#include "jni/jni_internal.h"
#include "lock_word.h"
#include "mirror/string.h"
#include "monitor.h"
#include "native_stack_dump.h"
#include "obj_ptr-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "trace.h"
#include "well_known_classes.h"
#if ART_USE_FUTEXES
#include "linux/futex.h"
#include "sys/syscall.h"
#ifndef SYS_futex
#define SYS_futex __NR_futex
#endif
#endif // ART_USE_FUTEXES
namespace art HIDDEN {
using android::base::StringPrintf;
static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
// Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
// some history.
static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
: suspend_all_count_(0),
unregistering_count_(0),
suspend_all_histogram_("suspend all histogram", 16, 64),
long_suspend_(false),
shut_down_(false),
thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
empty_checkpoint_barrier_(new Barrier(0)) {
CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
}
ThreadList::~ThreadList() {
CHECK(shut_down_);
}
void ThreadList::ShutDown() {
ScopedTrace trace(__PRETTY_FUNCTION__);
// Detach the current thread if necessary. If we failed to start, there might not be any threads.
// We need to detach the current thread here in case there's another thread waiting to join with
// us.
bool contains = false;
Thread* self = Thread::Current();
{
MutexLock mu(self, *Locks::thread_list_lock_);
contains = Contains(self);
}
if (contains) {
Runtime::Current()->DetachCurrentThread();
}
WaitForOtherNonDaemonThreadsToExit();
// The only caller of this function, ~Runtime, has already disabled GC and
// ensured that the last GC is finished.
gc::Heap* const heap = Runtime::Current()->GetHeap();
CHECK(heap->IsGCDisabledForShutdown());
// TODO: there's an unaddressed race here where a thread may attach during shutdown, see
// Thread::Init.
SuspendAllDaemonThreadsForShutdown();
shut_down_ = true;
}
bool ThreadList::Contains(Thread* thread) {
return find(list_.begin(), list_.end(), thread) != list_.end();
}
pid_t ThreadList::GetLockOwner() {
return Locks::thread_list_lock_->GetExclusiveOwnerTid();
}
void ThreadList::DumpNativeStacks(std::ostream& os) {
MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
unwindstack::AndroidLocalUnwinder unwinder;
for (const auto& thread : list_) {
os << "DUMPING THREAD " << thread->GetTid() << "\n";
DumpNativeStack(os, unwinder, thread->GetTid(), "\t");
os << "\n";
}
}
void ThreadList::DumpForSigQuit(std::ostream& os) {
{
ScopedObjectAccess soa(Thread::Current());
// Only print if we have samples.
if (suspend_all_histogram_.SampleSize() > 0) {
Histogram<uint64_t>::CumulativeData data;
suspend_all_histogram_.CreateHistogram(&data);
suspend_all_histogram_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
}
}
bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
Dump(os, dump_native_stack);
DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
}
static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
NO_THREAD_SAFETY_ANALYSIS {
// TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
// refactor DumpState to avoid skipping analysis.
Thread::DumpState(os, nullptr, tid);
if (dump_native_stack) {
DumpNativeStack(os, tid, " native: ");
}
os << std::endl;
}
void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
DIR* d = opendir("/proc/self/task");
if (!d) {
return;
}
Thread* self = Thread::Current();
dirent* e;
while ((e = readdir(d)) != nullptr) {
char* end;
pid_t tid = strtol(e->d_name, &end, 10);
if (!*end) {
Thread* thread;
{
MutexLock mu(self, *Locks::thread_list_lock_);
thread = FindThreadByTid(tid);
}
if (thread == nullptr) {
DumpUnattachedThread(os, tid, dump_native_stack);
}
}
}
closedir(d);
}
// Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
// overloaded with ANR dumps.
static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
// A closure used by Thread::Dump.
class DumpCheckpoint final : public Closure {
public:
DumpCheckpoint(bool dump_native_stack)
: lock_("Dump checkpoint lock", kGenericBottomLock),
os_(),
// Avoid verifying count in case a thread doesn't end up passing through the barrier.
// This avoids a SIGABRT that would otherwise happen in the destructor.
barrier_(0, /*verify_count_on_shutdown=*/false),
unwinder_(std::vector<std::string>{}, std::vector<std::string> {"oat", "odex"}),
dump_native_stack_(dump_native_stack) {
}
void Run(Thread* thread) override {
// Note thread and self may not be equal if thread was already suspended at the point of the
// request.
Thread* self = Thread::Current();
CHECK(self != nullptr);
std::ostringstream local_os;
Thread::DumpOrder dump_order;
{
ScopedObjectAccess soa(self);
dump_order = thread->Dump(local_os, unwinder_, dump_native_stack_);
}
{
MutexLock mu(self, lock_);
// Sort, so that the most interesting threads for ANR are printed first (ANRs can be trimmed).
std::pair<Thread::DumpOrder, uint32_t> sort_key(dump_order, thread->GetThreadId());
os_.emplace(sort_key, std::move(local_os));
}
barrier_.Pass(self);
}
// Called at the end to print all the dumps in sequential prioritized order.
void Dump(Thread* self, std::ostream& os) {
MutexLock mu(self, lock_);
for (const auto& it : os_) {
os << it.second.str() << std::endl;
}
}
void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
Thread* self = Thread::Current();
ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
if (timed_out) {
// Avoid a recursive abort.
LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
<< "Unexpected time out during dump checkpoint.";
}
}
private:
// Storage for the per-thread dumps (guarded by lock since they are generated in parallel).
// Map is used to obtain sorted order. The key is unique, but use multimap just in case.
Mutex lock_;
std::multimap<std::pair<Thread::DumpOrder, uint32_t>, std::ostringstream> os_ GUARDED_BY(lock_);
// The barrier to be passed through and for the requestor to wait upon.
Barrier barrier_;
// A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
unwindstack::AndroidLocalUnwinder unwinder_;
// Whether we should dump the native stack.
const bool dump_native_stack_;
};
void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
Thread* self = Thread::Current();
{
MutexLock mu(self, *Locks::thread_list_lock_);
os << "DALVIK THREADS (" << list_.size() << "):\n";
}
if (self != nullptr) {
DumpCheckpoint checkpoint(dump_native_stack);
size_t threads_running_checkpoint;
{
// Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
ScopedObjectAccess soa(self);
threads_running_checkpoint = RunCheckpoint(&checkpoint);
}
if (threads_running_checkpoint != 0) {
checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
}
checkpoint.Dump(self, os);
} else {
DumpUnattachedThreads(os, dump_native_stack);
}
}
void ThreadList::AssertOtherThreadsAreSuspended(Thread* self) {
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
for (const auto& thread : list_) {
if (thread != self) {
CHECK(thread->IsSuspended())
<< "\nUnsuspended thread: <<" << *thread << "\n"
<< "self: <<" << *Thread::Current();
}
}
}
#if HAVE_TIMED_RWLOCK
// Attempt to rectify locks so that we dump thread list with required locks before exiting.
NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
// Increment gAborting before doing the thread list dump since we don't want any failures from
// AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
// See b/69044468.
++gAborting;
Runtime* runtime = Runtime::Current();
std::ostringstream ss;
ss << "Thread suspend timeout\n";
Locks::mutator_lock_->Dump(ss);
ss << "\n";
runtime->GetThreadList()->Dump(ss);
--gAborting;
LOG(FATAL) << ss.str();
exit(0);
}
#endif
size_t ThreadList::RunCheckpoint(Closure* checkpoint_function,
Closure* callback,
bool allow_lock_checking) {
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertNotExclusiveHeld(self);
Locks::thread_list_lock_->AssertNotHeld(self);
Locks::thread_suspend_count_lock_->AssertNotHeld(self);
std::vector<Thread*> suspended_count_modified_threads;
size_t count = 0;
{
// Call a checkpoint function for each thread. We directly invoke the function on behalf of
// suspended threads.
MutexLock mu(self, *Locks::thread_list_lock_);
if (kIsDebugBuild && allow_lock_checking) {
self->DisallowPreMonitorMutexes();
}
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
count = list_.size();
for (const auto& thread : list_) {
if (thread != self) {
bool requested_suspend = false;
while (true) {
if (thread->RequestCheckpoint(checkpoint_function)) {
// This thread will run its checkpoint some time in the near future.
if (requested_suspend) {
// The suspend request is now unnecessary.
thread->DecrementSuspendCount(self);
Thread::resume_cond_->Broadcast(self);
requested_suspend = false;
}
break;
} else {
// The thread was, and probably still is, suspended.
if (!requested_suspend) {
// This does not risk suspension cycles: We may have a pending suspension request,
// but it cannot block us: Checkpoint Run() functions may not suspend, thus we cannot
// be blocked from decrementing the count again.
thread->IncrementSuspendCount(self);
requested_suspend = true;
}
if (thread->IsSuspended()) {
// We saw it suspended after incrementing suspend count, so it will stay that way.
break;
}
}
// We only get here if the thread entered kRunnable again. Retry immediately.
}
// At this point, either the thread was runnable, and will run the checkpoint itself,
// or requested_suspend is true, and the thread is safely suspended.
if (requested_suspend) {
DCHECK(thread->IsSuspended());
suspended_count_modified_threads.push_back(thread);
}
}
// Thread either has honored or will honor the checkpoint, or it has been added to
// suspended_count_modified_threads.
}
// Run the callback to be called inside this critical section.
if (callback != nullptr) {
callback->Run(self);
}
}
// Run the checkpoint on ourself while we wait for threads to suspend.
checkpoint_function->Run(self);
bool mutator_lock_held = Locks::mutator_lock_->IsSharedHeld(self);
bool repeat = true;
// Run the checkpoint on the suspended threads.
while (repeat) {
repeat = false;
for (auto& thread : suspended_count_modified_threads) {
if (thread != nullptr) {
// We know for sure that the thread is suspended at this point.
DCHECK(thread->IsSuspended());
if (mutator_lock_held) {
// Make sure there is no pending flip function before running Java-heap-accessing
// checkpoint on behalf of thread.
Thread::EnsureFlipFunctionStarted(self, thread);
if (thread->GetStateAndFlags(std::memory_order_acquire)
.IsAnyOfFlagsSet(Thread::FlipFunctionFlags())) {
// There is another thread running the flip function for 'thread'.
// Instead of waiting for it to complete, move to the next thread.
repeat = true;
continue;
}
} // O.w. the checkpoint will not access Java data structures, and doesn't care whether
// the flip function has been called.
checkpoint_function->Run(thread);
{
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
thread->DecrementSuspendCount(self);
}
// We are done with 'thread' so set it to nullptr so that next outer
// loop iteration, if any, skips 'thread'.
thread = nullptr;
}
}
}
DCHECK(std::all_of(suspended_count_modified_threads.cbegin(),
suspended_count_modified_threads.cend(),
[](Thread* thread) { return thread == nullptr; }));
{
// Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
// suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
Thread::resume_cond_->Broadcast(self);
}
if (kIsDebugBuild && allow_lock_checking) {
self->AllowPreMonitorMutexes();
}
return count;
}
void ThreadList::RunEmptyCheckpoint() {
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertNotExclusiveHeld(self);
Locks::thread_list_lock_->AssertNotHeld(self);
Locks::thread_suspend_count_lock_->AssertNotHeld(self);
std::vector<uint32_t> runnable_thread_ids;
size_t count = 0;
Barrier* barrier = empty_checkpoint_barrier_.get();
barrier->Init(self, 0);
{
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
for (Thread* thread : list_) {
if (thread != self) {
while (true) {
if (thread->RequestEmptyCheckpoint()) {
// This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
// some time in the near future.
++count;
if (kIsDebugBuild) {
runnable_thread_ids.push_back(thread->GetThreadId());
}
break;
}
if (thread->GetState() != ThreadState::kRunnable) {
// It's seen suspended, we are done because it must not be in the middle of a mutator
// heap access.
break;
}
}
}
}
}
// Wake up the threads blocking for weak ref access so that they will respond to the empty
// checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
{
ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
uint64_t total_wait_time = 0;
bool first_iter = true;
while (true) {
// Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
// on a weak ref access, holds (indirectly blocking for weak ref access through another thread
// and a mutex.) This needs to be done periodically because the thread may be preempted
// between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
// Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
// arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
// handled in the first iteration.
for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
mutex->WakeupToRespondToEmptyCheckpoint();
}
static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
size_t barrier_count = first_iter ? count : 0;
first_iter = false; // Don't add to the barrier count from the second iteration on.
bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
if (!timed_out) {
break; // Success
}
// This is a very rare case.
total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
std::ostringstream ss;
ss << "Empty checkpoint timeout\n";
ss << "Barrier count " << barrier->GetCount(self) << "\n";
ss << "Runnable thread IDs";
for (uint32_t tid : runnable_thread_ids) {
ss << " " << tid;
}
ss << "\n";
Locks::mutator_lock_->Dump(ss);
ss << "\n";
LOG(FATAL_WITHOUT_ABORT) << ss.str();
// Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
// Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
{
ScopedObjectAccess soa(self);
MutexLock mu1(self, *Locks::thread_list_lock_);
for (Thread* thread : GetList()) {
uint32_t tid = thread->GetThreadId();
bool is_in_runnable_thread_ids =
std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
runnable_thread_ids.end();
if (is_in_runnable_thread_ids &&
thread->ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
// Found a runnable thread that hasn't responded to the empty checkpoint request.
// Assume it's stuck and safe to dump its stack.
thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
/*dump_native_stack=*/ true,
/*force_dump_stack=*/ true);
}
}
}
LOG(FATAL_WITHOUT_ABORT)
<< "Dumped runnable threads that haven't responded to empty checkpoint.";
// Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
LOG(FATAL) << "Dumped all threads.";
}
}
}
}
// Separate function to disable just the right amount of thread-safety analysis.
ALWAYS_INLINE void AcquireMutatorLockSharedUncontended(Thread* self)
ACQUIRE_SHARED(*Locks::mutator_lock_) NO_THREAD_SAFETY_ANALYSIS {
bool success = Locks::mutator_lock_->SharedTryLock(self, /*check=*/false);
CHECK(success);
}
// A checkpoint/suspend-all hybrid to switch thread roots from
// from-space to to-space refs. Used to synchronize threads at a point
// to mark the initiation of marking while maintaining the to-space
// invariant.
void ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
Closure* flip_callback,
gc::collector::GarbageCollector* collector,
gc::GcPauseListener* pause_listener) {
TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertNotHeld(self);
Locks::thread_list_lock_->AssertNotHeld(self);
Locks::thread_suspend_count_lock_->AssertNotHeld(self);
CHECK_NE(self->GetState(), ThreadState::kRunnable);
collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
// ThreadFlipBegin happens before we suspend all the threads, so it does not
// count towards the pause.
const uint64_t suspend_start_time = NanoTime();
VLOG(threads) << "Suspending all for thread flip";
SuspendAllInternal(self);
if (pause_listener != nullptr) {
pause_listener->StartPause();
}
// Run the flip callback for the collector.
Locks::mutator_lock_->ExclusiveLock(self);
suspend_all_histogram_.AdjustAndAddValue(NanoTime() - suspend_start_time);
flip_callback->Run(self);
std::vector<Thread*> flipping_threads; // All suspended threads. Includes us.
int thread_count;
// Flipping threads might exit between the time we resume them and try to run the flip function.
// Track that in a parallel vector.
std::unique_ptr<ThreadExitFlag[]> exit_flags;
{
TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
thread_count = list_.size();
exit_flags.reset(new ThreadExitFlag[thread_count]);
flipping_threads.resize(thread_count, nullptr);
int i = 1;
for (Thread* thread : list_) {
// Set the flip function for all threads because once we start resuming any threads,
// they may need to run the flip function on behalf of other threads, even this one.
DCHECK(thread == self || thread->IsSuspended());
thread->SetFlipFunction(thread_flip_visitor);
// Put ourselves first, so other threads are more likely to have finished before we get
// there.
int thread_index = thread == self ? 0 : i++;
flipping_threads[thread_index] = thread;
thread->NotifyOnThreadExit(&exit_flags[thread_index]);
}
DCHECK(i == thread_count);
}
if (pause_listener != nullptr) {
pause_listener->EndPause();
}
// Any new threads created after this will be created by threads that already ran their flip
// functions. In the normal GC use case in which the flip function converts all local references
// to to-space references, these newly created threads will also see only to-space references.
// Resume threads, making sure that we do not release suspend_count_lock_ until we've reacquired
// the mutator_lock_ in shared mode, and decremented suspend_all_count_. This avoids a
// concurrent SuspendAll, and ensures that newly started threads see a correct value of
// suspend_all_count.
{
MutexLock mu(self, *Locks::thread_list_lock_);
Locks::thread_suspend_count_lock_->Lock(self);
ResumeAllInternal(self);
}
collector->RegisterPause(NanoTime() - suspend_start_time);
// Since all threads were suspended, they will attempt to run the flip function before
// reentering a runnable state. We will also attempt to run the flip functions ourselves. Any
// intervening checkpoint request will do the same. Exactly one of those flip function attempts
// will succeed, and the target thread will not be able to reenter a runnable state until one of
// them does.
// Try to run the closure on the other threads.
TimingLogger::ScopedTiming split3("RunningThreadFlips", collector->GetTimings());
// Reacquire the mutator lock while holding suspend_count_lock. This cannot fail, since we
// do not acquire the mutator lock unless suspend_all_count was read as 0 while holding
// suspend_count_lock. We did not release suspend_count_lock since releasing the mutator
// lock.
AcquireMutatorLockSharedUncontended(self);
Locks::thread_suspend_count_lock_->Unlock(self);
// Concurrent SuspendAll may now see zero suspend_all_count_, but block on mutator_lock_.
collector->GetHeap()->ThreadFlipEnd(self);
for (int i = 0; i < thread_count; ++i) {
bool finished;
Thread::EnsureFlipFunctionStarted(
self, flipping_threads[i], Thread::StateAndFlags(0), &exit_flags[i], &finished);
if (finished) {
MutexLock mu2(self, *Locks::thread_list_lock_);
flipping_threads[i]->UnregisterThreadExitFlag(&exit_flags[i]);
flipping_threads[i] = nullptr;
}
}
// Make sure all flips complete before we return.
for (int i = 0; i < thread_count; ++i) {
if (UNLIKELY(flipping_threads[i] != nullptr)) {
flipping_threads[i]->WaitForFlipFunctionTestingExited(self, &exit_flags[i]);
MutexLock mu2(self, *Locks::thread_list_lock_);
flipping_threads[i]->UnregisterThreadExitFlag(&exit_flags[i]);
}
}
Thread::DCheckUnregisteredEverywhere(&exit_flags[0], &exit_flags[thread_count - 1]);
Locks::mutator_lock_->SharedUnlock(self);
}
// True only for debugging suspend timeout code. The resulting timeouts are short enough that
// failures are expected.
static constexpr bool kShortSuspendTimeouts = false;
static constexpr unsigned kSuspendBarrierIters = kShortSuspendTimeouts ? 5 : 20;
#if ART_USE_FUTEXES
// Returns true if it timed out.
static bool WaitOnceForSuspendBarrier(AtomicInteger* barrier,
int32_t cur_val,
uint64_t timeout_ns) {
timespec wait_timeout;
if (kShortSuspendTimeouts) {
timeout_ns = MsToNs(kSuspendBarrierIters);
CHECK_GE(NsToMs(timeout_ns / kSuspendBarrierIters), 1ul);
} else {
DCHECK_GE(NsToMs(timeout_ns / kSuspendBarrierIters), 10ul);
}
InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(timeout_ns / kSuspendBarrierIters), 0, &wait_timeout);
if (futex(barrier->Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0) != 0) {
if (errno == ETIMEDOUT) {
return true;
} else if (errno != EAGAIN && errno != EINTR) {
PLOG(FATAL) << "futex wait for suspend barrier failed";
}
}
return false;
}
#else
static bool WaitOnceForSuspendBarrier(AtomicInteger* barrier,
int32_t cur_val,
uint64_t timeout_ns) {
// In the normal case, aim for a couple of hundred milliseconds.
static constexpr unsigned kInnerIters =
kShortSuspendTimeouts ? 1'000 : (timeout_ns / 1000) / kSuspendBarrierIters;
DCHECK_GE(kInnerIters, 1'000u);
for (int i = 0; i < kInnerIters; ++i) {
sched_yield();
if (barrier->load(std::memory_order_acquire) == 0) {
return false;
}
}
return true;
}
#endif // ART_USE_FUTEXES
// Return a short string describing the scheduling state of the thread with the given tid.
static std::string GetThreadState(pid_t t) {
#if defined(__linux__)
static constexpr int BUF_SIZE = 90;
char file_name_buf[BUF_SIZE];
char buf[BUF_SIZE];
snprintf(file_name_buf, BUF_SIZE, "/proc/%d/stat", t);
int stat_fd = open(file_name_buf, O_RDONLY | O_CLOEXEC);
if (stat_fd < 0) {
return std::string("failed to get thread state: ") + std::string(strerror(errno));
}
CHECK(stat_fd >= 0) << strerror(errno);
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(stat_fd, buf, BUF_SIZE));
CHECK(bytes_read >= 0) << strerror(errno);
int ret = close(stat_fd);
DCHECK(ret == 0) << strerror(errno);
buf[BUF_SIZE - 1] = '\0';
return buf;
#else
return "unknown state";
#endif
}
std::optional<std::string> ThreadList::WaitForSuspendBarrier(AtomicInteger* barrier,
pid_t t,
int attempt_of_4) {
// Only fail after kIter timeouts, to make us robust against app freezing.
#if ART_USE_FUTEXES
const uint64_t start_time = NanoTime();
#endif
uint64_t timeout_ns =
attempt_of_4 == 0 ? thread_suspend_timeout_ns_ : thread_suspend_timeout_ns_ / 4;
bool collect_state = (t != 0 && (attempt_of_4 == 0 || attempt_of_4 == 4));
int32_t cur_val = barrier->load(std::memory_order_acquire);
if (cur_val <= 0) {
DCHECK_EQ(cur_val, 0);
return std::nullopt;
}
unsigned i = 0;
if (WaitOnceForSuspendBarrier(barrier, cur_val, timeout_ns)) {
i = 1;
}
cur_val = barrier->load(std::memory_order_acquire);
if (cur_val <= 0) {
DCHECK_EQ(cur_val, 0);
return std::nullopt;
}
// Long wait; gather information in case of timeout.
std::string sampled_state = collect_state ? GetThreadState(t) : "";
while (i < kSuspendBarrierIters) {
if (WaitOnceForSuspendBarrier(barrier, cur_val, timeout_ns)) {
++i;
#if ART_USE_FUTEXES
if (!kShortSuspendTimeouts) {
CHECK_GE(NanoTime() - start_time, i * timeout_ns / kSuspendBarrierIters - 1'000'000);
}
#endif
}
cur_val = barrier->load(std::memory_order_acquire);
if (cur_val <= 0) {
DCHECK_EQ(cur_val, 0);
return std::nullopt;
}
}
return collect_state ? "Target states: [" + sampled_state + ", " + GetThreadState(t) + "]" +
std::to_string(cur_val) + "@" + std::to_string((uintptr_t)barrier) +
" Final wait time: " + PrettyDuration(NanoTime() - start_time) :
"";
}
void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
Thread* self = Thread::Current();
if (self != nullptr) {
VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
} else {
VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
}
{
ScopedTrace trace("Suspending mutator threads");
const uint64_t start_time = NanoTime();
SuspendAllInternal(self);
// All threads are known to have suspended (but a thread may still own the mutator lock)
// Make sure this thread grabs exclusive access to the mutator lock and its protected data.
#if HAVE_TIMED_RWLOCK
while (true) {
if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
NsToMs(thread_suspend_timeout_ns_),
0)) {
break;
} else if (!long_suspend_) {
// Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
// could result in a thread suspend timeout.
// Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
UnsafeLogFatalForThreadSuspendAllTimeout();
}
}
#else
Locks::mutator_lock_->ExclusiveLock(self);
#endif
long_suspend_ = long_suspend;
const uint64_t end_time = NanoTime();
const uint64_t suspend_time = end_time - start_time;
suspend_all_histogram_.AdjustAndAddValue(suspend_time);
if (suspend_time > kLongThreadSuspendThreshold) {
LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
}
if (kDebugLocking) {
// Debug check that all threads are suspended.
AssertOtherThreadsAreSuspended(self);
}
}
// SuspendAllInternal blocks if we are in the middle of a flip.
DCHECK(!self->ReadFlag(ThreadFlag::kPendingFlipFunction));
DCHECK(!self->ReadFlag(ThreadFlag::kRunningFlipFunction));
ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
if (self != nullptr) {
VLOG(threads) << *self << " SuspendAll complete";
} else {
VLOG(threads) << "Thread[null] SuspendAll complete";
}
}
// Ensures all threads running Java suspend and that those not running Java don't start.
void ThreadList::SuspendAllInternal(Thread* self, SuspendReason reason) {
// self can be nullptr if this is an unregistered thread.
Locks::mutator_lock_->AssertNotExclusiveHeld(self);
Locks::thread_list_lock_->AssertNotHeld(self);
Locks::thread_suspend_count_lock_->AssertNotHeld(self);
if (kDebugLocking && self != nullptr) {
CHECK_NE(self->GetState(), ThreadState::kRunnable);
}
// First request that all threads suspend, then wait for them to suspend before
// returning. This suspension scheme also relies on other behaviour:
// 1. Threads cannot be deleted while they are suspended or have a suspend-
// request flag set - (see Unregister() below).
// 2. When threads are created, they are created in a suspended state (actually
// kNative) and will never begin executing Java code without first checking
// the suspend-request flag.
// The atomic counter for number of threads that need to pass the barrier.
AtomicInteger pending_threads;
for (int iter_count = 1;; ++iter_count) {
{
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
if (suspend_all_count_ == 0) {
// Never run multiple SuspendAlls concurrently.
// If we are asked to suspend ourselves, we proceed anyway, but must ignore suspend
// request from other threads until we resume them.
bool found_myself = false;
// Update global suspend all state for attaching threads.
++suspend_all_count_;
pending_threads.store(list_.size() - (self == nullptr ? 0 : 1), std::memory_order_relaxed);
// Increment everybody else's suspend count.
for (const auto& thread : list_) {
if (thread == self) {
found_myself = true;
} else {
VLOG(threads) << "requesting thread suspend: " << *thread;
DCHECK_EQ(suspend_all_count_, 1);
thread->IncrementSuspendCount(self, &pending_threads, nullptr, reason);
if (thread->IsSuspended()) {
// Effectively pass the barrier on behalf of the already suspended thread.
// The thread itself cannot yet have acted on our request since we still hold the
// suspend_count_lock_, and it will notice that kActiveSuspendBarrier has already
// been cleared if and when it acquires the lock in PassActiveSuspendBarriers().
DCHECK_EQ(thread->tlsPtr_.active_suspendall_barrier, &pending_threads);
pending_threads.fetch_sub(1, std::memory_order_seq_cst);
thread->tlsPtr_.active_suspendall_barrier = nullptr;
if (!thread->HasActiveSuspendBarrier()) {
thread->AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
}
}
// else:
// The target thread was not yet suspended, and hence will be forced to execute
// TransitionFromRunnableToSuspended shortly. Since we set the kSuspendRequest flag
// before checking, and it checks kActiveSuspendBarrier after noticing kSuspendRequest,
// it must notice kActiveSuspendBarrier when it does. Thus it is guaranteed to
// decrement the suspend barrier. We're relying on store; load ordering here, but
// that's not a problem, since state and flags all reside in the same atomic, and
// are thus properly ordered, even for relaxed accesses.
}
}
self->AtomicSetFlag(ThreadFlag::kSuspensionImmune, std::memory_order_relaxed);
DCHECK(self == nullptr || found_myself);
break;
}
}
if (iter_count >= kMaxSuspendRetries) {
LOG(FATAL) << "Too many SuspendAll retries: " << iter_count;
} else {
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
DCHECK_LE(suspend_all_count_, 1);
if (suspend_all_count_ != 0) {
// This may take a while, and we're not runnable, and thus would otherwise not block.
Thread::resume_cond_->WaitHoldingLocks(self);
continue;
}
}
// We're already not runnable, so an attempt to suspend us should succeed.
}
Thread* culprit = nullptr;
pid_t tid = 0;
std::ostringstream oss;
for (int attempt_of_4 = 1; attempt_of_4 <= 4; ++attempt_of_4) {
auto result = WaitForSuspendBarrier(&pending_threads, tid, attempt_of_4);
if (!result.has_value()) {
// Wait succeeded.
break;
}
if (attempt_of_4 == 3) {
// Second to the last attempt; Try to gather more information in case we time out.
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
oss << "Unsuspended threads: ";
for (const auto& thread : list_) {
if (thread != self && !thread->IsSuspended()) {
culprit = thread;
oss << *thread << ", ";
}
}
if (culprit != nullptr) {
tid = culprit->GetTid();
}
} else if (attempt_of_4 == 4) {
// Final attempt still timed out.
if (culprit == nullptr) {
LOG(FATAL) << "SuspendAll timeout. Couldn't find holdouts.";
} else {
std::string name;
culprit->GetThreadName(name);
oss << "Info for " << *culprit << ":";
std::string thr_descr =
StringPrintf("%s tid: %d, state&flags: 0x%x, priority: %d, barrier value: %d, ",
name.c_str(),
tid,
culprit->GetStateAndFlags(std::memory_order_relaxed).GetValue(),
culprit->GetNativePriority(),
pending_threads.load());
oss << thr_descr << result.value();
culprit->AbortInThis("SuspendAll timeout: " + oss.str());
}
}
}
}
void ThreadList::ResumeAll() {
Thread* self = Thread::Current();
if (kDebugLocking) {
// Debug check that all threads are suspended.
AssertOtherThreadsAreSuspended(self);
}
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
ResumeAllInternal(self);
}
// Holds thread_list_lock_ and suspend_count_lock_
void ThreadList::ResumeAllInternal(Thread* self) {
DCHECK_NE(self->GetState(), ThreadState::kRunnable);
if (self != nullptr) {
VLOG(threads) << *self << " ResumeAll starting";
} else {
VLOG(threads) << "Thread[null] ResumeAll starting";
}
ATraceEnd();
ScopedTrace trace("Resuming mutator threads");
long_suspend_ = false;
Locks::mutator_lock_->ExclusiveUnlock(self);
// Decrement the suspend counts for all threads.
for (const auto& thread : list_) {
if (thread != self) {
thread->DecrementSuspendCount(self);
}
}
// Update global suspend all state for attaching threads. Unblocks other SuspendAlls once
// suspend_count_lock_ is released.
--suspend_all_count_;
self->AtomicClearFlag(ThreadFlag::kSuspensionImmune, std::memory_order_relaxed);
// Pending suspend requests for us will be handled when we become Runnable again.
// Broadcast a notification to all suspended threads, some or all of
// which may choose to wake up. No need to wait for them.
if (self != nullptr) {
VLOG(threads) << *self << " ResumeAll waking others";
} else {
VLOG(threads) << "Thread[null] ResumeAll waking others";
}
Thread::resume_cond_->Broadcast(self);
if (self != nullptr) {
VLOG(threads) << *self << " ResumeAll complete";
} else {
VLOG(threads) << "Thread[null] ResumeAll complete";
}
}
bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
// This assumes there was an ATraceBegin when we suspended the thread.
ATraceEnd();
Thread* self = Thread::Current();
DCHECK_NE(thread, self);
VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
{
// To check Contains.
MutexLock mu(self, *Locks::thread_list_lock_);
// To check IsSuspended.
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
if (UNLIKELY(!thread->IsSuspended())) {
LOG(reason == SuspendReason::kForUserCode ? ERROR : FATAL)
<< "Resume(" << reinterpret_cast<void*>(thread) << ") thread not suspended";
return false;
}
if (!Contains(thread)) {
// We only expect threads within the thread-list to have been suspended otherwise we can't
// stop such threads from delete-ing themselves.
LOG(reason == SuspendReason::kForUserCode ? ERROR : FATAL)
<< "Resume(" << reinterpret_cast<void*>(thread) << ") thread not within thread list";
return false;
}
thread->DecrementSuspendCount(self, /*for_user_code=*/(reason == SuspendReason::kForUserCode));
Thread::resume_cond_->Broadcast(self);
}
VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") finished waking others";
return true;
}
bool ThreadList::SuspendThread(Thread* self,
Thread* thread,
SuspendReason reason,
ThreadState self_state,
const char* func_name,
int attempt_of_4) {
bool is_suspended = false;
VLOG(threads) << func_name << "starting";
pid_t tid = thread->GetTid();
uint8_t suspended_count;
uint8_t checkpoint_count;
WrappedSuspend1Barrier wrapped_barrier{};
static_assert(sizeof wrapped_barrier.barrier_ == sizeof(uint32_t));
ThreadExitFlag tef;
bool exited = false;
thread->NotifyOnThreadExit(&tef);
int iter_count = 1;
do {
{
Locks::mutator_lock_->AssertSharedHeld(self);
Locks::thread_list_lock_->AssertHeld(self);
// Note: this will transition to runnable and potentially suspend.
DCHECK(Contains(thread));
// This implementation fails if thread == self. Let the clients handle that case
// appropriately.
CHECK_NE(thread, self) << func_name << "(self)";
VLOG(threads) << func_name << " suspending: " << *thread;
{
MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
if (LIKELY(self->GetSuspendCount() == 0)) {
suspended_count = thread->suspended_count_;
checkpoint_count = thread->checkpoint_count_;
thread->IncrementSuspendCount(self, nullptr, &wrapped_barrier, reason);
if (thread->IsSuspended()) {
// See the discussion in mutator_gc_coord.md and SuspendAllInternal for the race here.
thread->RemoveFirstSuspend1Barrier(&wrapped_barrier);
// PassActiveSuspendBarriers couldn't have seen our barrier, since it also acquires
// 'thread_suspend_count_lock_'. `wrapped_barrier` will not be accessed.
if (!thread->HasActiveSuspendBarrier()) {
thread->AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
}
is_suspended = true;
}
DCHECK_GT(thread->GetSuspendCount(), 0);
break;
}
// Else we hold the suspend count lock but another thread is trying to suspend us,
// making it unsafe to try to suspend another thread in case we get a cycle.
// Start the loop again, which will allow this thread to be suspended.
}
}
// All locks are released, and we should quickly exit the suspend-unfriendly state. Retry.
if (iter_count >= kMaxSuspendRetries) {
LOG(FATAL) << "Too many suspend retries";
}
Locks::thread_list_lock_->ExclusiveUnlock(self);
{
ScopedThreadSuspension sts(self, ThreadState::kSuspended);
usleep(kThreadSuspendSleepUs);
++iter_count;
}
Locks::thread_list_lock_->ExclusiveLock(self);
exited = tef.HasExited();
} while (!exited);
thread->UnregisterThreadExitFlag(&tef);
Locks::thread_list_lock_->ExclusiveUnlock(self);
self->TransitionFromRunnableToSuspended(self_state);
if (exited) {
// This is OK: There's a race in inflating a lock and the owner giving up ownership and then
// dying.
LOG(WARNING) << StringPrintf("Thread with tid %d exited before suspending", tid);
return false;
}
// Now wait for target to decrement suspend barrier.
std::optional<std::string> failure_info;
if (!is_suspended) {
failure_info = WaitForSuspendBarrier(&wrapped_barrier.barrier_, tid, attempt_of_4);
if (!failure_info.has_value()) {
is_suspended = true;
}
}
while (!is_suspended) {
if (attempt_of_4 > 0 && attempt_of_4 < 4) {
// Caller will try again. Give up and resume the thread for now. We need to make sure
// that wrapped_barrier is removed from the list before we deallocate it.
MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
if (wrapped_barrier.barrier_.load() == 0) {
// Succeeded in the meantime.
is_suspended = true;
continue;
}
thread->RemoveSuspend1Barrier(&wrapped_barrier);
if (!thread->HasActiveSuspendBarrier()) {
thread->AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
}
// Do not call Resume(), since we are probably not fully suspended.
thread->DecrementSuspendCount(self,
/*for_user_code=*/(reason == SuspendReason::kForUserCode));
Thread::resume_cond_->Broadcast(self);
return false;
}
std::string name;
thread->GetThreadName(name);
WrappedSuspend1Barrier* first_barrier;
{
MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
first_barrier = thread->tlsPtr_.active_suspend1_barriers;
}
// 'thread' should still have a suspend request pending, and hence stick around. Try to abort
// there, since its stack trace is much more interesting than ours.
std::string message = StringPrintf(
"%s timed out: %d (%s), state&flags: 0x%x, priority: %d,"
" barriers: %p, ours: %p, barrier value: %d, nsusps: %d, ncheckpts: %d, thread_info: %s",
func_name,
thread->GetTid(),
name.c_str(),
thread->GetStateAndFlags(std::memory_order_relaxed).GetValue(),
thread->GetNativePriority(),
first_barrier,
&wrapped_barrier,
wrapped_barrier.barrier_.load(),
thread->suspended_count_ - suspended_count,
thread->checkpoint_count_ - checkpoint_count,
failure_info.value().c_str());
// Check one last time whether thread passed the suspend barrier. Empirically this seems to
// happen maybe between 1 and 5% of the time.
if (wrapped_barrier.barrier_.load() != 0) {
// thread still has a pointer to wrapped_barrier. Returning and continuing would be unsafe
// without additional cleanup.
thread->AbortInThis(message);
UNREACHABLE();
}
is_suspended = true;
}
// wrapped_barrier.barrier_ will no longer be accessed.
VLOG(threads) << func_name << " suspended: " << *thread;
if (ATraceEnabled()) {
std::string name;
thread->GetThreadName(name);
ATraceBegin(
StringPrintf("%s suspended %s for tid=%d", func_name, name.c_str(), thread->GetTid())
.c_str());
}
if (kIsDebugBuild) {
CHECK(thread->IsSuspended());
MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
thread->CheckBarrierInactive(&wrapped_barrier);
}
return true;
}
Thread* ThreadList::SuspendThreadByPeer(jobject peer, SuspendReason reason) {
Thread* const self = Thread::Current();
ThreadState old_self_state = self->GetState();
self->TransitionFromSuspendedToRunnable();
Locks::thread_list_lock_->ExclusiveLock(self);
ObjPtr<mirror::Object> thread_ptr = self->DecodeJObject(peer);
Thread* thread = Thread::FromManagedThread(self, thread_ptr);
if (thread == nullptr || !Contains(thread)) {
if (thread == nullptr) {
ObjPtr<mirror::Object> name = WellKnownClasses::java_lang_Thread_name->GetObject(thread_ptr);
std::string thr_name = (name == nullptr ? "<unknown>" : name->AsString()->ToModifiedUtf8());
LOG(WARNING) << "No such thread for suspend"
<< ": " << peer << ":" << thr_name;
} else {
LOG(WARNING) << "SuspendThreadByPeer failed for unattached thread: "
<< reinterpret_cast<void*>(thread);
}
Locks::thread_list_lock_->ExclusiveUnlock(self);
self->TransitionFromRunnableToSuspended(old_self_state);
return nullptr;
}
VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
// Releases thread_list_lock_ and mutator lock.
bool success = SuspendThread(self, thread, reason, old_self_state, __func__, 0);
Locks::thread_list_lock_->AssertNotHeld(self);
return success ? thread : nullptr;
}
Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
SuspendReason reason,
int attempt_of_4) {
Thread* const self = Thread::Current();
ThreadState old_self_state = self->GetState();
CHECK_NE(thread_id, kInvalidThreadId);
VLOG(threads) << "SuspendThreadByThreadId starting";
self->TransitionFromSuspendedToRunnable();
Locks::thread_list_lock_->ExclusiveLock(self);
Thread* thread = FindThreadByThreadId(thread_id);
if (thread == nullptr) {
// There's a race in inflating a lock and the owner giving up ownership and then dying.
LOG(WARNING) << StringPrintf("No such thread id %d for suspend", thread_id);
Locks::thread_list_lock_->ExclusiveUnlock(self);
self->TransitionFromRunnableToSuspended(old_self_state);
return nullptr;
}
DCHECK(Contains(thread));
VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
// Releases thread_list_lock_ and mutator lock.
bool success = SuspendThread(self, thread, reason, old_self_state, __func__, attempt_of_4);
Locks::thread_list_lock_->AssertNotHeld(self);
return success ? thread : nullptr;
}
Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
for (const auto& thread : list_) {
if (thread->GetThreadId() == thread_id) {
return thread;
}
}
return nullptr;
}
Thread* ThreadList::FindThreadByTid(int tid) {
for (const auto& thread : list_) {
if (thread->GetTid() == tid) {
return thread;
}
}
return nullptr;
}
void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
ScopedTrace trace(__PRETTY_FUNCTION__);
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertNotHeld(self);
while (true) {
Locks::runtime_shutdown_lock_->Lock(self);
if (check_no_birth) {
// No more threads can be born after we start to shutdown.
CHECK(Runtime::Current()->IsShuttingDownLocked());
CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
} else {
if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
// Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
// Fortunately, this is used mostly for testing, and not performance-critical.
Locks::runtime_shutdown_lock_->Unlock(self);
usleep(1000);
continue;
}
}
MutexLock mu(self, *Locks::thread_list_lock_);
Locks::runtime_shutdown_lock_->Unlock(self);
// Also wait for any threads that are unregistering to finish. This is required so that no
// threads access the thread list after it is deleted. TODO: This may not work for user daemon
// threads since they could unregister at the wrong time.
bool done = unregistering_count_ == 0;
if (done) {
for (const auto& thread : list_) {
if (thread != self && !thread->IsDaemon()) {
done = false;
break;
}
}
}
if (done) {
break;
}
// Wait for another thread to exit before re-checking.
Locks::thread_exit_cond_->Wait(self);
}
}
void ThreadList::SuspendAllDaemonThreadsForShutdown() {
ScopedTrace trace(__PRETTY_FUNCTION__);
Thread* self = Thread::Current();
size_t daemons_left = 0;
{
// Tell all the daemons it's time to suspend.
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
for (const auto& thread : list_) {
// This is only run after all non-daemon threads have exited, so the remainder should all be
// daemons.
CHECK(thread->IsDaemon()) << *thread;
if (thread != self) {
thread->IncrementSuspendCount(self);
++daemons_left;
}
// We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
// the sleep forever one.
thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
}
}
if (daemons_left == 0) {
// No threads left; safe to shut down.
return;
}
// There is not a clean way to shut down if we have daemons left. We have no mechanism for
// killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
// have truly finished touching the memory we are about to deallocate. We do the best we can with
// timeouts.
//
// If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
// in a place where they are about to access runtime state and are not in a runnable state.
// We attempt to do the latter by just waiting long enough for things to
// quiesce. Examples: Monitor code or waking up from a condition variable.
//
// Give the threads a chance to suspend, complaining if they're slow. (a)
bool have_complained = false;
static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
static constexpr size_t kSleepMicroseconds = 1000;
bool all_suspended = false;
for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
bool found_running = false;
{
MutexLock mu(self, *Locks::thread_list_lock_);
for (const auto& thread : list_) {
if (thread != self && thread->GetState() == ThreadState::kRunnable) {
if (!have_complained) {
LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
have_complained = true;
}
found_running = true;
}
}
}
if (found_running) {
// Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
usleep(kSleepMicroseconds);
} else {
all_suspended = true;
}
}
if (!all_suspended) {
// We can get here if a daemon thread executed a fastnative native call, so that it
// remained in runnable state, and then made a JNI call after we called
// SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
// but runnable state. See b/147804269 .
LOG(WARNING) << "timed out suspending all daemon threads";
}
// Assume all threads are either suspended or somehow wedged.
// Wait again for all the now "suspended" threads to actually quiesce. (b)
static constexpr size_t kDaemonSleepTime = 400'000;
usleep(kDaemonSleepTime);
std::list<Thread*> list_copy;
{
MutexLock mu(self, *Locks::thread_list_lock_);
// Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
// threads to immediately go back to sleep without touching memory. This prevents us from
// touching deallocated memory, but it also prevents mutexes from getting released. Thus we
// only do this once we're reasonably sure that no system mutexes are still held.
for (const auto& thread : list_) {
DCHECK(thread == self || !all_suspended || thread->GetState() != ThreadState::kRunnable);
// In the !all_suspended case, the target is probably sleeping.
thread->GetJniEnv()->SetRuntimeDeleted();
// Possibly contended Mutex acquisitions are unsafe after this.
// Releasing thread_list_lock_ is OK, since it can't block.
}
}
// Finally wait for any threads woken before we set the "runtime deleted" flags to finish
// touching memory.
usleep(kDaemonSleepTime);
#if defined(__has_feature)
#if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
// Sleep a bit longer with -fsanitize=address, since everything is slower.
usleep(2 * kDaemonSleepTime);
#endif
#endif
// At this point no threads should be touching our data structures anymore.
}
void ThreadList::Register(Thread* self) {
DCHECK_EQ(self, Thread::Current());
CHECK(!shut_down_);
if (VLOG_IS_ON(threads)) {
std::ostringstream oss;
self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
}
// Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
// SuspendAll requests.
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
if (suspend_all_count_ == 1) {
self->IncrementSuspendCount(self);
} else {
DCHECK_EQ(suspend_all_count_, 0);
}
CHECK(!Contains(self));
list_.push_back(self);
if (gUseReadBarrier) {
gc::collector::ConcurrentCopying* const cc =
Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
// Initialize according to the state of the CC collector.
self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
if (cc->IsUsingReadBarrierEntrypoints()) {
self->SetReadBarrierEntrypoints();
}
self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
}
}
void ThreadList::Unregister(Thread* self, bool should_run_callbacks) {
DCHECK_EQ(self, Thread::Current());
CHECK_NE(self->GetState(), ThreadState::kRunnable);
Locks::mutator_lock_->AssertNotHeld(self);
if (self->tls32_.disable_thread_flip_count != 0) {
LOG(FATAL) << "Incomplete PrimitiveArrayCritical section at exit: " << *self << "count = "
<< self->tls32_.disable_thread_flip_count;
}
VLOG(threads) << "ThreadList::Unregister() " << *self;
{
MutexLock mu(self, *Locks::thread_list_lock_);
++unregistering_count_;
}
// Any time-consuming destruction, plus anything that can call back into managed code or
// suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
// causes the threads to join. It is important to do this after incrementing unregistering_count_
// since we want the runtime to wait for the daemon threads to exit before deleting the thread
// list.
self->Destroy(should_run_callbacks);
uint32_t thin_lock_id = self->GetThreadId();
while (true) {
// Remove and delete the Thread* while holding the thread_list_lock_ and
// thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
// Note: deliberately not using MutexLock that could hold a stale self pointer.
{
MutexLock mu(self, *Locks::thread_list_lock_);
if (!Contains(self)) {
std::string thread_name;
self->GetThreadName(thread_name);
std::ostringstream os;
DumpNativeStack(os, GetTid(), " native: ", nullptr);
LOG(FATAL) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
UNREACHABLE();
} else {
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
Thread::StateAndFlags state_and_flags = self->GetStateAndFlags(std::memory_order_acquire);
if (!state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction) &&
!state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
list_.remove(self);
self->SignalExitFlags();
break;
}
}
}
// In the case where we are not suspended yet, sleep to leave other threads time to execute.
// This is important if there are realtime threads. b/111277984
usleep(1);
// We failed to remove the thread due to a suspend request or the like, loop and try again.
}
delete self;
// Release the thread ID after the thread is finished and deleted to avoid cases where we can
// temporarily have multiple threads with the same thread id. When this occurs, it causes
// problems in FindThreadByThreadId / SuspendThreadByThreadId.
ReleaseThreadId(nullptr, thin_lock_id);
// Clear the TLS data, so that the underlying native thread is recognizably detached.
// (It may wish to reattach later.)
#ifdef __BIONIC__
__get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
#else
CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
Thread::self_tls_ = nullptr;
#endif
// Signal that a thread just detached.
MutexLock mu(nullptr, *Locks::thread_list_lock_);
--unregistering_count_;
Locks::thread_exit_cond_->Broadcast(nullptr);
}
void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
for (const auto& thread : list_) {
callback(thread, context);
}
}
void ThreadList::WaitForUnregisterToComplete(Thread* self) {
// We hold thread_list_lock_ .
while (unregistering_count_ != 0) {
LOG(WARNING) << "Waiting for a thread to finish unregistering";
Locks::thread_exit_cond_->Wait(self);
}
}
void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
Thread* const self = Thread::Current();
std::vector<Thread*> threads_to_visit;
// Tell threads to suspend and copy them into list.
{
MutexLock mu(self, *Locks::thread_list_lock_);
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
for (Thread* thread : list_) {
thread->IncrementSuspendCount(self);
if (thread == self || thread->IsSuspended()) {
threads_to_visit.push_back(thread);
} else {
thread->DecrementSuspendCount(self);
}
}
}
// Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
// order violations.
for (Thread* thread : threads_to_visit) {
thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
}
// Restore suspend counts.
{
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
for (Thread* thread : threads_to_visit) {
thread->DecrementSuspendCount(self);
}
Thread::resume_cond_->Broadcast(self);
}
}
void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
for (const auto& thread : list_) {
thread->VisitRoots(visitor, flags);
}
}
void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
for (const auto& thread : list_) {
thread->VisitReflectiveTargets(visitor);
}
}
void ThreadList::SweepInterpreterCaches(IsMarkedVisitor* visitor) const {
MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
for (const auto& thread : list_) {
thread->SweepInterpreterCache(visitor);
}
}
uint32_t ThreadList::AllocThreadId(Thread* self) {
MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
for (size_t i = 0; i < allocated_ids_.size(); ++i) {
if (!allocated_ids_[i]) {
allocated_ids_.set(i);
return i + 1; // Zero is reserved to mean "invalid".
}
}
LOG(FATAL) << "Out of internal thread ids";
UNREACHABLE();
}
void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
--id; // Zero is reserved to mean "invalid".
DCHECK(allocated_ids_[id]) << id;
allocated_ids_.reset(id);
}
ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
}
ScopedSuspendAll::~ScopedSuspendAll() {
Runtime::Current()->GetThreadList()->ResumeAll();
}
} // namespace art