| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image.h" |
| |
| #include <lz4.h> |
| #include <lz4hc.h> |
| #include <sstream> |
| #include <sys/stat.h> |
| #include <zlib.h> |
| |
| #include "android-base/stringprintf.h" |
| |
| #include "base/bit_utils.h" |
| #include "base/length_prefixed_array.h" |
| #include "base/utils.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/object_array.h" |
| |
| namespace art HIDDEN { |
| |
| const uint8_t ImageHeader::kImageMagic[] = { 'a', 'r', 't', '\n' }; |
| // Last change: Split intrinsics list - with and without HIR. |
| const uint8_t ImageHeader::kImageVersion[] = { '1', '0', '9', '\0' }; |
| |
| ImageHeader::ImageHeader(uint32_t image_reservation_size, |
| uint32_t component_count, |
| uint32_t image_begin, |
| uint32_t image_size, |
| ImageSection* sections, |
| uint32_t image_roots, |
| uint32_t oat_checksum, |
| uint32_t oat_file_begin, |
| uint32_t oat_data_begin, |
| uint32_t oat_data_end, |
| uint32_t oat_file_end, |
| uint32_t boot_image_begin, |
| uint32_t boot_image_size, |
| uint32_t boot_image_component_count, |
| uint32_t boot_image_checksum, |
| uint32_t pointer_size) |
| : image_reservation_size_(image_reservation_size), |
| component_count_(component_count), |
| image_begin_(image_begin), |
| image_size_(image_size), |
| image_checksum_(0u), |
| oat_checksum_(oat_checksum), |
| oat_file_begin_(oat_file_begin), |
| oat_data_begin_(oat_data_begin), |
| oat_data_end_(oat_data_end), |
| oat_file_end_(oat_file_end), |
| boot_image_begin_(boot_image_begin), |
| boot_image_size_(boot_image_size), |
| boot_image_component_count_(boot_image_component_count), |
| boot_image_checksum_(boot_image_checksum), |
| image_roots_(image_roots), |
| pointer_size_(pointer_size) { |
| CHECK_EQ(image_begin, RoundUp(image_begin, kElfSegmentAlignment)); |
| if (oat_checksum != 0u) { |
| CHECK_EQ(oat_file_begin, RoundUp(oat_file_begin, kElfSegmentAlignment)); |
| CHECK_EQ(oat_data_begin, RoundUp(oat_data_begin, kElfSegmentAlignment)); |
| CHECK_LT(image_roots, oat_file_begin); |
| CHECK_LE(oat_file_begin, oat_data_begin); |
| CHECK_LT(oat_data_begin, oat_data_end); |
| CHECK_LE(oat_data_end, oat_file_end); |
| } |
| CHECK(ValidPointerSize(pointer_size_)) << pointer_size_; |
| memcpy(magic_, kImageMagic, sizeof(kImageMagic)); |
| memcpy(version_, kImageVersion, sizeof(kImageVersion)); |
| std::copy_n(sections, kSectionCount, sections_); |
| } |
| |
| void ImageHeader::RelocateImageReferences(int64_t delta) { |
| // App Images can be relocated to a page aligned address. |
| // Unlike with the Boot Image, for which the memory is reserved in advance of |
| // loading and is aligned to kElfSegmentAlignment, the App Images can be mapped |
| // without reserving memory i.e. via direct file mapping in which case the |
| // memory range is aligned by the kernel and the only guarantee is that it is |
| // aligned to the page sizes. |
| // |
| // NOTE: While this might be less than alignment required via information in |
| // the ELF header, it should be sufficient in practice as the only reason |
| // for the ELF segment alignment to be more than one page size is the |
| // compatibility of the ELF with system configurations that use larger |
| // page size. |
| // |
| // Adding preliminary memory reservation would introduce certain overhead. |
| // |
| // However, technically the alignment requirement isn't fulfilled and that |
| // might be worth addressing even if it adds certain overhead. This will have |
| // to be done in alignment with the dynamic linker's ELF loader as |
| // otherwise inconsistency would still be possible e.g. when using |
| // `dlopen`-like calls to load OAT files. |
| CHECK_ALIGNED_PARAM(delta, gPageSize) << "relocation delta must be page aligned"; |
| oat_file_begin_ += delta; |
| oat_data_begin_ += delta; |
| oat_data_end_ += delta; |
| oat_file_end_ += delta; |
| image_begin_ += delta; |
| image_roots_ += delta; |
| } |
| |
| void ImageHeader::RelocateBootImageReferences(int64_t delta) { |
| CHECK_ALIGNED(delta, kElfSegmentAlignment) << "relocation delta must be Elf segment aligned"; |
| DCHECK_EQ(boot_image_begin_ != 0u, boot_image_size_ != 0u); |
| if (boot_image_begin_ != 0u) { |
| boot_image_begin_ += delta; |
| } |
| for (size_t i = 0; i < kImageMethodsCount; ++i) { |
| image_methods_[i] += delta; |
| } |
| } |
| |
| bool ImageHeader::IsAppImage() const { |
| // Unlike boot image and boot image extensions which include address space for |
| // oat files in their reservation size, app images are loaded separately from oat |
| // files and their reservation size is the image size rounded up to Elf alignment. |
| return image_reservation_size_ == RoundUp(image_size_, kElfSegmentAlignment); |
| } |
| |
| uint32_t ImageHeader::GetImageSpaceCount() const { |
| DCHECK(!IsAppImage()); |
| DCHECK_NE(component_count_, 0u); // Must be the header for the first component. |
| // For images compiled with --single-image, there is only one oat file. To detect |
| // that, check whether the reservation ends at the end of the first oat file. |
| return (image_begin_ + image_reservation_size_ == oat_file_end_) ? 1u : component_count_; |
| } |
| |
| bool ImageHeader::IsValid() const { |
| if (memcmp(magic_, kImageMagic, sizeof(kImageMagic)) != 0) { |
| return false; |
| } |
| if (memcmp(version_, kImageVersion, sizeof(kImageVersion)) != 0) { |
| return false; |
| } |
| if (!IsAligned<kElfSegmentAlignment>(image_reservation_size_)) { |
| return false; |
| } |
| // Unsigned so wraparound is well defined. |
| if (image_begin_ >= image_begin_ + image_size_) { |
| return false; |
| } |
| if (oat_checksum_ != 0u) { |
| if (oat_file_begin_ > oat_file_end_) { |
| return false; |
| } |
| if (oat_data_begin_ > oat_data_end_) { |
| return false; |
| } |
| if (oat_file_begin_ >= oat_data_begin_) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| const char* ImageHeader::GetMagic() const { |
| CHECK(IsValid()); |
| return reinterpret_cast<const char*>(magic_); |
| } |
| |
| ArtMethod* ImageHeader::GetImageMethod(ImageMethod index) const { |
| CHECK_LT(static_cast<size_t>(index), kImageMethodsCount); |
| return reinterpret_cast<ArtMethod*>(image_methods_[index]); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const ImageSection& section) { |
| return os << "size=" << section.Size() << " range=" << section.Offset() << "-" << section.End(); |
| } |
| |
| void ImageHeader::VisitObjects(ObjectVisitor* visitor, |
| uint8_t* base, |
| PointerSize pointer_size) const { |
| DCHECK_EQ(pointer_size, GetPointerSize()); |
| const ImageSection& objects = GetObjectsSection(); |
| static const size_t kStartPos = RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| for (size_t pos = kStartPos; pos < objects.Size(); ) { |
| mirror::Object* object = reinterpret_cast<mirror::Object*>(base + objects.Offset() + pos); |
| visitor->Visit(object); |
| pos += RoundUp(object->SizeOf(), kObjectAlignment); |
| } |
| } |
| |
| PointerSize ImageHeader::GetPointerSize() const { |
| return ConvertToPointerSize(pointer_size_); |
| } |
| |
| bool LZ4_decompress_safe_checked(const char* source, |
| char* dest, |
| int compressed_size, |
| int max_decompressed_size, |
| /*out*/ size_t* decompressed_size_checked, |
| /*out*/ std::string* error_msg) { |
| int decompressed_size = LZ4_decompress_safe(source, dest, compressed_size, max_decompressed_size); |
| if (UNLIKELY(decompressed_size < 0)) { |
| *error_msg = android::base::StringPrintf("LZ4_decompress_safe() returned negative size: %d", |
| decompressed_size); |
| return false; |
| } else { |
| *decompressed_size_checked = static_cast<size_t>(decompressed_size); |
| return true; |
| } |
| } |
| |
| bool ImageHeader::Block::Decompress(uint8_t* out_ptr, |
| const uint8_t* in_ptr, |
| std::string* error_msg) const { |
| switch (storage_mode_) { |
| case kStorageModeUncompressed: { |
| CHECK_EQ(image_size_, data_size_); |
| memcpy(out_ptr + image_offset_, in_ptr + data_offset_, data_size_); |
| break; |
| } |
| case kStorageModeLZ4: |
| case kStorageModeLZ4HC: { |
| // LZ4HC and LZ4 have same internal format, both use LZ4_decompress. |
| size_t decompressed_size; |
| bool ok = LZ4_decompress_safe_checked( |
| reinterpret_cast<const char*>(in_ptr) + data_offset_, |
| reinterpret_cast<char*>(out_ptr) + image_offset_, |
| data_size_, |
| image_size_, |
| &decompressed_size, |
| error_msg); |
| if (!ok) { |
| return false; |
| } |
| if (decompressed_size != image_size_) { |
| if (error_msg != nullptr) { |
| // Maybe some disk / memory corruption, just bail. |
| *error_msg = (std::ostringstream() << "Decompressed size different than image size: " |
| << decompressed_size << ", and " << image_size_).str(); |
| } |
| return false; |
| } |
| break; |
| } |
| default: { |
| if (error_msg != nullptr) { |
| *error_msg = (std::ostringstream() << "Invalid image format " << storage_mode_).str(); |
| } |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| const char* ImageHeader::GetImageSectionName(ImageSections index) { |
| switch (index) { |
| case kSectionObjects: return "Objects"; |
| case kSectionArtFields: return "ArtFields"; |
| case kSectionArtMethods: return "ArtMethods"; |
| case kSectionRuntimeMethods: return "RuntimeMethods"; |
| case kSectionImTables: return "ImTables"; |
| case kSectionIMTConflictTables: return "IMTConflictTables"; |
| case kSectionInternedStrings: return "InternedStrings"; |
| case kSectionClassTable: return "ClassTable"; |
| case kSectionStringReferenceOffsets: return "StringReferenceOffsets"; |
| case kSectionDexCacheArrays: return "DexCacheArrays"; |
| case kSectionMetadata: return "Metadata"; |
| case kSectionImageBitmap: return "ImageBitmap"; |
| case kSectionCount: return nullptr; |
| } |
| } |
| |
| // Compress data from `source` into `storage`. |
| static bool CompressData(ArrayRef<const uint8_t> source, |
| ImageHeader::StorageMode image_storage_mode, |
| /*out*/ dchecked_vector<uint8_t>* storage) { |
| const uint64_t compress_start_time = NanoTime(); |
| |
| // Bound is same for both LZ4 and LZ4HC. |
| storage->resize(LZ4_compressBound(source.size())); |
| size_t data_size = 0; |
| if (image_storage_mode == ImageHeader::kStorageModeLZ4) { |
| data_size = LZ4_compress_default( |
| reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())), |
| reinterpret_cast<char*>(storage->data()), |
| source.size(), |
| storage->size()); |
| } else { |
| DCHECK_EQ(image_storage_mode, ImageHeader::kStorageModeLZ4HC); |
| data_size = LZ4_compress_HC( |
| reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())), |
| reinterpret_cast<char*>(storage->data()), |
| source.size(), |
| storage->size(), |
| LZ4HC_CLEVEL_MAX); |
| } |
| |
| if (data_size == 0) { |
| return false; |
| } |
| storage->resize(data_size); |
| |
| VLOG(image) << "Compressed from " << source.size() << " to " << storage->size() << " in " |
| << PrettyDuration(NanoTime() - compress_start_time); |
| if (kIsDebugBuild) { |
| dchecked_vector<uint8_t> decompressed(source.size()); |
| size_t decompressed_size; |
| std::string error_msg; |
| bool ok = LZ4_decompress_safe_checked( |
| reinterpret_cast<char*>(storage->data()), |
| reinterpret_cast<char*>(decompressed.data()), |
| storage->size(), |
| decompressed.size(), |
| &decompressed_size, |
| &error_msg); |
| if (!ok) { |
| LOG(FATAL) << error_msg; |
| UNREACHABLE(); |
| } |
| CHECK_EQ(decompressed_size, decompressed.size()); |
| CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode; |
| } |
| return true; |
| } |
| |
| bool ImageHeader::WriteData(const ImageFileGuard& image_file, |
| const uint8_t* data, |
| const uint8_t* bitmap_data, |
| ImageHeader::StorageMode image_storage_mode, |
| uint32_t max_image_block_size, |
| bool update_checksum, |
| std::string* error_msg) { |
| const bool is_compressed = image_storage_mode != ImageHeader::kStorageModeUncompressed; |
| dchecked_vector<std::pair<uint32_t, uint32_t>> block_sources; |
| dchecked_vector<ImageHeader::Block> blocks; |
| |
| // Add a set of solid blocks such that no block is larger than the maximum size. A solid block |
| // is a block that must be decompressed all at once. |
| auto add_blocks = [&](uint32_t offset, uint32_t size) { |
| while (size != 0u) { |
| const uint32_t cur_size = std::min(size, max_image_block_size); |
| block_sources.emplace_back(offset, cur_size); |
| offset += cur_size; |
| size -= cur_size; |
| } |
| }; |
| |
| add_blocks(sizeof(ImageHeader), this->GetImageSize() - sizeof(ImageHeader)); |
| |
| // Checksum of compressed image data and header. |
| uint32_t image_checksum = 0u; |
| if (update_checksum) { |
| image_checksum = adler32(0L, Z_NULL, 0); |
| image_checksum = adler32(image_checksum, |
| reinterpret_cast<const uint8_t*>(this), |
| sizeof(ImageHeader)); |
| } |
| |
| // Copy and compress blocks. |
| uint32_t out_offset = sizeof(ImageHeader); |
| for (const std::pair<uint32_t, uint32_t> block : block_sources) { |
| ArrayRef<const uint8_t> raw_image_data(data + block.first, block.second); |
| dchecked_vector<uint8_t> compressed_data; |
| ArrayRef<const uint8_t> image_data; |
| if (is_compressed) { |
| if (!CompressData(raw_image_data, image_storage_mode, &compressed_data)) { |
| *error_msg = "Error compressing data for " + |
| image_file->GetPath() + ": " + std::string(strerror(errno)); |
| return false; |
| } |
| image_data = ArrayRef<const uint8_t>(compressed_data); |
| } else { |
| image_data = raw_image_data; |
| // For uncompressed, preserve alignment since the image will be directly mapped. |
| out_offset = block.first; |
| } |
| |
| // Fill in the compressed location of the block. |
| blocks.emplace_back(ImageHeader::Block( |
| image_storage_mode, |
| /*data_offset=*/ out_offset, |
| /*data_size=*/ image_data.size(), |
| /*image_offset=*/ block.first, |
| /*image_size=*/ block.second)); |
| |
| if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) { |
| *error_msg = "Failed to write image file data " + |
| image_file->GetPath() + ": " + std::string(strerror(errno)); |
| return false; |
| } |
| out_offset += image_data.size(); |
| if (update_checksum) { |
| image_checksum = adler32(image_checksum, image_data.data(), image_data.size()); |
| } |
| } |
| |
| if (is_compressed) { |
| // Align up since the compressed data is not necessarily aligned. |
| out_offset = RoundUp(out_offset, alignof(ImageHeader::Block)); |
| CHECK(!blocks.empty()); |
| const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]); |
| if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) { |
| *error_msg = "Failed to write image blocks " + |
| image_file->GetPath() + ": " + std::string(strerror(errno)); |
| return false; |
| } |
| this->blocks_offset_ = out_offset; |
| this->blocks_count_ = blocks.size(); |
| out_offset += blocks_bytes; |
| } |
| |
| // Data size includes everything except the bitmap. |
| this->data_size_ = out_offset - sizeof(ImageHeader); |
| |
| // Update and write the bitmap section. Note that the bitmap section is relative to the |
| // possibly compressed image. |
| ImageSection& bitmap_section = GetImageSection(ImageHeader::kSectionImageBitmap); |
| // Align up since data size may be unaligned if the image is compressed. |
| out_offset = RoundUp(out_offset, kElfSegmentAlignment); |
| bitmap_section = ImageSection(out_offset, bitmap_section.Size()); |
| |
| if (!image_file->PwriteFully(bitmap_data, |
| bitmap_section.Size(), |
| bitmap_section.Offset())) { |
| *error_msg = "Failed to write image file bitmap " + |
| image_file->GetPath() + ": " + std::string(strerror(errno)); |
| return false; |
| } |
| |
| int err = image_file->Flush(); |
| if (err < 0) { |
| *error_msg = "Failed to flush image file " + image_file->GetPath() + ": " + std::to_string(err); |
| return false; |
| } |
| |
| if (update_checksum) { |
| // Calculate the image checksum of the remaining data. |
| image_checksum = adler32(image_checksum, |
| reinterpret_cast<const uint8_t*>(bitmap_data), |
| bitmap_section.Size()); |
| this->SetImageChecksum(image_checksum); |
| } |
| |
| if (VLOG_IS_ON(image)) { |
| const size_t separately_written_section_size = bitmap_section.Size(); |
| const size_t total_uncompressed_size = image_size_ + separately_written_section_size; |
| const size_t total_compressed_size = out_offset + separately_written_section_size; |
| |
| VLOG(compiler) << "UncompressedImageSize = " << total_uncompressed_size; |
| if (total_uncompressed_size != total_compressed_size) { |
| VLOG(compiler) << "CompressedImageSize = " << total_compressed_size; |
| } |
| } |
| |
| DCHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength())) |
| << "Bitmap should be at the end of the file"; |
| return true; |
| } |
| |
| } // namespace art |