blob: 670db19a2259ab463b4ba3f62abe562b0826da5a [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "local_reference_table-inl.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/globals.h"
#include "base/mutator_locked_dumpable.h"
#include "base/systrace.h"
#include "base/utils.h"
#include "indirect_reference_table.h"
#include "jni/java_vm_ext.h"
#include "jni/jni_internal.h"
#include "mirror/object-inl.h"
#include "nth_caller_visitor.h"
#include "reference_table.h"
#include "runtime-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include <cstdlib>
namespace art HIDDEN {
namespace jni {
static constexpr bool kDumpStackOnNonLocalReference = false;
// Mmap an "indirect ref table region. Table_bytes is a multiple of a page size.
static inline MemMap NewLRTMap(size_t table_bytes, std::string* error_msg) {
return MemMap::MapAnonymous("local ref table",
table_bytes,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ false,
error_msg);
}
SmallLrtAllocator::SmallLrtAllocator()
: free_lists_(num_lrt_slots_, nullptr),
shared_lrt_maps_(),
lock_("Small LRT allocator lock", LockLevel::kGenericBottomLock) {
}
inline size_t SmallLrtAllocator::GetIndex(size_t size) {
DCHECK_GE(size, kSmallLrtEntries);
DCHECK_LT(size, gPageSize / sizeof(LrtEntry));
DCHECK(IsPowerOfTwo(size));
size_t index = WhichPowerOf2(size / kSmallLrtEntries);
DCHECK_LT(index, num_lrt_slots_);
return index;
}
LrtEntry* SmallLrtAllocator::Allocate(size_t size, std::string* error_msg) {
size_t index = GetIndex(size);
MutexLock lock(Thread::Current(), lock_);
size_t fill_from = index;
while (fill_from != num_lrt_slots_ && free_lists_[fill_from] == nullptr) {
++fill_from;
}
void* result = nullptr;
if (fill_from != num_lrt_slots_) {
// We found a slot with enough memory.
result = free_lists_[fill_from];
free_lists_[fill_from] = *reinterpret_cast<void**>(result);
} else {
// We need to allocate a new page and split it into smaller pieces.
MemMap map = NewLRTMap(gPageSize, error_msg);
if (!map.IsValid()) {
return nullptr;
}
result = map.Begin();
shared_lrt_maps_.emplace_back(std::move(map));
}
while (fill_from != index) {
--fill_from;
// Store the second half of the current buffer in appropriate free list slot.
void* mid = reinterpret_cast<uint8_t*>(result) + (kInitialLrtBytes << fill_from);
DCHECK(free_lists_[fill_from] == nullptr);
*reinterpret_cast<void**>(mid) = nullptr;
free_lists_[fill_from] = mid;
}
// Clear the memory we return to the caller.
std::memset(result, 0, kInitialLrtBytes << index);
return reinterpret_cast<LrtEntry*>(result);
}
void SmallLrtAllocator::Deallocate(LrtEntry* unneeded, size_t size) {
size_t index = GetIndex(size);
MutexLock lock(Thread::Current(), lock_);
while (index < num_lrt_slots_) {
// Check if we can merge this free block with another block with the same size.
void** other = reinterpret_cast<void**>(
reinterpret_cast<uintptr_t>(unneeded) ^ (kInitialLrtBytes << index));
void** before = &free_lists_[index];
if (index + 1u == num_lrt_slots_ && *before == other && *other == nullptr) {
// Do not unmap the page if we do not have other free blocks with index `num_lrt_slots_ - 1`.
// (Keep at least one free block to avoid a situation where creating and destroying a single
// thread with no local references would map and unmap a page in the `SmallLrtAllocator`.)
break;
}
while (*before != nullptr && *before != other) {
before = reinterpret_cast<void**>(*before);
}
if (*before == nullptr) {
break;
}
// Remove `other` from the free list and merge it with the `unneeded` block.
DCHECK(*before == other);
*before = *reinterpret_cast<void**>(other);
++index;
unneeded = reinterpret_cast<LrtEntry*>(
reinterpret_cast<uintptr_t>(unneeded) & reinterpret_cast<uintptr_t>(other));
}
if (index == num_lrt_slots_) {
// Free the entire page.
DCHECK(free_lists_[num_lrt_slots_ - 1u] != nullptr);
auto match = [=](MemMap& map) { return unneeded == reinterpret_cast<LrtEntry*>(map.Begin()); };
auto it = std::find_if(shared_lrt_maps_.begin(), shared_lrt_maps_.end(), match);
DCHECK(it != shared_lrt_maps_.end());
shared_lrt_maps_.erase(it);
DCHECK(!shared_lrt_maps_.empty());
return;
}
*reinterpret_cast<void**>(unneeded) = free_lists_[index];
free_lists_[index] = unneeded;
}
LocalReferenceTable::LocalReferenceTable(bool check_jni)
: previous_state_(kLRTFirstSegment),
segment_state_(kLRTFirstSegment),
max_entries_(0u),
free_entries_list_(
FirstFreeField::Update(kFreeListEnd, check_jni ? 1u << kFlagCheckJni : 0u)),
small_table_(nullptr),
tables_(),
table_mem_maps_() {
}
void LocalReferenceTable::SetCheckJniEnabled(bool enabled) {
free_entries_list_ =
(free_entries_list_ & ~(1u << kFlagCheckJni)) | (enabled ? 1u << kFlagCheckJni : 0u);
}
bool LocalReferenceTable::Initialize(size_t max_count, std::string* error_msg) {
CHECK(error_msg != nullptr);
// Overflow and maximum check.
CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(LrtEntry));
if (IsCheckJniEnabled()) {
CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(LrtEntry) / kCheckJniEntriesPerReference);
max_count *= kCheckJniEntriesPerReference;
}
SmallLrtAllocator* small_lrt_allocator = Runtime::Current()->GetSmallLrtAllocator();
LrtEntry* first_table = small_lrt_allocator->Allocate(kSmallLrtEntries, error_msg);
if (first_table == nullptr) {
DCHECK(!error_msg->empty());
return false;
}
DCHECK_ALIGNED(first_table, kCheckJniEntriesPerReference * sizeof(LrtEntry));
small_table_ = first_table;
max_entries_ = kSmallLrtEntries;
return (max_count <= kSmallLrtEntries) || Resize(max_count, error_msg);
}
LocalReferenceTable::~LocalReferenceTable() {
SmallLrtAllocator* small_lrt_allocator =
max_entries_ != 0u ? Runtime::Current()->GetSmallLrtAllocator() : nullptr;
if (small_table_ != nullptr) {
small_lrt_allocator->Deallocate(small_table_, kSmallLrtEntries);
DCHECK(tables_.empty());
} else {
size_t num_small_tables = std::min(tables_.size(), MaxSmallTables());
for (size_t i = 0; i != num_small_tables; ++i) {
small_lrt_allocator->Deallocate(tables_[i], GetTableSize(i));
}
}
}
bool LocalReferenceTable::Resize(size_t new_size, std::string* error_msg) {
DCHECK_GE(max_entries_, kSmallLrtEntries);
DCHECK(IsPowerOfTwo(max_entries_));
DCHECK_GT(new_size, max_entries_);
DCHECK_LE(new_size, kMaxTableSizeInBytes / sizeof(LrtEntry));
size_t required_size = RoundUpToPowerOfTwo(new_size);
size_t num_required_tables = NumTablesForSize(required_size);
DCHECK_GE(num_required_tables, 2u);
// Delay moving the `small_table_` to `tables_` until after the next table allocation succeeds.
size_t num_tables = (small_table_ != nullptr) ? 1u : tables_.size();
DCHECK_EQ(num_tables, NumTablesForSize(max_entries_));
for (; num_tables != num_required_tables; ++num_tables) {
size_t new_table_size = GetTableSize(num_tables);
if (num_tables < MaxSmallTables()) {
SmallLrtAllocator* small_lrt_allocator = Runtime::Current()->GetSmallLrtAllocator();
LrtEntry* new_table = small_lrt_allocator->Allocate(new_table_size, error_msg);
if (new_table == nullptr) {
DCHECK(!error_msg->empty());
return false;
}
DCHECK_ALIGNED(new_table, kCheckJniEntriesPerReference * sizeof(LrtEntry));
tables_.push_back(new_table);
} else {
MemMap new_map = NewLRTMap(new_table_size * sizeof(LrtEntry), error_msg);
if (!new_map.IsValid()) {
DCHECK(!error_msg->empty());
return false;
}
DCHECK_ALIGNED(new_map.Begin(), kCheckJniEntriesPerReference * sizeof(LrtEntry));
tables_.push_back(reinterpret_cast<LrtEntry*>(new_map.Begin()));
table_mem_maps_.push_back(std::move(new_map));
}
DCHECK_EQ(num_tables == 1u, small_table_ != nullptr);
if (num_tables == 1u) {
tables_.insert(tables_.begin(), small_table_);
small_table_ = nullptr;
}
// Record the new available capacity after each successful allocation.
DCHECK_EQ(max_entries_, new_table_size);
max_entries_ = 2u * new_table_size;
}
DCHECK_EQ(num_required_tables, tables_.size());
return true;
}
template <typename EntryGetter>
inline void LocalReferenceTable::PrunePoppedFreeEntries(EntryGetter&& get_entry) {
const uint32_t top_index = segment_state_.top_index;
uint32_t free_entries_list = free_entries_list_;
uint32_t free_entry_index = FirstFreeField::Decode(free_entries_list);
DCHECK_NE(free_entry_index, kFreeListEnd);
DCHECK_GE(free_entry_index, top_index);
do {
free_entry_index = get_entry(free_entry_index)->GetNextFree();
} while (free_entry_index != kFreeListEnd && free_entry_index >= top_index);
free_entries_list_ = FirstFreeField::Update(free_entry_index, free_entries_list);
}
inline uint32_t LocalReferenceTable::IncrementSerialNumber(LrtEntry* serial_number_entry) {
DCHECK_EQ(serial_number_entry, GetCheckJniSerialNumberEntry(serial_number_entry));
// The old serial number can be 0 if it was not used before. It can also be bits from the
// representation of an object reference, or a link to the next free entry written in this
// slot before enabling the CheckJNI. (Some gtests repeatedly enable and disable CheckJNI.)
uint32_t old_serial_number =
serial_number_entry->GetSerialNumberUnchecked() % kCheckJniEntriesPerReference;
uint32_t new_serial_number =
(old_serial_number + 1u) != kCheckJniEntriesPerReference ? old_serial_number + 1u : 1u;
DCHECK(IsValidSerialNumber(new_serial_number));
serial_number_entry->SetSerialNumber(new_serial_number);
return new_serial_number;
}
IndirectRef LocalReferenceTable::Add(ObjPtr<mirror::Object> obj, std::string* error_msg) {
if (kDebugLRT) {
LOG(INFO) << "+++ Add: previous_state=" << previous_state_.top_index
<< " top_index=" << segment_state_.top_index;
}
DCHECK(obj != nullptr);
VerifyObject(obj);
DCHECK_LE(previous_state_.top_index, segment_state_.top_index);
DCHECK(max_entries_ == kSmallLrtEntries ? small_table_ != nullptr : !tables_.empty());
auto store_obj = [obj, this](LrtEntry* free_entry, const char* tag)
REQUIRES_SHARED(Locks::mutator_lock_) {
free_entry->SetReference(obj);
IndirectRef result = ToIndirectRef(free_entry);
if (kDebugLRT) {
LOG(INFO) << "+++ " << tag << ": added at index " << GetReferenceEntryIndex(result)
<< ", top=" << segment_state_.top_index;
}
return result;
};
// Fast-path for small table with CheckJNI disabled.
uint32_t top_index = segment_state_.top_index;
LrtEntry* const small_table = small_table_;
if (LIKELY(small_table != nullptr)) {
DCHECK_EQ(max_entries_, kSmallLrtEntries);
DCHECK_LE(segment_state_.top_index, kSmallLrtEntries);
auto get_entry = [small_table](uint32_t index) ALWAYS_INLINE {
DCHECK_LT(index, kSmallLrtEntries);
return &small_table[index];
};
if (LIKELY(free_entries_list_ == kEmptyFreeListAndCheckJniDisabled)) {
if (LIKELY(top_index != kSmallLrtEntries)) {
LrtEntry* free_entry = get_entry(top_index);
segment_state_.top_index = top_index + 1u;
return store_obj(free_entry, "small_table/empty-free-list");
}
} else if (LIKELY(!IsCheckJniEnabled())) {
uint32_t first_free_index = GetFirstFreeIndex();
DCHECK_NE(first_free_index, kFreeListEnd);
if (UNLIKELY(first_free_index >= top_index)) {
PrunePoppedFreeEntries(get_entry);
first_free_index = GetFirstFreeIndex();
}
if (first_free_index != kFreeListEnd && first_free_index >= previous_state_.top_index) {
DCHECK_LT(first_free_index, segment_state_.top_index); // Popped entries pruned above.
LrtEntry* free_entry = get_entry(first_free_index);
// Use the `free_entry` only if it was created with CheckJNI disabled.
LrtEntry* serial_number_entry = GetCheckJniSerialNumberEntry(free_entry);
if (!serial_number_entry->IsSerialNumber()) {
free_entries_list_ = FirstFreeField::Update(free_entry->GetNextFree(), 0u);
return store_obj(free_entry, "small_table/reuse-empty-slot");
}
}
if (top_index != kSmallLrtEntries) {
LrtEntry* free_entry = get_entry(top_index);
segment_state_.top_index = top_index + 1u;
return store_obj(free_entry, "small_table/pruned-free-list");
}
}
}
DCHECK(IsCheckJniEnabled() || small_table == nullptr || top_index == kSmallLrtEntries);
// Process free list: prune, reuse free entry or pad for CheckJNI.
uint32_t first_free_index = GetFirstFreeIndex();
if (first_free_index != kFreeListEnd && first_free_index >= top_index) {
PrunePoppedFreeEntries([&](size_t index) { return GetEntry(index); });
first_free_index = GetFirstFreeIndex();
}
if (first_free_index != kFreeListEnd && first_free_index >= previous_state_.top_index) {
// Reuse the free entry if it was created with the same CheckJNI setting.
DCHECK_LT(first_free_index, top_index); // Popped entries have been pruned above.
LrtEntry* free_entry = GetEntry(first_free_index);
LrtEntry* serial_number_entry = GetCheckJniSerialNumberEntry(free_entry);
if (serial_number_entry->IsSerialNumber() == IsCheckJniEnabled()) {
free_entries_list_ = FirstFreeField::Update(free_entry->GetNextFree(), free_entries_list_);
if (UNLIKELY(IsCheckJniEnabled())) {
DCHECK_NE(free_entry, serial_number_entry);
uint32_t serial_number = IncrementSerialNumber(serial_number_entry);
free_entry = serial_number_entry + serial_number;
DCHECK_EQ(
free_entry,
GetEntry(RoundDown(first_free_index, kCheckJniEntriesPerReference) + serial_number));
}
return store_obj(free_entry, "reuse-empty-slot");
}
}
if (UNLIKELY(IsCheckJniEnabled()) && !IsAligned<kCheckJniEntriesPerReference>(top_index)) {
// Add non-CheckJNI holes up to the next serial number entry.
for (; !IsAligned<kCheckJniEntriesPerReference>(top_index); ++top_index) {
GetEntry(top_index)->SetNextFree(first_free_index);
first_free_index = top_index;
}
free_entries_list_ = FirstFreeField::Update(first_free_index, 1u << kFlagCheckJni);
segment_state_.top_index = top_index;
}
// Resize (double the space) if needed.
if (UNLIKELY(top_index == max_entries_)) {
static_assert(IsPowerOfTwo(kMaxTableSizeInBytes));
static_assert(IsPowerOfTwo(sizeof(LrtEntry)));
DCHECK(IsPowerOfTwo(max_entries_));
if (kMaxTableSizeInBytes == max_entries_ * sizeof(LrtEntry)) {
std::ostringstream oss;
oss << "JNI ERROR (app bug): " << kLocal << " table overflow "
<< "(max=" << max_entries_ << ")" << std::endl
<< MutatorLockedDumpable<LocalReferenceTable>(*this)
<< " Resizing failed: Cannot resize over the maximum permitted size.";
*error_msg = oss.str();
return nullptr;
}
std::string inner_error_msg;
if (!Resize(max_entries_ * 2u, &inner_error_msg)) {
std::ostringstream oss;
oss << "JNI ERROR (app bug): " << kLocal << " table overflow "
<< "(max=" << max_entries_ << ")" << std::endl
<< MutatorLockedDumpable<LocalReferenceTable>(*this)
<< " Resizing failed: " << inner_error_msg;
*error_msg = oss.str();
return nullptr;
}
}
// Use the next entry.
if (UNLIKELY(IsCheckJniEnabled())) {
DCHECK_ALIGNED(top_index, kCheckJniEntriesPerReference);
DCHECK_ALIGNED(previous_state_.top_index, kCheckJniEntriesPerReference);
DCHECK_ALIGNED(max_entries_, kCheckJniEntriesPerReference);
LrtEntry* serial_number_entry = GetEntry(top_index);
uint32_t serial_number = IncrementSerialNumber(serial_number_entry);
LrtEntry* free_entry = serial_number_entry + serial_number;
DCHECK_EQ(free_entry, GetEntry(top_index + serial_number));
segment_state_.top_index = top_index + kCheckJniEntriesPerReference;
return store_obj(free_entry, "slow-path/check-jni");
}
LrtEntry* free_entry = GetEntry(top_index);
segment_state_.top_index = top_index + 1u;
return store_obj(free_entry, "slow-path");
}
// Removes an object.
//
// This method is not called when a local frame is popped; this is only used
// for explicit single removals.
//
// If the entry is not at the top, we just add it to the free entry list.
// If the entry is at the top, we pop it from the top and check if there are
// free entries under it to remove in order to reduce the size of the table.
//
// Returns "false" if nothing was removed.
bool LocalReferenceTable::Remove(IndirectRef iref) {
if (kDebugLRT) {
LOG(INFO) << "+++ Remove: previous_state=" << previous_state_.top_index
<< " top_index=" << segment_state_.top_index;
}
IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(iref);
if (UNLIKELY(kind != kLocal)) {
Thread* self = Thread::Current();
if (kind == kJniTransition) {
if (self->IsJniTransitionReference(reinterpret_cast<jobject>(iref))) {
// Transition references count as local but they cannot be deleted.
// TODO: They could actually be cleared on the stack, except for the `jclass`
// reference for static methods that points to the method's declaring class.
JNIEnvExt* env = self->GetJniEnv();
DCHECK(env != nullptr);
if (env->IsCheckJniEnabled()) {
const char* msg = kDumpStackOnNonLocalReference
? "Attempt to remove non-JNI local reference, dumping thread"
: "Attempt to remove non-JNI local reference";
LOG(WARNING) << msg;
if (kDumpStackOnNonLocalReference) {
self->Dump(LOG_STREAM(WARNING));
}
}
return true;
}
}
if (kDumpStackOnNonLocalReference && IsCheckJniEnabled()) {
// Log the error message and stack. Repeat the message as FATAL later.
LOG(ERROR) << "Attempt to delete " << kind
<< " reference as local JNI reference, dumping stack";
self->Dump(LOG_STREAM(ERROR));
}
LOG(IsCheckJniEnabled() ? ERROR : FATAL)
<< "Attempt to delete " << kind << " reference as local JNI reference";
return false;
}
DCHECK_LE(previous_state_.top_index, segment_state_.top_index);
DCHECK(max_entries_ == kSmallLrtEntries ? small_table_ != nullptr : !tables_.empty());
DCheckValidReference(iref);
LrtEntry* entry = ToLrtEntry(iref);
uint32_t entry_index = GetReferenceEntryIndex(iref);
uint32_t top_index = segment_state_.top_index;
const uint32_t bottom_index = previous_state_.top_index;
if (entry_index < bottom_index) {
// Wrong segment.
LOG(WARNING) << "Attempt to remove index outside index area (" << entry_index
<< " vs " << bottom_index << "-" << top_index << ")";
return false;
}
if (UNLIKELY(IsCheckJniEnabled())) {
// Ignore invalid references. CheckJNI should have aborted before passing this reference
// to `LocalReferenceTable::Remove()` but gtests intercept the abort and proceed anyway.
std::string error_msg;
if (!IsValidReference(iref, &error_msg)) {
LOG(WARNING) << "Attempt to remove invalid reference: " << error_msg;
return false;
}
}
DCHECK_LT(entry_index, top_index);
// Workaround for double `DeleteLocalRef` bug. b/298297411
if (entry->IsFree()) {
// In debug build or with CheckJNI enabled, we would have detected this above.
LOG(ERROR) << "App error: `DeleteLocalRef()` on already deleted local ref. b/298297411";
return false;
}
// Prune the free entry list if a segment with holes was popped before the `Remove()` call.
uint32_t first_free_index = GetFirstFreeIndex();
if (first_free_index != kFreeListEnd && first_free_index >= top_index) {
PrunePoppedFreeEntries([&](size_t index) { return GetEntry(index); });
}
// Check if we're removing the top entry (created with any CheckJNI setting).
bool is_top_entry = false;
uint32_t prune_end = entry_index;
if (GetCheckJniSerialNumberEntry(entry)->IsSerialNumber()) {
LrtEntry* serial_number_entry = GetCheckJniSerialNumberEntry(entry);
uint32_t serial_number = dchecked_integral_cast<uint32_t>(entry - serial_number_entry);
DCHECK_EQ(serial_number, serial_number_entry->GetSerialNumber());
prune_end = entry_index - serial_number;
is_top_entry = (prune_end == top_index - kCheckJniEntriesPerReference);
} else {
is_top_entry = (entry_index == top_index - 1u);
}
if (is_top_entry) {
// Top-most entry. Scan up and consume holes created with the current CheckJNI setting.
constexpr uint32_t kDeadLocalValue = 0xdead10c0;
entry->SetReference(reinterpret_cast32<mirror::Object*>(kDeadLocalValue));
// TODO: Maybe we should not prune free entries from the top of the segment
// because it has quadratic worst-case complexity. We could still prune while
// the first free list entry is at the top.
uint32_t prune_start = prune_end;
size_t prune_count;
auto find_prune_range = [&](size_t chunk_size, auto is_prev_entry_free) {
while (prune_start > bottom_index && is_prev_entry_free(prune_start)) {
prune_start -= chunk_size;
}
prune_count = (prune_end - prune_start) / chunk_size;
};
if (UNLIKELY(IsCheckJniEnabled())) {
auto is_prev_entry_free = [&](size_t index) {
DCHECK_ALIGNED(index, kCheckJniEntriesPerReference);
LrtEntry* serial_number_entry = GetEntry(index - kCheckJniEntriesPerReference);
DCHECK_ALIGNED(serial_number_entry, kCheckJniEntriesPerReference * sizeof(LrtEntry));
if (!serial_number_entry->IsSerialNumber()) {
return false;
}
uint32_t serial_number = serial_number_entry->GetSerialNumber();
DCHECK(IsValidSerialNumber(serial_number));
LrtEntry* entry = serial_number_entry + serial_number;
DCHECK_EQ(entry, GetEntry(prune_start - kCheckJniEntriesPerReference + serial_number));
return entry->IsFree();
};
find_prune_range(kCheckJniEntriesPerReference, is_prev_entry_free);
} else {
auto is_prev_entry_free = [&](size_t index) {
LrtEntry* entry = GetEntry(index - 1u);
return entry->IsFree() && !GetCheckJniSerialNumberEntry(entry)->IsSerialNumber();
};
find_prune_range(1u, is_prev_entry_free);
}
if (prune_count != 0u) {
// Remove pruned entries from the free list.
size_t remaining = prune_count;
uint32_t free_index = GetFirstFreeIndex();
while (remaining != 0u && free_index >= prune_start) {
DCHECK_NE(free_index, kFreeListEnd);
LrtEntry* pruned_entry = GetEntry(free_index);
free_index = pruned_entry->GetNextFree();
pruned_entry->SetReference(reinterpret_cast32<mirror::Object*>(kDeadLocalValue));
--remaining;
}
free_entries_list_ = FirstFreeField::Update(free_index, free_entries_list_);
while (remaining != 0u) {
DCHECK_NE(free_index, kFreeListEnd);
DCHECK_LT(free_index, prune_start);
DCHECK_GE(free_index, bottom_index);
LrtEntry* free_entry = GetEntry(free_index);
while (free_entry->GetNextFree() < prune_start) {
free_index = free_entry->GetNextFree();
DCHECK_GE(free_index, bottom_index);
free_entry = GetEntry(free_index);
}
LrtEntry* pruned_entry = GetEntry(free_entry->GetNextFree());
free_entry->SetNextFree(pruned_entry->GetNextFree());
pruned_entry->SetReference(reinterpret_cast32<mirror::Object*>(kDeadLocalValue));
--remaining;
}
DCHECK(free_index == kFreeListEnd || free_index < prune_start)
<< "free_index=" << free_index << ", prune_start=" << prune_start;
}
segment_state_.top_index = prune_start;
if (kDebugLRT) {
LOG(INFO) << "+++ removed last entry, pruned " << prune_count
<< ", new top= " << segment_state_.top_index;
}
} else {
// Not the top-most entry. This creates a hole.
entry->SetNextFree(GetFirstFreeIndex());
free_entries_list_ = FirstFreeField::Update(entry_index, free_entries_list_);
if (kDebugLRT) {
LOG(INFO) << "+++ removed entry and left hole at " << entry_index;
}
}
return true;
}
void LocalReferenceTable::AssertEmpty() {
CHECK_EQ(Capacity(), 0u) << "Internal Error: non-empty local reference table.";
}
void LocalReferenceTable::Trim() {
ScopedTrace trace(__PRETTY_FUNCTION__);
const size_t num_mem_maps = table_mem_maps_.size();
if (num_mem_maps == 0u) {
// Only small tables; nothing to do here. (Do not unnecessarily prune popped free entries.)
return;
}
DCHECK_EQ(tables_.size(), num_mem_maps + MaxSmallTables());
const size_t top_index = segment_state_.top_index;
// Prune popped free entries before potentially losing their memory.
if (UNLIKELY(GetFirstFreeIndex() != kFreeListEnd) &&
UNLIKELY(GetFirstFreeIndex() >= segment_state_.top_index)) {
PrunePoppedFreeEntries([&](size_t index) { return GetEntry(index); });
}
// Small tables can hold as many entries as the next table.
const size_t small_tables_capacity = GetTableSize(MaxSmallTables());
size_t mem_map_index = 0u;
if (top_index > small_tables_capacity) {
const size_t table_size = TruncToPowerOfTwo(top_index);
const size_t table_index = NumTablesForSize(table_size);
const size_t start_index = top_index - table_size;
mem_map_index = table_index - MaxSmallTables();
if (start_index != 0u) {
++mem_map_index;
LrtEntry* table = tables_[table_index];
uint8_t* release_start = AlignUp(reinterpret_cast<uint8_t*>(&table[start_index]), gPageSize);
uint8_t* release_end = reinterpret_cast<uint8_t*>(&table[table_size]);
DCHECK_GE(reinterpret_cast<uintptr_t>(release_end),
reinterpret_cast<uintptr_t>(release_start));
DCHECK_ALIGNED_PARAM(release_end, gPageSize);
DCHECK_ALIGNED_PARAM(release_end - release_start, gPageSize);
if (release_start != release_end) {
madvise(release_start, release_end - release_start, MADV_DONTNEED);
}
}
}
for (MemMap& mem_map : ArrayRef<MemMap>(table_mem_maps_).SubArray(mem_map_index)) {
madvise(mem_map.Begin(), mem_map.Size(), MADV_DONTNEED);
}
}
template <typename Visitor>
void LocalReferenceTable::VisitRootsInternal(Visitor&& visitor) const {
auto visit_table = [&](LrtEntry* table, size_t count) REQUIRES_SHARED(Locks::mutator_lock_) {
for (size_t i = 0; i != count; ) {
LrtEntry* entry;
if (i % kCheckJniEntriesPerReference == 0u && table[i].IsSerialNumber()) {
entry = &table[i + table[i].GetSerialNumber()];
i += kCheckJniEntriesPerReference;
DCHECK_LE(i, count);
} else {
entry = &table[i];
i += 1u;
}
DCHECK(!entry->IsSerialNumber());
if (!entry->IsFree()) {
GcRoot<mirror::Object>* root = entry->GetRootAddress();
DCHECK(!root->IsNull());
visitor(root);
}
}
};
if (small_table_ != nullptr) {
visit_table(small_table_, segment_state_.top_index);
} else {
uint32_t remaining = segment_state_.top_index;
size_t table_index = 0u;
while (remaining != 0u) {
size_t count = std::min<size_t>(remaining, GetTableSize(table_index));
visit_table(tables_[table_index], count);
++table_index;
remaining -= count;
}
}
}
void LocalReferenceTable::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
BufferedRootVisitor<kDefaultBufferedRootCount> root_visitor(visitor, root_info);
VisitRootsInternal([&](GcRoot<mirror::Object>* root) REQUIRES_SHARED(Locks::mutator_lock_) {
root_visitor.VisitRoot(*root);
});
}
void LocalReferenceTable::Dump(std::ostream& os) const {
os << kLocal << " table dump:\n";
ReferenceTable::Table entries;
VisitRootsInternal([&](GcRoot<mirror::Object>* root) REQUIRES_SHARED(Locks::mutator_lock_) {
entries.push_back(*root);
});
ReferenceTable::Dump(os, entries);
}
bool LocalReferenceTable::EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) {
// TODO: Pass `previous_state` so that we can check holes.
DCHECK_GE(free_capacity, static_cast<size_t>(1));
size_t top_index = segment_state_.top_index;
DCHECK_LE(top_index, max_entries_);
if (IsCheckJniEnabled()) {
// High values lead to the maximum size check failing below.
if (free_capacity >= std::numeric_limits<size_t>::max() / kCheckJniEntriesPerReference) {
free_capacity = std::numeric_limits<size_t>::max();
} else {
free_capacity *= kCheckJniEntriesPerReference;
}
}
// TODO: Include holes from the current segment in the calculation.
if (free_capacity <= max_entries_ - top_index) {
return true;
}
if (free_capacity > kMaxTableSize - top_index) {
*error_msg = android::base::StringPrintf(
"Requested size exceeds maximum: %zu > %zu (%zu used)",
free_capacity,
kMaxTableSize - top_index,
top_index);
return false;
}
// Try to increase the table size.
if (!Resize(top_index + free_capacity, error_msg)) {
LOG(WARNING) << "JNI ERROR: Unable to reserve space in EnsureFreeCapacity (" << free_capacity
<< "): " << std::endl
<< MutatorLockedDumpable<LocalReferenceTable>(*this)
<< " Resizing failed: " << *error_msg;
return false;
}
return true;
}
size_t LocalReferenceTable::FreeCapacity() const {
// TODO: Include holes in current segment.
if (IsCheckJniEnabled()) {
DCHECK_ALIGNED(max_entries_, kCheckJniEntriesPerReference);
// The `segment_state_.top_index` is not necessarily aligned; rounding down.
return (max_entries_ - segment_state_.top_index) / kCheckJniEntriesPerReference;
} else {
return max_entries_ - segment_state_.top_index;
}
}
} // namespace jni
} // namespace art