| /* |
| * Copyright 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_JIT_JIT_MEMORY_REGION_H_ |
| #define ART_RUNTIME_JIT_JIT_MEMORY_REGION_H_ |
| |
| #include <string> |
| |
| #include "arch/instruction_set.h" |
| #include "base/globals.h" |
| #include "base/locks.h" |
| #include "base/mem_map.h" |
| #include "gc_root-inl.h" |
| #include "handle.h" |
| |
| namespace art HIDDEN { |
| |
| namespace mirror { |
| class Object; |
| } |
| |
| namespace jit { |
| |
| class TestZygoteMemory; |
| |
| // Number of bytes represented by a bit in the CodeCacheBitmap. Value is reasonable for all |
| // architectures. |
| static constexpr int kJitCodeAccountingBytes = 16; |
| |
| // Helper to get the size required for emitting `number_of_roots` in the |
| // data portion of a JIT memory region. |
| uint32_t inline ComputeRootTableSize(uint32_t number_of_roots) { |
| return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>); |
| } |
| |
| // Represents a memory region for the JIT, where code and data are stored. This class |
| // provides allocation and deallocation primitives. |
| class JitMemoryRegion { |
| public: |
| JitMemoryRegion() |
| : initial_capacity_(0), |
| max_capacity_(0), |
| current_capacity_(0), |
| data_end_(0), |
| exec_end_(0), |
| used_memory_for_code_(0), |
| used_memory_for_data_(0), |
| data_pages_(), |
| writable_data_pages_(), |
| exec_pages_(), |
| non_exec_pages_(), |
| data_mspace_(nullptr), |
| exec_mspace_(nullptr) {} |
| |
| bool Initialize(size_t initial_capacity, |
| size_t max_capacity, |
| bool rwx_memory_allowed, |
| bool is_zygote, |
| std::string* error_msg) |
| REQUIRES(Locks::jit_lock_); |
| |
| // Try to increase the current capacity of the code cache. Return whether we |
| // succeeded at doing so. |
| bool IncreaseCodeCacheCapacity() REQUIRES(Locks::jit_lock_); |
| |
| // Set the footprint limit of the code cache. |
| void SetFootprintLimit(size_t new_footprint) REQUIRES(Locks::jit_lock_); |
| |
| const uint8_t* AllocateCode(size_t code_size) REQUIRES(Locks::jit_lock_); |
| void FreeCode(const uint8_t* code) REQUIRES(Locks::jit_lock_); |
| const uint8_t* AllocateData(size_t data_size) REQUIRES(Locks::jit_lock_); |
| void FreeData(const uint8_t* data) REQUIRES(Locks::jit_lock_); |
| void FreeData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) = delete; |
| void FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_); |
| |
| // Emit header and code into the memory pointed by `reserved_code` (despite it being const). |
| // Returns pointer to copied code (within reserved_code region; after OatQuickMethodHeader). |
| const uint8_t* CommitCode(ArrayRef<const uint8_t> reserved_code, |
| ArrayRef<const uint8_t> code, |
| const uint8_t* stack_map) |
| REQUIRES(Locks::jit_lock_); |
| |
| // Emit roots and stack map into the memory pointed by `roots_data` (despite it being const). |
| bool CommitData(ArrayRef<const uint8_t> reserved_data, |
| const std::vector<Handle<mirror::Object>>& roots, |
| ArrayRef<const uint8_t> stack_map) |
| REQUIRES(Locks::jit_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void ResetWritableMappings() REQUIRES(Locks::jit_lock_) { |
| non_exec_pages_.ResetInForkedProcess(); |
| writable_data_pages_.ResetInForkedProcess(); |
| // Also clear the mspaces, which, in their implementation, |
| // point to the discarded mappings. |
| exec_mspace_ = nullptr; |
| data_mspace_ = nullptr; |
| } |
| |
| bool IsValid() const NO_THREAD_SAFETY_ANALYSIS { |
| return exec_mspace_ != nullptr || data_mspace_ != nullptr; |
| } |
| |
| template <typename T> |
| void FillData(const T* address, size_t n, const T& t) REQUIRES(Locks::jit_lock_) { |
| std::fill_n(GetWritableDataAddress(address), n, t); |
| } |
| |
| // Generic helper for writing abritrary data in the data portion of the |
| // region. |
| template <typename T> |
| void WriteData(const T* address, const T& value) { |
| *GetWritableDataAddress(address) = value; |
| } |
| |
| bool HasDualCodeMapping() const { |
| return non_exec_pages_.IsValid(); |
| } |
| |
| bool HasDualDataMapping() const { |
| return writable_data_pages_.IsValid(); |
| } |
| |
| bool HasCodeMapping() const { |
| return exec_pages_.IsValid(); |
| } |
| |
| bool IsInDataSpace(const void* ptr) const { |
| return data_pages_.HasAddress(ptr); |
| } |
| |
| bool IsInExecSpace(const void* ptr) const { |
| return exec_pages_.HasAddress(ptr); |
| } |
| |
| const MemMap* GetExecPages() const { |
| return &exec_pages_; |
| } |
| |
| void* MoreCore(const void* mspace, intptr_t increment); |
| |
| bool OwnsSpace(const void* mspace) const NO_THREAD_SAFETY_ANALYSIS { |
| return mspace == data_mspace_ || mspace == exec_mspace_; |
| } |
| |
| size_t GetCurrentCapacity() const REQUIRES(Locks::jit_lock_) { |
| return current_capacity_; |
| } |
| |
| size_t GetMaxCapacity() const REQUIRES(Locks::jit_lock_) { |
| return max_capacity_; |
| } |
| |
| size_t GetUsedMemoryForCode() const REQUIRES(Locks::jit_lock_) { |
| return used_memory_for_code_; |
| } |
| |
| size_t GetResidentMemoryForCode() const REQUIRES(Locks::jit_lock_) { |
| return exec_end_; |
| } |
| |
| size_t GetUsedMemoryForData() const REQUIRES(Locks::jit_lock_) { |
| return used_memory_for_data_; |
| } |
| |
| size_t GetResidentMemoryForData() const REQUIRES(Locks::jit_lock_) { |
| return data_end_; |
| } |
| |
| template <typename T> T* GetWritableDataAddress(const T* src_ptr) { |
| if (!HasDualDataMapping()) { |
| return const_cast<T*>(src_ptr); |
| } |
| return const_cast<T*>(TranslateAddress(src_ptr, data_pages_, writable_data_pages_)); |
| } |
| |
| private: |
| template <typename T> |
| T* TranslateAddress(T* src_ptr, const MemMap& src, const MemMap& dst) { |
| CHECK(src.HasAddress(src_ptr)) << reinterpret_cast<const void*>(src_ptr); |
| const uint8_t* const raw_src_ptr = reinterpret_cast<const uint8_t*>(src_ptr); |
| return reinterpret_cast<T*>(raw_src_ptr - src.Begin() + dst.Begin()); |
| } |
| |
| const MemMap* GetUpdatableCodeMapping() const { |
| if (HasDualCodeMapping()) { |
| return &non_exec_pages_; |
| } else if (HasCodeMapping()) { |
| return &exec_pages_; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| const MemMap* GetWritableDataMapping() const { |
| if (HasDualDataMapping()) { |
| return &writable_data_pages_; |
| } else { |
| return &data_pages_; |
| } |
| } |
| |
| template <typename T> T* GetNonWritableDataAddress(T* src_ptr) { |
| if (!HasDualDataMapping()) { |
| return src_ptr; |
| } |
| return TranslateAddress(src_ptr, writable_data_pages_, data_pages_); |
| } |
| |
| template <typename T> T* GetExecutableAddress(T* src_ptr) { |
| if (!HasDualCodeMapping()) { |
| return src_ptr; |
| } |
| return TranslateAddress(src_ptr, non_exec_pages_, exec_pages_); |
| } |
| |
| template <typename T> T* GetNonExecutableAddress(T* src_ptr) { |
| if (!HasDualCodeMapping()) { |
| return src_ptr; |
| } |
| return TranslateAddress(src_ptr, exec_pages_, non_exec_pages_); |
| } |
| |
| static int CreateZygoteMemory(size_t capacity, std::string* error_msg); |
| static bool ProtectZygoteMemory(int fd, std::string* error_msg); |
| |
| // The initial capacity in bytes this code region starts with. |
| size_t initial_capacity_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The maximum capacity in bytes this region can go to. |
| size_t max_capacity_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The current capacity in bytes of the region. |
| size_t current_capacity_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The current footprint in bytes of the data portion of the region. |
| size_t data_end_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The current footprint in bytes of the code portion of the region. |
| size_t exec_end_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The size in bytes of used memory for the code portion of the region. |
| size_t used_memory_for_code_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The size in bytes of used memory for the data portion of the region. |
| size_t used_memory_for_data_ GUARDED_BY(Locks::jit_lock_); |
| |
| // Mem map which holds data (stack maps and profiling info). |
| MemMap data_pages_; |
| |
| // Mem map which holds data with writable permission. Only valid for dual view |
| // JIT when this is the writable view and data_pages_ is the readable view. |
| MemMap writable_data_pages_; |
| |
| // Mem map which holds code and has executable permission. |
| MemMap exec_pages_; |
| |
| // Mem map which holds code with non executable permission. Only valid for dual view JIT when |
| // this is the non-executable view of code used to write updates. |
| MemMap non_exec_pages_; |
| |
| // The opaque mspace for allocating data. |
| void* data_mspace_ GUARDED_BY(Locks::jit_lock_); |
| |
| // The opaque mspace for allocating code. |
| void* exec_mspace_ GUARDED_BY(Locks::jit_lock_); |
| |
| friend class ScopedCodeCacheWrite; // For GetUpdatableCodeMapping |
| friend class TestZygoteMemory; |
| }; |
| |
| } // namespace jit |
| } // namespace art |
| |
| #endif // ART_RUNTIME_JIT_JIT_MEMORY_REGION_H_ |