| /* |
| * Copyright 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "jit_memory_region.h" |
| |
| #include <fcntl.h> |
| #include <unistd.h> |
| |
| #include <android-base/unique_fd.h> |
| #include <log/log.h> |
| #include "base/bit_utils.h" // For RoundDown, RoundUp |
| #include "base/globals.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/membarrier.h" |
| #include "base/memfd.h" |
| #include "base/systrace.h" |
| #include "gc/allocator/art-dlmalloc.h" |
| #include "jit/jit_scoped_code_cache_write.h" |
| #include "oat/oat_quick_method_header.h" |
| #include "palette/palette.h" |
| |
| using android::base::unique_fd; |
| |
| namespace art HIDDEN { |
| namespace jit { |
| |
| // Data cache will be half of the capacity |
| // Code cache will be the other half of the capacity. |
| // TODO: Make this adjustable. Currently must be 2. JitCodeCache relies on that. |
| static constexpr size_t kCodeAndDataCapacityDivider = 2; |
| |
| bool JitMemoryRegion::Initialize(size_t initial_capacity, |
| size_t max_capacity, |
| bool rwx_memory_allowed, |
| bool is_zygote, |
| std::string* error_msg) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| |
| CHECK_GE(max_capacity, initial_capacity); |
| CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB"; |
| // Align both capacities to page size, as that's the unit mspaces use. |
| initial_capacity_ = RoundDown(initial_capacity, 2 * gPageSize); |
| max_capacity_ = RoundDown(max_capacity, 2 * gPageSize); |
| current_capacity_ = initial_capacity, |
| data_end_ = initial_capacity / kCodeAndDataCapacityDivider; |
| exec_end_ = initial_capacity - data_end_; |
| |
| const size_t capacity = max_capacity_; |
| const size_t data_capacity = capacity / kCodeAndDataCapacityDivider; |
| const size_t exec_capacity = capacity - data_capacity; |
| |
| // File descriptor enabling dual-view mapping of code section. |
| unique_fd mem_fd; |
| |
| |
| // The memory mappings we are going to create. |
| MemMap data_pages; |
| MemMap exec_pages; |
| MemMap non_exec_pages; |
| MemMap writable_data_pages; |
| |
| if (is_zygote) { |
| android_errorWriteLog(0x534e4554, "200284993"); // Report to SafetyNet. |
| // Because we are not going to GC code generated by the zygote, just use all available. |
| current_capacity_ = max_capacity; |
| mem_fd = unique_fd(CreateZygoteMemory(capacity, error_msg)); |
| if (mem_fd.get() < 0) { |
| return false; |
| } |
| } else { |
| // Bionic supports memfd_create, but the call may fail on older kernels. |
| mem_fd = unique_fd(art::memfd_create("jit-cache", /* flags= */ 0)); |
| if (mem_fd.get() < 0) { |
| std::ostringstream oss; |
| oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno); |
| if (!rwx_memory_allowed) { |
| // Without using RWX page permissions, the JIT can not fallback to single mapping as it |
| // requires tranitioning the code pages to RWX for updates. |
| *error_msg = oss.str(); |
| return false; |
| } |
| VLOG(jit) << oss.str(); |
| } else if (ftruncate(mem_fd, capacity) != 0) { |
| std::ostringstream oss; |
| oss << "Failed to initialize memory file: " << strerror(errno); |
| *error_msg = oss.str(); |
| return false; |
| } |
| } |
| |
| // Map name specific for android_os_Debug.cpp accounting. |
| std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache"; |
| std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache"; |
| |
| std::string error_str; |
| int base_flags; |
| if (mem_fd.get() >= 0) { |
| // Dual view of JIT code cache case. Create an initial mapping of data pages large enough |
| // for data and non-writable view of JIT code pages. We use the memory file descriptor to |
| // enable dual mapping - we'll create a second mapping using the descriptor below. The |
| // mappings will look like: |
| // |
| // VA PA |
| // |
| // +---------------+ |
| // | non exec code |\ |
| // +---------------+ \ |
| // | writable data |\ \ |
| // +---------------+ \ \ |
| // : :\ \ \ |
| // +---------------+.\.\.+---------------+ |
| // | exec code | \ \| code | |
| // +---------------+...\.+---------------+ |
| // | readonly data | \| data | |
| // +---------------+.....+---------------+ |
| // |
| // In this configuration code updates are written to the non-executable view of the code |
| // cache, and the executable view of the code cache has fixed RX memory protections. |
| // |
| // This memory needs to be mapped shared as the code portions will have two mappings. |
| // |
| // Additionally, the zyzote will create a dual view of the data portion of |
| // the cache. This mapping will be read-only, whereas the second mapping |
| // will be writable. |
| |
| base_flags = MAP_SHARED; |
| |
| // Create the writable mappings now, so that in case of the zygote, we can |
| // prevent any future writable mappings through sealing. |
| if (exec_capacity > 0) { |
| // For dual view, create the secondary view of code memory used for updating code. This view |
| // is never executable. |
| std::string name = exec_cache_name + "-rw"; |
| non_exec_pages = MemMap::MapFile(exec_capacity, |
| kIsDebugBuild ? kProtR : kProtRW, |
| base_flags, |
| mem_fd, |
| /* start= */ data_capacity, |
| /* low_4GB= */ false, |
| name.c_str(), |
| &error_str); |
| if (!non_exec_pages.IsValid()) { |
| // This is unexpected. |
| *error_msg = "Failed to map non-executable view of JIT code cache"; |
| return false; |
| } |
| // Create a dual view of the data cache. |
| name = data_cache_name + "-rw"; |
| writable_data_pages = MemMap::MapFile(data_capacity, |
| kProtRW, |
| base_flags, |
| mem_fd, |
| /* start= */ 0, |
| /* low_4GB= */ false, |
| name.c_str(), |
| &error_str); |
| if (!writable_data_pages.IsValid()) { |
| std::ostringstream oss; |
| oss << "Failed to create dual data view: " << error_str; |
| *error_msg = oss.str(); |
| return false; |
| } |
| if (writable_data_pages.MadviseDontFork() != 0) { |
| *error_msg = "Failed to MadviseDontFork the writable data view"; |
| return false; |
| } |
| if (non_exec_pages.MadviseDontFork() != 0) { |
| *error_msg = "Failed to MadviseDontFork the writable code view"; |
| return false; |
| } |
| // Now that we have created the writable and executable mappings, prevent creating any new |
| // ones. |
| if (is_zygote && !ProtectZygoteMemory(mem_fd.get(), error_msg)) { |
| return false; |
| } |
| } |
| |
| // Map in low 4gb to simplify accessing root tables for x86_64. |
| // We could do PC-relative addressing to avoid this problem, but that |
| // would require reserving code and data area before submitting, which |
| // means more windows for the code memory to be RWX. |
| data_pages = MemMap::MapFile( |
| data_capacity + exec_capacity, |
| kProtR, |
| base_flags, |
| mem_fd, |
| /* start= */ 0, |
| /* low_4gb= */ true, |
| data_cache_name.c_str(), |
| &error_str); |
| } else { |
| // Single view of JIT code cache case. Create an initial mapping of data pages large enough |
| // for data and JIT code pages. The mappings will look like: |
| // |
| // VA PA |
| // |
| // +---------------+...+---------------+ |
| // | exec code | | code | |
| // +---------------+...+---------------+ |
| // | data | | data | |
| // +---------------+...+---------------+ |
| // |
| // In this configuration code updates are written to the executable view of the code cache, |
| // and the executable view of the code cache transitions RX to RWX for the update and then |
| // back to RX after the update. |
| base_flags = MAP_PRIVATE | MAP_ANON; |
| data_pages = MemMap::MapAnonymous( |
| data_cache_name.c_str(), |
| data_capacity + exec_capacity, |
| kProtRW, |
| /* low_4gb= */ true, |
| &error_str); |
| } |
| |
| if (!data_pages.IsValid()) { |
| std::ostringstream oss; |
| oss << "Failed to create read write cache: " << error_str << " size=" << capacity; |
| *error_msg = oss.str(); |
| return false; |
| } |
| |
| if (exec_capacity > 0) { |
| uint8_t* const divider = data_pages.Begin() + data_capacity; |
| // Set initial permission for executable view to catch any SELinux permission problems early |
| // (for processes that cannot map WX pages). Otherwise, this region does not need to be |
| // executable as there is no code in the cache yet. |
| exec_pages = data_pages.RemapAtEnd(divider, |
| exec_cache_name.c_str(), |
| kProtRX, |
| base_flags | MAP_FIXED, |
| mem_fd.get(), |
| (mem_fd.get() >= 0) ? data_capacity : 0, |
| &error_str); |
| if (!exec_pages.IsValid()) { |
| std::ostringstream oss; |
| oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity; |
| *error_msg = oss.str(); |
| return false; |
| } |
| } else { |
| // Profiling only. No memory for code required. |
| } |
| |
| data_pages_ = std::move(data_pages); |
| exec_pages_ = std::move(exec_pages); |
| non_exec_pages_ = std::move(non_exec_pages); |
| writable_data_pages_ = std::move(writable_data_pages); |
| |
| VLOG(jit) << "Created JitMemoryRegion" |
| << ": data_pages=" << reinterpret_cast<void*>(data_pages_.Begin()) |
| << ", exec_pages=" << reinterpret_cast<void*>(exec_pages_.Begin()) |
| << ", non_exec_pages=" << reinterpret_cast<void*>(non_exec_pages_.Begin()) |
| << ", writable_data_pages=" << reinterpret_cast<void*>(writable_data_pages_.Begin()); |
| |
| // Now that the pages are initialized, initialize the spaces. |
| |
| // Initialize the data heap. |
| data_mspace_ = create_mspace_with_base( |
| HasDualDataMapping() ? writable_data_pages_.Begin() : data_pages_.Begin(), |
| data_end_, |
| /* locked= */ false); |
| CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed"; |
| |
| // Allow mspace to use the full data capacity. |
| // It will still only use as litle memory as possible and ask for MoreCore as needed. |
| CHECK(IsAlignedParam(data_capacity, gPageSize)); |
| mspace_set_footprint_limit(data_mspace_, data_capacity); |
| |
| // Initialize the code heap. |
| MemMap* code_heap = nullptr; |
| if (non_exec_pages_.IsValid()) { |
| code_heap = &non_exec_pages_; |
| } else if (exec_pages_.IsValid()) { |
| code_heap = &exec_pages_; |
| } |
| if (code_heap != nullptr) { |
| // Make all pages reserved for the code heap writable. The mspace allocator, that manages the |
| // heap, will take and initialize pages in create_mspace_with_base(). |
| { |
| ScopedCodeCacheWrite scc(*this); |
| exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/); |
| } |
| CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed"; |
| SetFootprintLimit(current_capacity_); |
| } else { |
| exec_mspace_ = nullptr; |
| SetFootprintLimit(current_capacity_); |
| } |
| return true; |
| } |
| |
| void JitMemoryRegion::SetFootprintLimit(size_t new_footprint) { |
| size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider; |
| DCHECK(IsAlignedParam(data_space_footprint, gPageSize)); |
| DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint); |
| if (HasCodeMapping()) { |
| ScopedCodeCacheWrite scc(*this); |
| mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint); |
| } |
| } |
| |
| bool JitMemoryRegion::IncreaseCodeCacheCapacity() { |
| if (current_capacity_ == max_capacity_) { |
| return false; |
| } |
| |
| // Double the capacity if we're below 1MB, or increase it by 1MB if |
| // we're above. |
| if (current_capacity_ < 1 * MB) { |
| current_capacity_ *= 2; |
| } else { |
| current_capacity_ += 1 * MB; |
| } |
| if (current_capacity_ > max_capacity_) { |
| current_capacity_ = max_capacity_; |
| } |
| |
| VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_); |
| |
| SetFootprintLimit(current_capacity_); |
| |
| return true; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock |
| // is already held. |
| void* JitMemoryRegion::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS { |
| if (mspace == exec_mspace_) { |
| CHECK(exec_mspace_ != nullptr); |
| const MemMap* const code_pages = GetUpdatableCodeMapping(); |
| void* result = code_pages->Begin() + exec_end_; |
| exec_end_ += increment; |
| return result; |
| } else { |
| CHECK_EQ(data_mspace_, mspace); |
| const MemMap* const writable_data_pages = GetWritableDataMapping(); |
| void* result = writable_data_pages->Begin() + data_end_; |
| data_end_ += increment; |
| return result; |
| } |
| } |
| |
| const uint8_t* JitMemoryRegion::CommitCode(ArrayRef<const uint8_t> reserved_code, |
| ArrayRef<const uint8_t> code, |
| const uint8_t* stack_map) { |
| DCHECK(IsInExecSpace(reserved_code.data())); |
| ScopedCodeCacheWrite scc(*this); |
| |
| size_t alignment = GetInstructionSetCodeAlignment(kRuntimeISA); |
| size_t header_size = OatQuickMethodHeader::InstructionAlignedSize(); |
| size_t total_size = header_size + code.size(); |
| |
| // Each allocation should be on its own set of cache lines. |
| // `total_size` covers the OatQuickMethodHeader, the JIT generated machine code, |
| // and any alignment padding. |
| DCHECK_GT(total_size, header_size); |
| DCHECK_LE(total_size, reserved_code.size()); |
| uint8_t* x_memory = const_cast<uint8_t*>(reserved_code.data()); |
| uint8_t* w_memory = const_cast<uint8_t*>(GetNonExecutableAddress(x_memory)); |
| // Ensure the header ends up at expected instruction alignment. |
| DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(w_memory + header_size), alignment); |
| const uint8_t* result = x_memory + header_size; |
| |
| // Write the code. |
| std::copy(code.begin(), code.end(), w_memory + header_size); |
| |
| // Write the header. |
| OatQuickMethodHeader* method_header = |
| OatQuickMethodHeader::FromCodePointer(w_memory + header_size); |
| new (method_header) OatQuickMethodHeader((stack_map != nullptr) ? result - stack_map : 0u); |
| |
| // Both instruction and data caches need flushing to the point of unification where both share |
| // a common view of memory. Flushing the data cache ensures the dirty cachelines from the |
| // newly added code are written out to the point of unification. Flushing the instruction |
| // cache ensures the newly written code will be fetched from the point of unification before |
| // use. Memory in the code cache is re-cycled as code is added and removed. The flushes |
| // prevent stale code from residing in the instruction cache. |
| // |
| // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels |
| // may trigger a segfault if a page fault occurs when requesting a cache maintenance |
| // operation. This is a kernel bug that we need to work around until affected devices |
| // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed. |
| // |
| // For reference, this behavior is caused by this commit: |
| // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c |
| // |
| bool cache_flush_success = true; |
| if (HasDualCodeMapping()) { |
| // Flush d-cache for the non-executable mapping. |
| cache_flush_success = FlushCpuCaches(w_memory, w_memory + total_size); |
| } |
| |
| // Invalidate i-cache for the executable mapping. |
| if (cache_flush_success) { |
| cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size); |
| } |
| |
| // If flushing the cache has failed, reject the allocation because we can't guarantee |
| // correctness of the instructions present in the processor caches. |
| if (!cache_flush_success) { |
| PLOG(ERROR) << "Cache flush failed triggering code allocation failure"; |
| return nullptr; |
| } |
| |
| // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for |
| // correctness as code may still be in instruction pipelines despite the i-cache flush. It is |
| // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB |
| // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to |
| // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have |
| // hardware support that broadcasts TLB invalidations and so their kernels have no software |
| // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to |
| // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on |
| // platforms lacking the appropriate support. |
| art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore); |
| |
| return result; |
| } |
| |
| static void FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots) |
| REQUIRES(Locks::jit_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); |
| const uint32_t length = roots.size(); |
| // Put all roots in `roots_data`. |
| for (uint32_t i = 0; i < length; ++i) { |
| ObjPtr<mirror::Object> object = roots[i].Get(); |
| gc_roots[i] = GcRoot<mirror::Object>(object); |
| } |
| // Store the length of the table at the end. This will allow fetching it from a stack_map |
| // pointer. |
| reinterpret_cast<uint32_t*>(roots_data)[length] = length; |
| } |
| |
| bool JitMemoryRegion::CommitData(ArrayRef<const uint8_t> reserved_data, |
| const std::vector<Handle<mirror::Object>>& roots, |
| ArrayRef<const uint8_t> stack_map) { |
| DCHECK(IsInDataSpace(reserved_data.data())); |
| uint8_t* roots_data = GetWritableDataAddress(reserved_data.data()); |
| size_t root_table_size = ComputeRootTableSize(roots.size()); |
| uint8_t* stack_map_data = roots_data + root_table_size; |
| DCHECK_LE(root_table_size + stack_map.size(), reserved_data.size()); |
| FillRootTable(roots_data, roots); |
| memcpy(stack_map_data, stack_map.data(), stack_map.size()); |
| // Flush data cache, as compiled code references literals in it. |
| // TODO(oth): establish whether this is necessary. |
| if (UNLIKELY(!FlushCpuCaches(roots_data, roots_data + root_table_size + stack_map.size()))) { |
| VLOG(jit) << "Failed to flush data in CommitData"; |
| return false; |
| } |
| return true; |
| } |
| |
| const uint8_t* JitMemoryRegion::AllocateCode(size_t size) { |
| size_t alignment = GetInstructionSetCodeAlignment(kRuntimeISA); |
| void* result = mspace_memalign(exec_mspace_, alignment, size); |
| if (UNLIKELY(result == nullptr)) { |
| return nullptr; |
| } |
| used_memory_for_code_ += mspace_usable_size(result); |
| return reinterpret_cast<uint8_t*>(GetExecutableAddress(result)); |
| } |
| |
| void JitMemoryRegion::FreeCode(const uint8_t* code) { |
| code = GetNonExecutableAddress(code); |
| used_memory_for_code_ -= mspace_usable_size(code); |
| mspace_free(exec_mspace_, const_cast<uint8_t*>(code)); |
| } |
| |
| const uint8_t* JitMemoryRegion::AllocateData(size_t data_size) { |
| void* result = mspace_malloc(data_mspace_, data_size); |
| if (UNLIKELY(result == nullptr)) { |
| return nullptr; |
| } |
| used_memory_for_data_ += mspace_usable_size(result); |
| return reinterpret_cast<uint8_t*>(GetNonWritableDataAddress(result)); |
| } |
| |
| void JitMemoryRegion::FreeData(const uint8_t* data) { |
| FreeWritableData(GetWritableDataAddress(data)); |
| } |
| |
| void JitMemoryRegion::FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) { |
| used_memory_for_data_ -= mspace_usable_size(writable_data); |
| mspace_free(data_mspace_, writable_data); |
| } |
| |
| #if defined(__BIONIC__) && defined(ART_TARGET) |
| // The code below only works on bionic on target. |
| |
| int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) { |
| if (CacheOperationsMaySegFault()) { |
| // Zygote JIT requires dual code mappings by design. We can only do this if the cache flush |
| // and invalidate instructions work without raising faults. |
| *error_msg = "Zygote memory only works with dual mappings"; |
| return -1; |
| } |
| /* Check if kernel support exists, otherwise fall back to ashmem */ |
| static const char* kRegionName = "jit-zygote-cache"; |
| if (art::IsSealFutureWriteSupported()) { |
| int fd = art::memfd_create(kRegionName, MFD_ALLOW_SEALING); |
| if (fd == -1) { |
| std::ostringstream oss; |
| oss << "Failed to create zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return -1; |
| } |
| |
| if (ftruncate(fd, capacity) != 0) { |
| std::ostringstream oss; |
| oss << "Failed to create zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return -1; |
| } |
| |
| return fd; |
| } |
| |
| LOG(INFO) << "Falling back to ashmem implementation for JIT zygote mapping"; |
| |
| int fd; |
| palette_status_t status = PaletteAshmemCreateRegion(kRegionName, capacity, &fd); |
| if (status != PALETTE_STATUS_OK) { |
| CHECK_EQ(status, PALETTE_STATUS_CHECK_ERRNO); |
| std::ostringstream oss; |
| oss << "Failed to create zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return -1; |
| } |
| return fd; |
| } |
| |
| bool JitMemoryRegion::ProtectZygoteMemory(int fd, std::string* error_msg) { |
| if (art::IsSealFutureWriteSupported()) { |
| if (fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL | F_SEAL_FUTURE_WRITE) |
| == -1) { |
| std::ostringstream oss; |
| oss << "Failed to protect zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return false; |
| } |
| } else { |
| palette_status_t status = PaletteAshmemSetProtRegion(fd, PROT_READ | PROT_EXEC); |
| if (status != PALETTE_STATUS_OK) { |
| CHECK_EQ(status, PALETTE_STATUS_CHECK_ERRNO); |
| std::ostringstream oss; |
| oss << "Failed to protect zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #else |
| |
| int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) { |
| // To simplify host building, we don't rely on the latest memfd features. |
| LOG(WARNING) << "Returning un-sealable region on non-bionic"; |
| static const char* kRegionName = "/jit-zygote-cache"; |
| int fd = art::memfd_create(kRegionName, 0); |
| if (fd == -1) { |
| std::ostringstream oss; |
| oss << "Failed to create zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return -1; |
| } |
| if (ftruncate(fd, capacity) != 0) { |
| std::ostringstream oss; |
| oss << "Failed to create zygote mapping: " << strerror(errno); |
| *error_msg = oss.str(); |
| return -1; |
| } |
| return fd; |
| } |
| |
| bool JitMemoryRegion::ProtectZygoteMemory([[maybe_unused]] int fd, |
| [[maybe_unused]] std::string* error_msg) { |
| return true; |
| } |
| |
| #endif |
| |
| } // namespace jit |
| } // namespace art |