blob: db20f3951bc2e1f57bbb15932e2cd5b90b13582e [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_
#define ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_
#include "interpreter_switch_impl.h"
#include "base/enums.h"
#include "base/globals.h"
#include "base/memory_tool.h"
#include "base/quasi_atomic.h"
#include "dex/dex_file_types.h"
#include "dex/dex_instruction_list.h"
#include "experimental_flags.h"
#include "handle_scope.h"
#include "interpreter_common.h"
#include "interpreter/shadow_frame.h"
#include "jit/jit-inl.h"
#include "jvalue-inl.h"
#include "mirror/string-alloc-inl.h"
#include "mirror/throwable.h"
#include "monitor.h"
#include "nth_caller_visitor.h"
#include "safe_math.h"
#include "shadow_frame-inl.h"
#include "thread.h"
#include "verifier/method_verifier.h"
namespace art HIDDEN {
namespace interpreter {
// Short-lived helper class which executes single DEX bytecode. It is inlined by compiler.
// Any relevant execution information is stored in the fields - it should be kept to minimum.
// All instance functions must be inlined so that the fields can be stored in registers.
//
// The function names must match the names from dex_instruction_list.h and have no arguments.
// Return value: The handlers must return false if the instruction throws or returns (exits).
//
template<bool transaction_active, Instruction::Format kFormat>
class InstructionHandler {
public:
#define HANDLER_ATTRIBUTES ALWAYS_INLINE FLATTEN WARN_UNUSED REQUIRES_SHARED(Locks::mutator_lock_)
HANDLER_ATTRIBUTES bool CheckTransactionAbort() {
if (transaction_active && Runtime::Current()->IsTransactionAborted()) {
// Transaction abort cannot be caught by catch handlers.
// Preserve the abort exception while doing non-standard return.
StackHandleScope<1u> hs(Self());
Handle<mirror::Throwable> abort_exception = hs.NewHandle(Self()->GetException());
DCHECK(abort_exception != nullptr);
DCHECK(abort_exception->GetClass()->DescriptorEquals(Transaction::kAbortExceptionDescriptor));
Self()->ClearException();
PerformNonStandardReturn(
Self(), shadow_frame_, ctx_->result, Instrumentation(), Accessor().InsSize());
Self()->SetException(abort_exception.Get());
ExitInterpreterLoop();
return false;
}
return true;
}
HANDLER_ATTRIBUTES bool CheckForceReturn() {
if (shadow_frame_.GetForcePopFrame()) {
DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
PerformNonStandardReturn(
Self(), shadow_frame_, ctx_->result, Instrumentation(), Accessor().InsSize());
ExitInterpreterLoop();
return false;
}
return true;
}
HANDLER_ATTRIBUTES bool HandlePendingException() {
DCHECK(Self()->IsExceptionPending());
Self()->AllowThreadSuspension();
if (!CheckTransactionAbort()) {
return false;
}
if (!CheckForceReturn()) {
return false;
}
bool skip_event = shadow_frame_.GetSkipNextExceptionEvent();
shadow_frame_.SetSkipNextExceptionEvent(false);
if (!MoveToExceptionHandler(Self(),
shadow_frame_,
/* skip_listeners= */ skip_event,
/* skip_throw_listener= */ skip_event)) {
// Structured locking is to be enforced for abnormal termination, too.
DoMonitorCheckOnExit(Self(), &shadow_frame_);
ctx_->result = JValue(); /* Handled in caller. */
ExitInterpreterLoop();
return false; // Return to caller.
}
if (!CheckForceReturn()) {
return false;
}
int32_t displacement =
static_cast<int32_t>(shadow_frame_.GetDexPC()) - static_cast<int32_t>(dex_pc_);
SetNextInstruction(inst_->RelativeAt(displacement));
return true;
}
HANDLER_ATTRIBUTES bool PossiblyHandlePendingExceptionOnInvoke(bool is_exception_pending) {
if (UNLIKELY(shadow_frame_.GetForceRetryInstruction())) {
/* Don't need to do anything except clear the flag and exception. We leave the */
/* instruction the same so it will be re-executed on the next go-around. */
DCHECK(inst_->IsInvoke());
shadow_frame_.SetForceRetryInstruction(false);
if (UNLIKELY(is_exception_pending)) {
DCHECK(Self()->IsExceptionPending());
if (kIsDebugBuild) {
LOG(WARNING) << "Suppressing exception for instruction-retry: "
<< Self()->GetException()->Dump();
}
Self()->ClearException();
}
SetNextInstruction(inst_);
} else if (UNLIKELY(is_exception_pending)) {
/* Should have succeeded. */
DCHECK(!shadow_frame_.GetForceRetryInstruction());
return false; // Pending exception.
}
return true;
}
// Code to run before each dex instruction.
HANDLER_ATTRIBUTES bool Preamble() {
/* We need to put this before & after the instrumentation to avoid having to put in a */
/* post-script macro. */
if (!CheckForceReturn()) {
return false;
}
if (UNLIKELY(shadow_frame_.GetNotifyDexPcMoveEvents())) {
uint8_t opcode = inst_->Opcode(inst_data_);
bool is_move_result_object = (opcode == Instruction::MOVE_RESULT_OBJECT);
JValue* save_ref = is_move_result_object ? &ctx_->result_register : nullptr;
if (UNLIKELY(!DoDexPcMoveEvent(Self(),
Accessor(),
shadow_frame_,
DexPC(),
Instrumentation(),
save_ref))) {
DCHECK(Self()->IsExceptionPending());
// Do not raise exception event if it is caused by other instrumentation event.
shadow_frame_.SetSkipNextExceptionEvent(true);
return false; // Pending exception.
}
if (!CheckForceReturn()) {
return false;
}
}
return true;
}
// Unlike most other events the DexPcMovedEvent can be sent when there is a pending exception (if
// the next instruction is MOVE_EXCEPTION). This means it needs to be handled carefully to be able
// to detect exceptions thrown by the DexPcMovedEvent itself. These exceptions could be thrown by
// jvmti-agents while handling breakpoint or single step events. We had to move this into its own
// function because it was making ExecuteSwitchImpl have too large a stack.
NO_INLINE static bool DoDexPcMoveEvent(Thread* self,
const CodeItemDataAccessor& accessor,
const ShadowFrame& shadow_frame,
uint32_t dex_pc_,
const instrumentation::Instrumentation* instrumentation,
JValue* save_ref)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(instrumentation->HasDexPcListeners());
StackHandleScope<2> hs(self);
Handle<mirror::Throwable> thr(hs.NewHandle(self->GetException()));
mirror::Object* null_obj = nullptr;
HandleWrapper<mirror::Object> h(
hs.NewHandleWrapper(LIKELY(save_ref == nullptr) ? &null_obj : save_ref->GetGCRoot()));
self->ClearException();
instrumentation->DexPcMovedEvent(self,
shadow_frame.GetThisObject(accessor.InsSize()),
shadow_frame.GetMethod(),
dex_pc_);
if (UNLIKELY(self->IsExceptionPending())) {
// We got a new exception in the dex-pc-moved event.
// We just let this exception replace the old one.
// TODO It would be good to add the old exception to the
// suppressed exceptions of the new one if possible.
return false; // Pending exception.
}
if (UNLIKELY(!thr.IsNull())) {
self->SetException(thr.Get());
}
return true;
}
HANDLER_ATTRIBUTES bool HandleReturn(JValue result) {
Self()->AllowThreadSuspension();
if (!DoMonitorCheckOnExit(Self(), &shadow_frame_)) {
return false;
}
if (UNLIKELY(NeedsMethodExitEvent(Instrumentation()) &&
!SendMethodExitEvents(Self(),
Instrumentation(),
shadow_frame_,
shadow_frame_.GetMethod(),
result))) {
DCHECK(Self()->IsExceptionPending());
// Do not raise exception event if it is caused by other instrumentation event.
shadow_frame_.SetSkipNextExceptionEvent(true);
return false; // Pending exception.
}
ctx_->result = result;
ExitInterpreterLoop();
return false;
}
HANDLER_ATTRIBUTES bool HandleBranch(int32_t offset) {
if (UNLIKELY(Self()->ObserveAsyncException())) {
return false; // Pending exception.
}
if (UNLIKELY(Instrumentation()->HasBranchListeners())) {
Instrumentation()->Branch(Self(), shadow_frame_.GetMethod(), DexPC(), offset);
}
if (!transaction_active) {
// TODO: Do OSR only on back-edges and check if OSR code is ready here.
JValue result;
if (jit::Jit::MaybeDoOnStackReplacement(Self(),
shadow_frame_.GetMethod(),
DexPC(),
offset,
&result)) {
ctx_->result = result;
ExitInterpreterLoop();
return false;
}
}
SetNextInstruction(inst_->RelativeAt(offset));
if (offset <= 0) { // Back-edge.
// Hotness update.
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
jit->AddSamples(Self(), shadow_frame_.GetMethod());
}
// Record new dex pc early to have consistent suspend point at loop header.
shadow_frame_.SetDexPC(next_->GetDexPc(Insns()));
Self()->AllowThreadSuspension();
}
return true;
}
HANDLER_ATTRIBUTES bool HandleIf(bool cond, int32_t offset) {
return HandleBranch(cond ? offset : Instruction::SizeInCodeUnits(kFormat));
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
template<typename T>
HANDLER_ATTRIBUTES bool HandleCmpl(T val1, T val2) {
int32_t result;
if (val1 > val2) {
result = 1;
} else if (val1 == val2) {
result = 0;
} else {
result = -1;
}
SetVReg(A(), result);
return true;
}
// Returns the same result as the function above. It only differs for NaN values.
template<typename T>
HANDLER_ATTRIBUTES bool HandleCmpg(T val1, T val2) {
int32_t result;
if (val1 < val2) {
result = -1;
} else if (val1 == val2) {
result = 0;
} else {
result = 1;
}
SetVReg(A(), result);
return true;
}
#pragma clang diagnostic pop
HANDLER_ATTRIBUTES bool HandleConstString() {
ObjPtr<mirror::String> s = ResolveString(Self(), shadow_frame_, dex::StringIndex(B()));
if (UNLIKELY(s == nullptr)) {
return false; // Pending exception.
}
SetVRegReference(A(), s);
return true;
}
template<typename ArrayType, typename SetVRegFn>
HANDLER_ATTRIBUTES bool HandleAGet(SetVRegFn setVReg) {
ObjPtr<mirror::Object> a = GetVRegReference(B());
if (UNLIKELY(a == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false; // Pending exception.
}
int32_t index = GetVReg(C());
ObjPtr<ArrayType> array = ObjPtr<ArrayType>::DownCast(a);
if (UNLIKELY(!array->CheckIsValidIndex(index))) {
return false; // Pending exception.
}
(this->*setVReg)(A(), array->GetWithoutChecks(index));
return true;
}
template<typename ArrayType, typename T>
HANDLER_ATTRIBUTES bool HandleAPut(T value) {
ObjPtr<mirror::Object> a = GetVRegReference(B());
if (UNLIKELY(a == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false; // Pending exception.
}
int32_t index = GetVReg(C());
ObjPtr<ArrayType> array = ObjPtr<ArrayType>::DownCast(a);
if (UNLIKELY(!array->CheckIsValidIndex(index))) {
return false; // Pending exception.
}
if (transaction_active && !CheckWriteConstraint(Self(), array)) {
return false;
}
array->template SetWithoutChecks<transaction_active>(index, value);
return true;
}
template<FindFieldType find_type, Primitive::Type field_type>
HANDLER_ATTRIBUTES bool HandleGet() {
return DoFieldGet<find_type, field_type, transaction_active>(
Self(), shadow_frame_, inst_, inst_data_);
}
template<FindFieldType find_type, Primitive::Type field_type>
HANDLER_ATTRIBUTES bool HandlePut() {
return DoFieldPut<find_type, field_type, transaction_active>(
Self(), shadow_frame_, inst_, inst_data_);
}
template<InvokeType type, bool is_range>
HANDLER_ATTRIBUTES bool HandleInvoke() {
bool success = DoInvoke<type, is_range>(
Self(), shadow_frame_, inst_, inst_data_, ResultRegister());
return PossiblyHandlePendingExceptionOnInvoke(!success);
}
HANDLER_ATTRIBUTES bool HandleUnused() {
UnexpectedOpcode(inst_, shadow_frame_);
return true;
}
HANDLER_ATTRIBUTES bool NOP() {
return true;
}
HANDLER_ATTRIBUTES bool MOVE() {
SetVReg(A(), GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_FROM16() {
SetVReg(A(), GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_16() {
SetVReg(A(), GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_WIDE() {
SetVRegLong(A(), GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_WIDE_FROM16() {
SetVRegLong(A(), GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_WIDE_16() {
SetVRegLong(A(), GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_OBJECT() {
SetVRegReference(A(), GetVRegReference(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_OBJECT_FROM16() {
SetVRegReference(A(), GetVRegReference(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_OBJECT_16() {
SetVRegReference(A(), GetVRegReference(B()));
return true;
}
HANDLER_ATTRIBUTES bool MOVE_RESULT() {
SetVReg(A(), ResultRegister()->GetI());
return true;
}
HANDLER_ATTRIBUTES bool MOVE_RESULT_WIDE() {
SetVRegLong(A(), ResultRegister()->GetJ());
return true;
}
HANDLER_ATTRIBUTES bool MOVE_RESULT_OBJECT() {
SetVRegReference(A(), ResultRegister()->GetL());
return true;
}
HANDLER_ATTRIBUTES bool MOVE_EXCEPTION() {
ObjPtr<mirror::Throwable> exception = Self()->GetException();
DCHECK(exception != nullptr) << "No pending exception on MOVE_EXCEPTION instruction";
SetVRegReference(A(), exception);
Self()->ClearException();
return true;
}
HANDLER_ATTRIBUTES bool RETURN_VOID() {
QuasiAtomic::ThreadFenceForConstructor();
JValue result;
return HandleReturn(result);
}
HANDLER_ATTRIBUTES bool RETURN() {
JValue result;
result.SetJ(0);
result.SetI(GetVReg(A()));
return HandleReturn(result);
}
HANDLER_ATTRIBUTES bool RETURN_WIDE() {
JValue result;
result.SetJ(GetVRegLong(A()));
return HandleReturn(result);
}
HANDLER_ATTRIBUTES bool RETURN_OBJECT() {
JValue result;
Self()->AllowThreadSuspension();
if (!DoMonitorCheckOnExit(Self(), &shadow_frame_)) {
return false;
}
const size_t ref_idx = A();
ObjPtr<mirror::Object> obj_result = GetVRegReference(ref_idx);
if (obj_result != nullptr && UNLIKELY(DoAssignabilityChecks())) {
ObjPtr<mirror::Class> return_type = shadow_frame_.GetMethod()->ResolveReturnType();
// Re-load since it might have moved.
obj_result = GetVRegReference(ref_idx);
if (return_type == nullptr) {
// Return the pending exception.
return false; // Pending exception.
}
if (!obj_result->VerifierInstanceOf(return_type)) {
CHECK_LE(Runtime::Current()->GetTargetSdkVersion(), 29u);
// This should never happen.
std::string temp1, temp2;
Self()->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Returning '%s' that is not instance of return type '%s'",
obj_result->GetClass()->GetDescriptor(&temp1),
return_type->GetDescriptor(&temp2));
return false; // Pending exception.
}
}
result.SetL(obj_result);
if (UNLIKELY(NeedsMethodExitEvent(Instrumentation()))) {
StackHandleScope<1> hs(Self());
MutableHandle<mirror::Object> h_result(hs.NewHandle(obj_result));
if (!SendMethodExitEvents(Self(),
Instrumentation(),
shadow_frame_,
shadow_frame_.GetMethod(),
h_result)) {
DCHECK(Self()->IsExceptionPending());
// Do not raise exception event if it is caused by other instrumentation event.
shadow_frame_.SetSkipNextExceptionEvent(true);
return false; // Pending exception.
}
// Re-load since it might have moved or been replaced during the MethodExitEvent.
result.SetL(h_result.Get());
}
ctx_->result = result;
ExitInterpreterLoop();
return false;
}
HANDLER_ATTRIBUTES bool CONST_4() {
SetVReg(A(), B());
return true;
}
HANDLER_ATTRIBUTES bool CONST_16() {
SetVReg(A(), B());
return true;
}
HANDLER_ATTRIBUTES bool CONST() {
SetVReg(A(), B());
return true;
}
HANDLER_ATTRIBUTES bool CONST_HIGH16() {
SetVReg(A(), static_cast<int32_t>(B() << 16));
return true;
}
HANDLER_ATTRIBUTES bool CONST_WIDE_16() {
SetVRegLong(A(), B());
return true;
}
HANDLER_ATTRIBUTES bool CONST_WIDE_32() {
SetVRegLong(A(), B());
return true;
}
HANDLER_ATTRIBUTES bool CONST_WIDE() {
SetVRegLong(A(), inst_->WideVRegB());
return true;
}
HANDLER_ATTRIBUTES bool CONST_WIDE_HIGH16() {
SetVRegLong(A(), static_cast<uint64_t>(B()) << 48);
return true;
}
HANDLER_ATTRIBUTES bool CONST_STRING() {
return HandleConstString();
}
HANDLER_ATTRIBUTES bool CONST_STRING_JUMBO() {
return HandleConstString();
}
HANDLER_ATTRIBUTES bool CONST_CLASS() {
ObjPtr<mirror::Class> c =
ResolveVerifyAndClinit(dex::TypeIndex(B()),
shadow_frame_.GetMethod(),
Self(),
false,
!shadow_frame_.GetMethod()->SkipAccessChecks());
if (UNLIKELY(c == nullptr)) {
return false; // Pending exception.
}
SetVRegReference(A(), c);
return true;
}
HANDLER_ATTRIBUTES bool CONST_METHOD_HANDLE() {
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::MethodHandle> mh = cl->ResolveMethodHandle(Self(),
B(),
shadow_frame_.GetMethod());
if (UNLIKELY(mh == nullptr)) {
return false; // Pending exception.
}
SetVRegReference(A(), mh);
return true;
}
HANDLER_ATTRIBUTES bool CONST_METHOD_TYPE() {
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::MethodType> mt = cl->ResolveMethodType(Self(),
dex::ProtoIndex(B()),
shadow_frame_.GetMethod());
if (UNLIKELY(mt == nullptr)) {
return false; // Pending exception.
}
SetVRegReference(A(), mt);
return true;
}
HANDLER_ATTRIBUTES bool MONITOR_ENTER() {
if (UNLIKELY(Self()->ObserveAsyncException())) {
return false; // Pending exception.
}
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false; // Pending exception.
}
DoMonitorEnter(Self(), &shadow_frame_, obj);
return !Self()->IsExceptionPending();
}
HANDLER_ATTRIBUTES bool MONITOR_EXIT() {
if (UNLIKELY(Self()->ObserveAsyncException())) {
return false; // Pending exception.
}
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false; // Pending exception.
}
DoMonitorExit(Self(), &shadow_frame_, obj);
return !Self()->IsExceptionPending();
}
HANDLER_ATTRIBUTES bool CHECK_CAST() {
ObjPtr<mirror::Class> c =
ResolveVerifyAndClinit(dex::TypeIndex(B()),
shadow_frame_.GetMethod(),
Self(),
false,
!shadow_frame_.GetMethod()->SkipAccessChecks());
if (UNLIKELY(c == nullptr)) {
return false; // Pending exception.
}
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) {
ThrowClassCastException(c, obj->GetClass());
return false; // Pending exception.
}
return true;
}
HANDLER_ATTRIBUTES bool INSTANCE_OF() {
ObjPtr<mirror::Class> c =
ResolveVerifyAndClinit(dex::TypeIndex(C()),
shadow_frame_.GetMethod(),
Self(),
false,
!shadow_frame_.GetMethod()->SkipAccessChecks());
if (UNLIKELY(c == nullptr)) {
return false; // Pending exception.
}
ObjPtr<mirror::Object> obj = GetVRegReference(B());
SetVReg(A(), (obj != nullptr && obj->InstanceOf(c)) ? 1 : 0);
return true;
}
HANDLER_ATTRIBUTES bool ARRAY_LENGTH() {
ObjPtr<mirror::Object> array = GetVRegReference(B());
if (UNLIKELY(array == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false; // Pending exception.
}
SetVReg(A(), array->AsArray()->GetLength());
return true;
}
HANDLER_ATTRIBUTES bool NEW_INSTANCE() {
ObjPtr<mirror::Object> obj = nullptr;
ObjPtr<mirror::Class> c =
ResolveVerifyAndClinit(dex::TypeIndex(B()),
shadow_frame_.GetMethod(),
Self(),
false,
!shadow_frame_.GetMethod()->SkipAccessChecks());
if (LIKELY(c != nullptr)) {
// Don't allow finalizable objects to be allocated during a transaction since these can't
// be finalized without a started runtime.
if (transaction_active && c->IsFinalizable()) {
AbortTransactionF(Self(),
"Allocating finalizable object in transaction: %s",
c->PrettyDescriptor().c_str());
return false; // Pending exception.
}
gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator();
if (UNLIKELY(c->IsStringClass())) {
obj = mirror::String::AllocEmptyString(Self(), allocator_type);
} else {
obj = AllocObjectFromCode(c, Self(), allocator_type);
}
}
if (UNLIKELY(obj == nullptr)) {
return false; // Pending exception.
}
obj->GetClass()->AssertInitializedOrInitializingInThread(Self());
SetVRegReference(A(), obj);
return true;
}
HANDLER_ATTRIBUTES bool NEW_ARRAY() {
int32_t length = GetVReg(B());
ObjPtr<mirror::Object> obj = AllocArrayFromCode(
dex::TypeIndex(C()),
length,
shadow_frame_.GetMethod(),
Self(),
Runtime::Current()->GetHeap()->GetCurrentAllocator());
if (UNLIKELY(obj == nullptr)) {
return false; // Pending exception.
}
SetVRegReference(A(), obj);
return true;
}
HANDLER_ATTRIBUTES bool FILLED_NEW_ARRAY() {
return DoFilledNewArray<false, transaction_active>(
inst_, shadow_frame_, Self(), ResultRegister());
}
HANDLER_ATTRIBUTES bool FILLED_NEW_ARRAY_RANGE() {
return DoFilledNewArray<true, transaction_active>(
inst_, shadow_frame_, Self(), ResultRegister());
}
HANDLER_ATTRIBUTES bool FILL_ARRAY_DATA() {
const uint16_t* payload_addr = reinterpret_cast<const uint16_t*>(inst_) + B();
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(payload_addr);
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (!FillArrayData(obj, payload)) {
return false; // Pending exception.
}
if (transaction_active) {
RecordArrayElementsInTransaction(obj->AsArray(), payload->element_count);
}
return true;
}
HANDLER_ATTRIBUTES bool THROW() {
if (UNLIKELY(Self()->ObserveAsyncException())) {
return false; // Pending exception.
}
ObjPtr<mirror::Object> exception = GetVRegReference(A());
if (UNLIKELY(exception == nullptr)) {
ThrowNullPointerException();
} else if (DoAssignabilityChecks() && !exception->GetClass()->IsThrowableClass()) {
// This should never happen.
std::string temp;
Self()->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Throwing '%s' that is not instance of Throwable",
exception->GetClass()->GetDescriptor(&temp));
} else {
Self()->SetException(exception->AsThrowable());
}
return false; // Pending exception.
}
HANDLER_ATTRIBUTES bool GOTO() {
return HandleBranch(A());
}
HANDLER_ATTRIBUTES bool GOTO_16() {
return HandleBranch(A());
}
HANDLER_ATTRIBUTES bool GOTO_32() {
return HandleBranch(A());
}
HANDLER_ATTRIBUTES bool PACKED_SWITCH() {
return HandleBranch(DoPackedSwitch(inst_, shadow_frame_, inst_data_));
}
HANDLER_ATTRIBUTES bool SPARSE_SWITCH() {
return HandleBranch(DoSparseSwitch(inst_, shadow_frame_, inst_data_));
}
HANDLER_ATTRIBUTES bool CMPL_FLOAT() {
return HandleCmpl<float>(GetVRegFloat(B()), GetVRegFloat(C()));
}
HANDLER_ATTRIBUTES bool CMPG_FLOAT() {
return HandleCmpg<float>(GetVRegFloat(B()), GetVRegFloat(C()));
}
HANDLER_ATTRIBUTES bool CMPL_DOUBLE() {
return HandleCmpl<double>(GetVRegDouble(B()), GetVRegDouble(C()));
}
HANDLER_ATTRIBUTES bool CMPG_DOUBLE() {
return HandleCmpg<double>(GetVRegDouble(B()), GetVRegDouble(C()));
}
HANDLER_ATTRIBUTES bool CMP_LONG() {
return HandleCmpl<int64_t>(GetVRegLong(B()), GetVRegLong(C()));
}
HANDLER_ATTRIBUTES bool IF_EQ() {
return HandleIf(GetVReg(A()) == GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool IF_NE() {
return HandleIf(GetVReg(A()) != GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool IF_LT() {
return HandleIf(GetVReg(A()) < GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool IF_GE() {
return HandleIf(GetVReg(A()) >= GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool IF_GT() {
return HandleIf(GetVReg(A()) > GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool IF_LE() {
return HandleIf(GetVReg(A()) <= GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool IF_EQZ() {
return HandleIf(GetVReg(A()) == 0, B());
}
HANDLER_ATTRIBUTES bool IF_NEZ() {
return HandleIf(GetVReg(A()) != 0, B());
}
HANDLER_ATTRIBUTES bool IF_LTZ() {
return HandleIf(GetVReg(A()) < 0, B());
}
HANDLER_ATTRIBUTES bool IF_GEZ() {
return HandleIf(GetVReg(A()) >= 0, B());
}
HANDLER_ATTRIBUTES bool IF_GTZ() {
return HandleIf(GetVReg(A()) > 0, B());
}
HANDLER_ATTRIBUTES bool IF_LEZ() {
return HandleIf(GetVReg(A()) <= 0, B());
}
HANDLER_ATTRIBUTES bool AGET_BOOLEAN() {
return HandleAGet<mirror::BooleanArray>(&InstructionHandler::SetVReg);
}
HANDLER_ATTRIBUTES bool AGET_BYTE() {
return HandleAGet<mirror::ByteArray>(&InstructionHandler::SetVReg);
}
HANDLER_ATTRIBUTES bool AGET_CHAR() {
return HandleAGet<mirror::CharArray>(&InstructionHandler::SetVReg);
}
HANDLER_ATTRIBUTES bool AGET_SHORT() {
return HandleAGet<mirror::ShortArray>(&InstructionHandler::SetVReg);
}
HANDLER_ATTRIBUTES bool AGET() {
return HandleAGet<mirror::IntArray>(&InstructionHandler::SetVReg);
}
HANDLER_ATTRIBUTES bool AGET_WIDE() {
return HandleAGet<mirror::LongArray>(&InstructionHandler::SetVRegLong);
}
HANDLER_ATTRIBUTES bool AGET_OBJECT() {
return HandleAGet<mirror::ObjectArray<mirror::Object>>(&InstructionHandler::SetVRegReference);
}
HANDLER_ATTRIBUTES bool APUT_BOOLEAN() {
return HandleAPut<mirror::BooleanArray>(GetVReg(A()));
}
HANDLER_ATTRIBUTES bool APUT_BYTE() {
return HandleAPut<mirror::ByteArray>(GetVReg(A()));
}
HANDLER_ATTRIBUTES bool APUT_CHAR() {
return HandleAPut<mirror::CharArray>(GetVReg(A()));
}
HANDLER_ATTRIBUTES bool APUT_SHORT() {
return HandleAPut<mirror::ShortArray>(GetVReg(A()));
}
HANDLER_ATTRIBUTES bool APUT() {
return HandleAPut<mirror::IntArray>(GetVReg(A()));
}
HANDLER_ATTRIBUTES bool APUT_WIDE() {
return HandleAPut<mirror::LongArray>(GetVRegLong(A()));
}
HANDLER_ATTRIBUTES bool APUT_OBJECT() {
ObjPtr<mirror::Object> a = GetVRegReference(B());
if (UNLIKELY(a == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false; // Pending exception.
}
int32_t index = GetVReg(C());
ObjPtr<mirror::Object> val = GetVRegReference(A());
ObjPtr<mirror::ObjectArray<mirror::Object>> array = a->AsObjectArray<mirror::Object>();
if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) {
if (transaction_active &&
(!CheckWriteConstraint(Self(), array) || !CheckWriteValueConstraint(Self(), val))) {
return false;
}
array->SetWithoutChecks<transaction_active>(index, val);
} else {
return false; // Pending exception.
}
return true;
}
HANDLER_ATTRIBUTES bool IGET_BOOLEAN() {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimBoolean>();
}
HANDLER_ATTRIBUTES bool IGET_BYTE() {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimByte>();
}
HANDLER_ATTRIBUTES bool IGET_CHAR() {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimChar>();
}
HANDLER_ATTRIBUTES bool IGET_SHORT() {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimShort>();
}
HANDLER_ATTRIBUTES bool IGET() {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimInt>();
}
HANDLER_ATTRIBUTES bool IGET_WIDE() {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimLong>();
}
HANDLER_ATTRIBUTES bool IGET_OBJECT() {
return HandleGet<InstanceObjectRead, Primitive::kPrimNot>();
}
HANDLER_ATTRIBUTES bool SGET_BOOLEAN() {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimBoolean>();
}
HANDLER_ATTRIBUTES bool SGET_BYTE() {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimByte>();
}
HANDLER_ATTRIBUTES bool SGET_CHAR() {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimChar>();
}
HANDLER_ATTRIBUTES bool SGET_SHORT() {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimShort>();
}
HANDLER_ATTRIBUTES bool SGET() {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimInt>();
}
HANDLER_ATTRIBUTES bool SGET_WIDE() {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimLong>();
}
HANDLER_ATTRIBUTES bool SGET_OBJECT() {
return HandleGet<StaticObjectRead, Primitive::kPrimNot>();
}
HANDLER_ATTRIBUTES bool IPUT_BOOLEAN() {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimBoolean>();
}
HANDLER_ATTRIBUTES bool IPUT_BYTE() {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimByte>();
}
HANDLER_ATTRIBUTES bool IPUT_CHAR() {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimChar>();
}
HANDLER_ATTRIBUTES bool IPUT_SHORT() {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimShort>();
}
HANDLER_ATTRIBUTES bool IPUT() {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimInt>();
}
HANDLER_ATTRIBUTES bool IPUT_WIDE() {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimLong>();
}
HANDLER_ATTRIBUTES bool IPUT_OBJECT() {
return HandlePut<InstanceObjectWrite, Primitive::kPrimNot>();
}
HANDLER_ATTRIBUTES bool SPUT_BOOLEAN() {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimBoolean>();
}
HANDLER_ATTRIBUTES bool SPUT_BYTE() {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimByte>();
}
HANDLER_ATTRIBUTES bool SPUT_CHAR() {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimChar>();
}
HANDLER_ATTRIBUTES bool SPUT_SHORT() {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimShort>();
}
HANDLER_ATTRIBUTES bool SPUT() {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimInt>();
}
HANDLER_ATTRIBUTES bool SPUT_WIDE() {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimLong>();
}
HANDLER_ATTRIBUTES bool SPUT_OBJECT() {
return HandlePut<StaticObjectWrite, Primitive::kPrimNot>();
}
HANDLER_ATTRIBUTES bool INVOKE_VIRTUAL() {
return HandleInvoke<kVirtual, /*is_range=*/ false>();
}
HANDLER_ATTRIBUTES bool INVOKE_VIRTUAL_RANGE() {
return HandleInvoke<kVirtual, /*is_range=*/ true>();
}
HANDLER_ATTRIBUTES bool INVOKE_SUPER() {
return HandleInvoke<kSuper, /*is_range=*/ false>();
}
HANDLER_ATTRIBUTES bool INVOKE_SUPER_RANGE() {
return HandleInvoke<kSuper, /*is_range=*/ true>();
}
HANDLER_ATTRIBUTES bool INVOKE_DIRECT() {
return HandleInvoke<kDirect, /*is_range=*/ false>();
}
HANDLER_ATTRIBUTES bool INVOKE_DIRECT_RANGE() {
return HandleInvoke<kDirect, /*is_range=*/ true>();
}
HANDLER_ATTRIBUTES bool INVOKE_INTERFACE() {
return HandleInvoke<kInterface, /*is_range=*/ false>();
}
HANDLER_ATTRIBUTES bool INVOKE_INTERFACE_RANGE() {
return HandleInvoke<kInterface, /*is_range=*/ true>();
}
HANDLER_ATTRIBUTES bool INVOKE_STATIC() {
return HandleInvoke<kStatic, /*is_range=*/ false>();
}
HANDLER_ATTRIBUTES bool INVOKE_STATIC_RANGE() {
return HandleInvoke<kStatic, /*is_range=*/ true>();
}
HANDLER_ATTRIBUTES bool INVOKE_POLYMORPHIC() {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokePolymorphic</* is_range= */ false>(
Self(), shadow_frame_, inst_, inst_data_, ResultRegister());
return PossiblyHandlePendingExceptionOnInvoke(!success);
}
HANDLER_ATTRIBUTES bool INVOKE_POLYMORPHIC_RANGE() {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokePolymorphic</* is_range= */ true>(
Self(), shadow_frame_, inst_, inst_data_, ResultRegister());
return PossiblyHandlePendingExceptionOnInvoke(!success);
}
HANDLER_ATTRIBUTES bool INVOKE_CUSTOM() {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokeCustom</* is_range= */ false>(
Self(), shadow_frame_, inst_, inst_data_, ResultRegister());
return PossiblyHandlePendingExceptionOnInvoke(!success);
}
HANDLER_ATTRIBUTES bool INVOKE_CUSTOM_RANGE() {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokeCustom</* is_range= */ true>(
Self(), shadow_frame_, inst_, inst_data_, ResultRegister());
return PossiblyHandlePendingExceptionOnInvoke(!success);
}
HANDLER_ATTRIBUTES bool NEG_INT() {
SetVReg(A(), -GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool NOT_INT() {
SetVReg(A(), ~GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool NEG_LONG() {
SetVRegLong(A(), -GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool NOT_LONG() {
SetVRegLong(A(), ~GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool NEG_FLOAT() {
SetVRegFloat(A(), -GetVRegFloat(B()));
return true;
}
HANDLER_ATTRIBUTES bool NEG_DOUBLE() {
SetVRegDouble(A(), -GetVRegDouble(B()));
return true;
}
HANDLER_ATTRIBUTES bool INT_TO_LONG() {
SetVRegLong(A(), GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool INT_TO_FLOAT() {
SetVRegFloat(A(), GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool INT_TO_DOUBLE() {
SetVRegDouble(A(), GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool LONG_TO_INT() {
SetVReg(A(), GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool LONG_TO_FLOAT() {
SetVRegFloat(A(), GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool LONG_TO_DOUBLE() {
SetVRegDouble(A(), GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool FLOAT_TO_INT() {
SetVReg(A(), art_float_to_integral<int32_t, float>(GetVRegFloat(B())));
return true;
}
HANDLER_ATTRIBUTES bool FLOAT_TO_LONG() {
SetVRegLong(A(), art_float_to_integral<int64_t, float>(GetVRegFloat(B())));
return true;
}
HANDLER_ATTRIBUTES bool FLOAT_TO_DOUBLE() {
SetVRegDouble(A(), GetVRegFloat(B()));
return true;
}
HANDLER_ATTRIBUTES bool DOUBLE_TO_INT() {
SetVReg(A(), art_float_to_integral<int32_t, double>(GetVRegDouble(B())));
return true;
}
HANDLER_ATTRIBUTES bool DOUBLE_TO_LONG() {
SetVRegLong(A(), art_float_to_integral<int64_t, double>(GetVRegDouble(B())));
return true;
}
HANDLER_ATTRIBUTES bool DOUBLE_TO_FLOAT() {
SetVRegFloat(A(), GetVRegDouble(B()));
return true;
}
HANDLER_ATTRIBUTES bool INT_TO_BYTE() {
SetVReg(A(), static_cast<int8_t>(GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool INT_TO_CHAR() {
SetVReg(A(), static_cast<uint16_t>(GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool INT_TO_SHORT() {
SetVReg(A(), static_cast<int16_t>(GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool ADD_INT() {
SetVReg(A(), SafeAdd(GetVReg(B()), GetVReg(C())));
return true;
}
HANDLER_ATTRIBUTES bool SUB_INT() {
SetVReg(A(), SafeSub(GetVReg(B()), GetVReg(C())));
return true;
}
HANDLER_ATTRIBUTES bool MUL_INT() {
SetVReg(A(), SafeMul(GetVReg(B()), GetVReg(C())));
return true;
}
HANDLER_ATTRIBUTES bool DIV_INT() {
return DoIntDivide(shadow_frame_, A(), GetVReg(B()), GetVReg(C()));
}
HANDLER_ATTRIBUTES bool REM_INT() {
return DoIntRemainder(shadow_frame_, A(), GetVReg(B()), GetVReg(C()));
}
HANDLER_ATTRIBUTES bool SHL_INT() {
SetVReg(A(), GetVReg(B()) << (GetVReg(C()) & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool SHR_INT() {
SetVReg(A(), GetVReg(B()) >> (GetVReg(C()) & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool USHR_INT() {
SetVReg(A(), static_cast<uint32_t>(GetVReg(B())) >> (GetVReg(C()) & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool AND_INT() {
SetVReg(A(), GetVReg(B()) & GetVReg(C()));
return true;
}
HANDLER_ATTRIBUTES bool OR_INT() {
SetVReg(A(), GetVReg(B()) | GetVReg(C()));
return true;
}
HANDLER_ATTRIBUTES bool XOR_INT() {
SetVReg(A(), GetVReg(B()) ^ GetVReg(C()));
return true;
}
HANDLER_ATTRIBUTES bool ADD_LONG() {
SetVRegLong(A(), SafeAdd(GetVRegLong(B()), GetVRegLong(C())));
return true;
}
HANDLER_ATTRIBUTES bool SUB_LONG() {
SetVRegLong(A(), SafeSub(GetVRegLong(B()), GetVRegLong(C())));
return true;
}
HANDLER_ATTRIBUTES bool MUL_LONG() {
SetVRegLong(A(), SafeMul(GetVRegLong(B()), GetVRegLong(C())));
return true;
}
HANDLER_ATTRIBUTES bool DIV_LONG() {
return DoLongDivide(shadow_frame_, A(), GetVRegLong(B()), GetVRegLong(C()));
}
HANDLER_ATTRIBUTES bool REM_LONG() {
return DoLongRemainder(shadow_frame_, A(), GetVRegLong(B()), GetVRegLong(C()));
}
HANDLER_ATTRIBUTES bool AND_LONG() {
SetVRegLong(A(), GetVRegLong(B()) & GetVRegLong(C()));
return true;
}
HANDLER_ATTRIBUTES bool OR_LONG() {
SetVRegLong(A(), GetVRegLong(B()) | GetVRegLong(C()));
return true;
}
HANDLER_ATTRIBUTES bool XOR_LONG() {
SetVRegLong(A(), GetVRegLong(B()) ^ GetVRegLong(C()));
return true;
}
HANDLER_ATTRIBUTES bool SHL_LONG() {
SetVRegLong(A(), GetVRegLong(B()) << (GetVReg(C()) & 0x3f));
return true;
}
HANDLER_ATTRIBUTES bool SHR_LONG() {
SetVRegLong(A(), GetVRegLong(B()) >> (GetVReg(C()) & 0x3f));
return true;
}
HANDLER_ATTRIBUTES bool USHR_LONG() {
SetVRegLong(A(), static_cast<uint64_t>(GetVRegLong(B())) >> (GetVReg(C()) & 0x3f));
return true;
}
HANDLER_ATTRIBUTES bool ADD_FLOAT() {
SetVRegFloat(A(), GetVRegFloat(B()) + GetVRegFloat(C()));
return true;
}
HANDLER_ATTRIBUTES bool SUB_FLOAT() {
SetVRegFloat(A(), GetVRegFloat(B()) - GetVRegFloat(C()));
return true;
}
HANDLER_ATTRIBUTES bool MUL_FLOAT() {
SetVRegFloat(A(), GetVRegFloat(B()) * GetVRegFloat(C()));
return true;
}
HANDLER_ATTRIBUTES bool DIV_FLOAT() {
SetVRegFloat(A(), GetVRegFloat(B()) / GetVRegFloat(C()));
return true;
}
HANDLER_ATTRIBUTES bool REM_FLOAT() {
SetVRegFloat(A(), fmodf(GetVRegFloat(B()), GetVRegFloat(C())));
return true;
}
HANDLER_ATTRIBUTES bool ADD_DOUBLE() {
SetVRegDouble(A(), GetVRegDouble(B()) + GetVRegDouble(C()));
return true;
}
HANDLER_ATTRIBUTES bool SUB_DOUBLE() {
SetVRegDouble(A(), GetVRegDouble(B()) - GetVRegDouble(C()));
return true;
}
HANDLER_ATTRIBUTES bool MUL_DOUBLE() {
SetVRegDouble(A(), GetVRegDouble(B()) * GetVRegDouble(C()));
return true;
}
HANDLER_ATTRIBUTES bool DIV_DOUBLE() {
SetVRegDouble(A(), GetVRegDouble(B()) / GetVRegDouble(C()));
return true;
}
HANDLER_ATTRIBUTES bool REM_DOUBLE() {
SetVRegDouble(A(), fmod(GetVRegDouble(B()), GetVRegDouble(C())));
return true;
}
HANDLER_ATTRIBUTES bool ADD_INT_2ADDR() {
SetVReg(A(), SafeAdd(GetVReg(A()), GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool SUB_INT_2ADDR() {
SetVReg(A(), SafeSub(GetVReg(A()), GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool MUL_INT_2ADDR() {
SetVReg(A(), SafeMul(GetVReg(A()), GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool DIV_INT_2ADDR() {
return DoIntDivide(shadow_frame_, A(), GetVReg(A()), GetVReg(B()));
}
HANDLER_ATTRIBUTES bool REM_INT_2ADDR() {
return DoIntRemainder(shadow_frame_, A(), GetVReg(A()), GetVReg(B()));
}
HANDLER_ATTRIBUTES bool SHL_INT_2ADDR() {
SetVReg(A(), GetVReg(A()) << (GetVReg(B()) & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool SHR_INT_2ADDR() {
SetVReg(A(), GetVReg(A()) >> (GetVReg(B()) & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool USHR_INT_2ADDR() {
SetVReg(A(), static_cast<uint32_t>(GetVReg(A())) >> (GetVReg(B()) & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool AND_INT_2ADDR() {
SetVReg(A(), GetVReg(A()) & GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool OR_INT_2ADDR() {
SetVReg(A(), GetVReg(A()) | GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool XOR_INT_2ADDR() {
SetVReg(A(), GetVReg(A()) ^ GetVReg(B()));
return true;
}
HANDLER_ATTRIBUTES bool ADD_LONG_2ADDR() {
SetVRegLong(A(), SafeAdd(GetVRegLong(A()), GetVRegLong(B())));
return true;
}
HANDLER_ATTRIBUTES bool SUB_LONG_2ADDR() {
SetVRegLong(A(), SafeSub(GetVRegLong(A()), GetVRegLong(B())));
return true;
}
HANDLER_ATTRIBUTES bool MUL_LONG_2ADDR() {
SetVRegLong(A(), SafeMul(GetVRegLong(A()), GetVRegLong(B())));
return true;
}
HANDLER_ATTRIBUTES bool DIV_LONG_2ADDR() {
return DoLongDivide(shadow_frame_, A(), GetVRegLong(A()), GetVRegLong(B()));
}
HANDLER_ATTRIBUTES bool REM_LONG_2ADDR() {
return DoLongRemainder(shadow_frame_, A(), GetVRegLong(A()), GetVRegLong(B()));
}
HANDLER_ATTRIBUTES bool AND_LONG_2ADDR() {
SetVRegLong(A(), GetVRegLong(A()) & GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool OR_LONG_2ADDR() {
SetVRegLong(A(), GetVRegLong(A()) | GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool XOR_LONG_2ADDR() {
SetVRegLong(A(), GetVRegLong(A()) ^ GetVRegLong(B()));
return true;
}
HANDLER_ATTRIBUTES bool SHL_LONG_2ADDR() {
SetVRegLong(A(), GetVRegLong(A()) << (GetVReg(B()) & 0x3f));
return true;
}
HANDLER_ATTRIBUTES bool SHR_LONG_2ADDR() {
SetVRegLong(A(), GetVRegLong(A()) >> (GetVReg(B()) & 0x3f));
return true;
}
HANDLER_ATTRIBUTES bool USHR_LONG_2ADDR() {
SetVRegLong(A(), static_cast<uint64_t>(GetVRegLong(A())) >> (GetVReg(B()) & 0x3f));
return true;
}
HANDLER_ATTRIBUTES bool ADD_FLOAT_2ADDR() {
SetVRegFloat(A(), GetVRegFloat(A()) + GetVRegFloat(B()));
return true;
}
HANDLER_ATTRIBUTES bool SUB_FLOAT_2ADDR() {
SetVRegFloat(A(), GetVRegFloat(A()) - GetVRegFloat(B()));
return true;
}
HANDLER_ATTRIBUTES bool MUL_FLOAT_2ADDR() {
SetVRegFloat(A(), GetVRegFloat(A()) * GetVRegFloat(B()));
return true;
}
HANDLER_ATTRIBUTES bool DIV_FLOAT_2ADDR() {
SetVRegFloat(A(), GetVRegFloat(A()) / GetVRegFloat(B()));
return true;
}
HANDLER_ATTRIBUTES bool REM_FLOAT_2ADDR() {
SetVRegFloat(A(), fmodf(GetVRegFloat(A()), GetVRegFloat(B())));
return true;
}
HANDLER_ATTRIBUTES bool ADD_DOUBLE_2ADDR() {
SetVRegDouble(A(), GetVRegDouble(A()) + GetVRegDouble(B()));
return true;
}
HANDLER_ATTRIBUTES bool SUB_DOUBLE_2ADDR() {
SetVRegDouble(A(), GetVRegDouble(A()) - GetVRegDouble(B()));
return true;
}
HANDLER_ATTRIBUTES bool MUL_DOUBLE_2ADDR() {
SetVRegDouble(A(), GetVRegDouble(A()) * GetVRegDouble(B()));
return true;
}
HANDLER_ATTRIBUTES bool DIV_DOUBLE_2ADDR() {
SetVRegDouble(A(), GetVRegDouble(A()) / GetVRegDouble(B()));
return true;
}
HANDLER_ATTRIBUTES bool REM_DOUBLE_2ADDR() {
SetVRegDouble(A(), fmod(GetVRegDouble(A()), GetVRegDouble(B())));
return true;
}
HANDLER_ATTRIBUTES bool ADD_INT_LIT16() {
SetVReg(A(), SafeAdd(GetVReg(B()), C()));
return true;
}
HANDLER_ATTRIBUTES bool RSUB_INT() {
SetVReg(A(), SafeSub(C(), GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool MUL_INT_LIT16() {
SetVReg(A(), SafeMul(GetVReg(B()), C()));
return true;
}
HANDLER_ATTRIBUTES bool DIV_INT_LIT16() {
return DoIntDivide(shadow_frame_, A(), GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool REM_INT_LIT16() {
return DoIntRemainder(shadow_frame_, A(), GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool AND_INT_LIT16() {
SetVReg(A(), GetVReg(B()) & C());
return true;
}
HANDLER_ATTRIBUTES bool OR_INT_LIT16() {
SetVReg(A(), GetVReg(B()) | C());
return true;
}
HANDLER_ATTRIBUTES bool XOR_INT_LIT16() {
SetVReg(A(), GetVReg(B()) ^ C());
return true;
}
HANDLER_ATTRIBUTES bool ADD_INT_LIT8() {
SetVReg(A(), SafeAdd(GetVReg(B()), C()));
return true;
}
HANDLER_ATTRIBUTES bool RSUB_INT_LIT8() {
SetVReg(A(), SafeSub(C(), GetVReg(B())));
return true;
}
HANDLER_ATTRIBUTES bool MUL_INT_LIT8() {
SetVReg(A(), SafeMul(GetVReg(B()), C()));
return true;
}
HANDLER_ATTRIBUTES bool DIV_INT_LIT8() {
return DoIntDivide(shadow_frame_, A(), GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool REM_INT_LIT8() {
return DoIntRemainder(shadow_frame_, A(), GetVReg(B()), C());
}
HANDLER_ATTRIBUTES bool AND_INT_LIT8() {
SetVReg(A(), GetVReg(B()) & C());
return true;
}
HANDLER_ATTRIBUTES bool OR_INT_LIT8() {
SetVReg(A(), GetVReg(B()) | C());
return true;
}
HANDLER_ATTRIBUTES bool XOR_INT_LIT8() {
SetVReg(A(), GetVReg(B()) ^ C());
return true;
}
HANDLER_ATTRIBUTES bool SHL_INT_LIT8() {
SetVReg(A(), GetVReg(B()) << (C() & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool SHR_INT_LIT8() {
SetVReg(A(), GetVReg(B()) >> (C() & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool USHR_INT_LIT8() {
SetVReg(A(), static_cast<uint32_t>(GetVReg(B())) >> (C() & 0x1f));
return true;
}
HANDLER_ATTRIBUTES bool UNUSED_3E() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_3F() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_40() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_41() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_42() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_43() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_73() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_79() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_7A() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E3() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E4() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E5() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E6() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E7() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E8() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_E9() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_EA() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_EB() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_EC() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_ED() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_EE() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_EF() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F0() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F1() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F2() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F3() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F4() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F5() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F6() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F7() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F8() {
return HandleUnused();
}
HANDLER_ATTRIBUTES bool UNUSED_F9() {
return HandleUnused();
}
ALWAYS_INLINE InstructionHandler(SwitchImplContext* ctx,
const instrumentation::Instrumentation* instrumentation,
Thread* self,
ShadowFrame& shadow_frame,
uint16_t dex_pc,
const Instruction* inst,
uint16_t inst_data,
const Instruction*& next,
bool& exit_interpreter_loop)
: ctx_(ctx),
instrumentation_(instrumentation),
self_(self),
shadow_frame_(shadow_frame),
dex_pc_(dex_pc),
inst_(inst),
inst_data_(inst_data),
next_(next),
exit_interpreter_loop_(exit_interpreter_loop) {
}
private:
bool DoAssignabilityChecks() const REQUIRES_SHARED(Locks::mutator_lock_) {
return !shadow_frame_.GetMethod()->SkipAccessChecks();
}
ALWAYS_INLINE const CodeItemDataAccessor& Accessor() { return ctx_->accessor; }
ALWAYS_INLINE const uint16_t* Insns() { return ctx_->accessor.Insns(); }
ALWAYS_INLINE JValue* ResultRegister() { return &ctx_->result_register; }
ALWAYS_INLINE Thread* Self() {
DCHECK_EQ(self_, Thread::Current());
return self_;
}
ALWAYS_INLINE int32_t DexPC() {
DCHECK_EQ(dex_pc_, shadow_frame_.GetDexPC());
return dex_pc_;
}
ALWAYS_INLINE const instrumentation::Instrumentation* Instrumentation() {
return instrumentation_;
}
ALWAYS_INLINE int32_t A() { return inst_->VRegA(kFormat, inst_data_); }
ALWAYS_INLINE int32_t B() { return inst_->VRegB(kFormat, inst_data_); }
ALWAYS_INLINE int32_t C() { return inst_->VRegC(kFormat); }
int32_t GetVReg(size_t i) const { return shadow_frame_.GetVReg(i); }
int64_t GetVRegLong(size_t i) const { return shadow_frame_.GetVRegLong(i); }
float GetVRegFloat(size_t i) const { return shadow_frame_.GetVRegFloat(i); }
double GetVRegDouble(size_t i) const { return shadow_frame_.GetVRegDouble(i); }
ObjPtr<mirror::Object> GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) {
return shadow_frame_.GetVRegReference(i);
}
void SetVReg(size_t i, int32_t val) { shadow_frame_.SetVReg(i, val); }
void SetVRegLong(size_t i, int64_t val) { shadow_frame_.SetVRegLong(i, val); }
void SetVRegFloat(size_t i, float val) { shadow_frame_.SetVRegFloat(i, val); }
void SetVRegDouble(size_t i, double val) { shadow_frame_.SetVRegDouble(i, val); }
void SetVRegReference(size_t i, ObjPtr<mirror::Object> val)
REQUIRES_SHARED(Locks::mutator_lock_) {
shadow_frame_.SetVRegReference(i, val);
}
// Set the next instruction to be executed. It is the 'fall-through' instruction by default.
ALWAYS_INLINE void SetNextInstruction(const Instruction* next_inst) {
DCHECK_LT(next_inst->GetDexPc(Insns()), Accessor().InsnsSizeInCodeUnits());
next_ = next_inst;
}
// Stop interpreting the current method. (return statement, debugger-forced return, OSR, ...)
ALWAYS_INLINE void ExitInterpreterLoop() {
exit_interpreter_loop_ = true;
}
SwitchImplContext* const ctx_;
const instrumentation::Instrumentation* const instrumentation_;
Thread* const self_;
ShadowFrame& shadow_frame_;
uint32_t const dex_pc_;
const Instruction* const inst_;
uint16_t const inst_data_;
const Instruction*& next_;
bool& exit_interpreter_loop_;
};
// Don't inline in ASAN. It would create massive stack frame.
#if defined(ADDRESS_SANITIZER) || defined(HWADDRESS_SANITIZER)
#define ASAN_NO_INLINE NO_INLINE
#else
#define ASAN_NO_INLINE ALWAYS_INLINE
#endif
#define OPCODE_CASE(OPCODE, OPCODE_NAME, NAME, FORMAT, i, a, e, v) \
template<bool transaction_active> \
ASAN_NO_INLINE NO_STACK_PROTECTOR static bool OP_##OPCODE_NAME( \
SwitchImplContext* ctx, \
const instrumentation::Instrumentation* instrumentation, \
Thread* self, \
ShadowFrame& shadow_frame, \
uint16_t dex_pc, \
const Instruction* inst, \
uint16_t inst_data, \
const Instruction*& next, \
bool& exit) REQUIRES_SHARED(Locks::mutator_lock_) { \
InstructionHandler<transaction_active, Instruction::FORMAT> handler( \
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit); \
return LIKELY(handler.OPCODE_NAME()); \
}
DEX_INSTRUCTION_LIST(OPCODE_CASE)
#undef OPCODE_CASE
template<bool transaction_active>
NO_STACK_PROTECTOR
void ExecuteSwitchImplCpp(SwitchImplContext* ctx) {
Thread* self = ctx->self;
const CodeItemDataAccessor& accessor = ctx->accessor;
ShadowFrame& shadow_frame = ctx->shadow_frame;
self->VerifyStack();
uint32_t dex_pc = shadow_frame.GetDexPC();
const auto* const instrumentation = Runtime::Current()->GetInstrumentation();
const uint16_t* const insns = accessor.Insns();
const Instruction* next = Instruction::At(insns + dex_pc);
DCHECK(!shadow_frame.GetForceRetryInstruction())
<< "Entered interpreter from invoke without retry instruction being handled!";
bool const interpret_one_instruction = ctx->interpret_one_instruction;
while (true) {
const Instruction* const inst = next;
dex_pc = inst->GetDexPc(insns);
shadow_frame.SetDexPC(dex_pc);
TraceExecution(shadow_frame, inst, dex_pc);
uint16_t inst_data = inst->Fetch16(0);
bool exit = false;
bool success; // Moved outside to keep frames small under asan.
if (InstructionHandler<transaction_active, Instruction::kInvalidFormat>(
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit).
Preamble()) {
DCHECK_EQ(self->IsExceptionPending(), inst->Opcode(inst_data) == Instruction::MOVE_EXCEPTION);
switch (inst->Opcode(inst_data)) {
#define OPCODE_CASE(OPCODE, OPCODE_NAME, NAME, FORMAT, i, a, e, v) \
case OPCODE: { \
next = inst->RelativeAt(Instruction::SizeInCodeUnits(Instruction::FORMAT)); \
success = OP_##OPCODE_NAME<transaction_active>( \
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit); \
if (success && LIKELY(!interpret_one_instruction)) { \
continue; \
} \
break; \
}
DEX_INSTRUCTION_LIST(OPCODE_CASE)
#undef OPCODE_CASE
}
}
if (exit) {
shadow_frame.SetDexPC(dex::kDexNoIndex);
return; // Return statement or debugger forced exit.
}
if (self->IsExceptionPending()) {
if (!InstructionHandler<transaction_active, Instruction::kInvalidFormat>(
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit).
HandlePendingException()) {
shadow_frame.SetDexPC(dex::kDexNoIndex);
return; // Locally unhandled exception - return to caller.
}
// Continue execution in the catch block.
}
if (interpret_one_instruction) {
shadow_frame.SetDexPC(next->GetDexPc(insns)); // Record where we stopped.
ctx->result = ctx->result_register;
return;
}
}
} // NOLINT(readability/fn_size)
} // namespace interpreter
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_