| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "fault_handler.h" |
| |
| #include <sys/ucontext.h> |
| |
| #include "arch/instruction_set.h" |
| #include "art_method.h" |
| #include "base/enums.h" |
| #include "base/hex_dump.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/macros.h" |
| #include "oat/oat_quick_method_header.h" |
| #include "runtime_globals.h" |
| #include "thread-current-inl.h" |
| |
| #if defined(__APPLE__) |
| #define ucontext __darwin_ucontext |
| |
| #if defined(__x86_64__) |
| // 64 bit mac build. |
| #define CTX_ESP uc_mcontext->__ss.__rsp |
| #define CTX_EIP uc_mcontext->__ss.__rip |
| #define CTX_EAX uc_mcontext->__ss.__rax |
| #define CTX_METHOD uc_mcontext->__ss.__rdi |
| #define CTX_RDI uc_mcontext->__ss.__rdi |
| #define CTX_JMP_BUF uc_mcontext->__ss.__rdi |
| #else |
| // 32 bit mac build. |
| #define CTX_ESP uc_mcontext->__ss.__esp |
| #define CTX_EIP uc_mcontext->__ss.__eip |
| #define CTX_EAX uc_mcontext->__ss.__eax |
| #define CTX_METHOD uc_mcontext->__ss.__eax |
| #define CTX_JMP_BUF uc_mcontext->__ss.__eax |
| #endif |
| |
| #elif defined(__x86_64__) |
| // 64 bit linux build. |
| #define CTX_ESP uc_mcontext.gregs[REG_RSP] |
| #define CTX_EIP uc_mcontext.gregs[REG_RIP] |
| #define CTX_EAX uc_mcontext.gregs[REG_RAX] |
| #define CTX_METHOD uc_mcontext.gregs[REG_RDI] |
| #define CTX_RDI uc_mcontext.gregs[REG_RDI] |
| #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI] |
| #else |
| // 32 bit linux build. |
| #define CTX_ESP uc_mcontext.gregs[REG_ESP] |
| #define CTX_EIP uc_mcontext.gregs[REG_EIP] |
| #define CTX_EAX uc_mcontext.gregs[REG_EAX] |
| #define CTX_METHOD uc_mcontext.gregs[REG_EAX] |
| #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX] |
| #endif |
| |
| // |
| // X86 (and X86_64) specific fault handler functions. |
| // |
| |
| namespace art HIDDEN { |
| |
| extern "C" void art_quick_throw_null_pointer_exception_from_signal(); |
| extern "C" void art_quick_throw_stack_overflow(); |
| extern "C" void art_quick_test_suspend(); |
| |
| // Get the size of an instruction in bytes. |
| // Return 0 if the instruction is not handled. |
| static uint32_t GetInstructionSize(const uint8_t* pc, size_t bytes) { |
| #define FETCH_OR_SKIP_BYTE(assignment) \ |
| do { \ |
| if (bytes == 0u) { \ |
| return 0u; \ |
| } \ |
| (assignment); \ |
| ++pc; \ |
| --bytes; \ |
| } while (0) |
| #define FETCH_BYTE(var) FETCH_OR_SKIP_BYTE((var) = *pc) |
| #define SKIP_BYTE() FETCH_OR_SKIP_BYTE((void)0) |
| |
| #if defined(__x86_64) |
| const bool x86_64 = true; |
| #else |
| const bool x86_64 = false; |
| #endif |
| |
| const uint8_t* startpc = pc; |
| |
| uint8_t opcode; |
| FETCH_BYTE(opcode); |
| uint8_t modrm; |
| bool has_modrm = false; |
| bool two_byte = false; |
| uint32_t displacement_size = 0; |
| uint32_t immediate_size = 0; |
| bool operand_size_prefix = false; |
| |
| // Prefixes. |
| while (true) { |
| bool prefix_present = false; |
| switch (opcode) { |
| // Group 3 |
| case 0x66: |
| operand_size_prefix = true; |
| FALLTHROUGH_INTENDED; |
| |
| // Group 1 |
| case 0xf0: |
| case 0xf2: |
| case 0xf3: |
| |
| // Group 2 |
| case 0x2e: |
| case 0x36: |
| case 0x3e: |
| case 0x26: |
| case 0x64: |
| case 0x65: |
| |
| // Group 4 |
| case 0x67: |
| FETCH_BYTE(opcode); |
| prefix_present = true; |
| break; |
| } |
| if (!prefix_present) { |
| break; |
| } |
| } |
| |
| if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) { |
| FETCH_BYTE(opcode); |
| } |
| |
| if (opcode == 0x0f) { |
| // Two byte opcode |
| two_byte = true; |
| FETCH_BYTE(opcode); |
| } |
| |
| bool unhandled_instruction = false; |
| |
| if (two_byte) { |
| switch (opcode) { |
| case 0x10: // vmovsd/ss |
| case 0x11: // vmovsd/ss |
| case 0xb6: // movzx |
| case 0xb7: |
| case 0xbe: // movsx |
| case 0xbf: |
| FETCH_BYTE(modrm); |
| has_modrm = true; |
| break; |
| default: |
| unhandled_instruction = true; |
| break; |
| } |
| } else { |
| switch (opcode) { |
| case 0x88: // mov byte |
| case 0x89: // mov |
| case 0x8b: |
| case 0x38: // cmp with memory. |
| case 0x39: |
| case 0x3a: |
| case 0x3b: |
| case 0x3c: |
| case 0x3d: |
| case 0x85: // test. |
| FETCH_BYTE(modrm); |
| has_modrm = true; |
| break; |
| |
| case 0x80: // group 1, byte immediate. |
| case 0x83: |
| case 0xc6: |
| FETCH_BYTE(modrm); |
| has_modrm = true; |
| immediate_size = 1; |
| break; |
| |
| case 0x81: // group 1, word immediate. |
| case 0xc7: // mov |
| FETCH_BYTE(modrm); |
| has_modrm = true; |
| immediate_size = operand_size_prefix ? 2 : 4; |
| break; |
| |
| case 0xf6: |
| case 0xf7: |
| FETCH_BYTE(modrm); |
| has_modrm = true; |
| switch ((modrm >> 3) & 7) { // Extract "reg/opcode" from "modr/m". |
| case 0: // test |
| immediate_size = (opcode == 0xf6) ? 1 : (operand_size_prefix ? 2 : 4); |
| break; |
| case 2: // not |
| case 3: // neg |
| case 4: // mul |
| case 5: // imul |
| case 6: // div |
| case 7: // idiv |
| break; |
| default: |
| unhandled_instruction = true; |
| break; |
| } |
| break; |
| |
| default: |
| unhandled_instruction = true; |
| break; |
| } |
| } |
| |
| if (unhandled_instruction) { |
| VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode); |
| return 0; |
| } |
| |
| if (has_modrm) { |
| uint8_t mod = (modrm >> 6) & 3U /* 0b11 */; |
| |
| // Check for SIB. |
| if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) { |
| SKIP_BYTE(); // SIB |
| } |
| |
| switch (mod) { |
| case 0U /* 0b00 */: break; |
| case 1U /* 0b01 */: displacement_size = 1; break; |
| case 2U /* 0b10 */: displacement_size = 4; break; |
| case 3U /* 0b11 */: |
| break; |
| } |
| } |
| |
| // Skip displacement and immediate. |
| pc += displacement_size + immediate_size; |
| |
| VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc); |
| return pc - startpc; |
| |
| #undef SKIP_BYTE |
| #undef FETCH_BYTE |
| #undef FETCH_OR_SKIP_BYTE |
| } |
| |
| uintptr_t FaultManager::GetFaultPc([[maybe_unused]] siginfo_t* siginfo, void* context) { |
| ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); |
| if (uc->CTX_ESP == 0) { |
| VLOG(signals) << "Missing SP"; |
| return 0u; |
| } |
| return uc->CTX_EIP; |
| } |
| |
| uintptr_t FaultManager::GetFaultSp(void* context) { |
| ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); |
| return uc->CTX_ESP; |
| } |
| |
| bool NullPointerHandler::Action(int, siginfo_t* sig, void* context) { |
| uintptr_t fault_address = reinterpret_cast<uintptr_t>(sig->si_addr); |
| if (!IsValidFaultAddress(fault_address)) { |
| return false; |
| } |
| |
| ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); |
| ArtMethod** sp = reinterpret_cast<ArtMethod**>(uc->CTX_ESP); |
| ArtMethod* method = *sp; |
| if (!IsValidMethod(method)) { |
| return false; |
| } |
| |
| // For null checks in compiled code we insert a stack map that is immediately |
| // after the load/store instruction that might cause the fault and we need to |
| // pass the return PC to the handler. For null checks in Nterp, we similarly |
| // need the return PC to recognize that this was a null check in Nterp, so |
| // that the handler can get the needed data from the Nterp frame. |
| |
| // Note: Allowing nested faults if `IsValidMethod()` returned a false positive. |
| // Note: The `ArtMethod::GetOatQuickMethodHeader()` can acquire locks, which is |
| // essentially unsafe in a signal handler, but we allow that here just like in |
| // `NullPointerHandler::IsValidReturnPc()`. For more details see comments there. |
| uintptr_t pc = uc->CTX_EIP; |
| const OatQuickMethodHeader* method_header = method->GetOatQuickMethodHeader(pc); |
| if (method_header == nullptr) { |
| VLOG(signals) << "No method header."; |
| return false; |
| } |
| const uint8_t* pc_ptr = reinterpret_cast<const uint8_t*>(pc); |
| size_t offset = pc_ptr - method_header->GetCode(); |
| size_t code_size = method_header->GetCodeSize(); |
| CHECK_LT(offset, code_size); |
| size_t max_instr_size = code_size - offset; |
| uint32_t instr_size = GetInstructionSize(pc_ptr, max_instr_size); |
| if (instr_size == 0u) { |
| // Unknown instruction (can't really happen) or not enough bytes until end of method code. |
| return false; |
| } |
| |
| uintptr_t return_pc = reinterpret_cast<uintptr_t>(pc + instr_size); |
| if (!IsValidReturnPc(sp, return_pc)) { |
| return false; |
| } |
| |
| // Push the return PC and fault address onto the stack. |
| uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp) - 2; |
| next_sp[1] = return_pc; |
| next_sp[0] = fault_address; |
| uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp); |
| |
| // Arrange for the signal handler to return to the NPE entrypoint. |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>( |
| art_quick_throw_null_pointer_exception_from_signal); |
| VLOG(signals) << "Generating null pointer exception"; |
| return true; |
| } |
| |
| // A suspend check is done using the following instruction sequence: |
| // (x86) |
| // 0xf720f1df: 648B058C000000 mov eax, fs:[0x8c] ; suspend_trigger |
| // .. some intervening instructions. |
| // 0xf720f1e6: 8500 test eax, [eax] |
| // (x86_64) |
| // 0x7f579de45d9e: 65488B0425A8000000 movq rax, gs:[0xa8] ; suspend_trigger |
| // .. some intervening instructions. |
| // 0x7f579de45da7: 8500 test eax, [eax] |
| |
| // The offset from fs is Thread::ThreadSuspendTriggerOffset(). |
| // To check for a suspend check, we examine the instructions that caused |
| // the fault. |
| bool SuspensionHandler::Action(int, siginfo_t*, void* context) { |
| // These are the instructions to check for. The first one is the mov eax, fs:[xxx] |
| // where xxx is the offset of the suspend trigger. |
| uint32_t trigger = Thread::ThreadSuspendTriggerOffset<kRuntimePointerSize>().Int32Value(); |
| |
| VLOG(signals) << "Checking for suspension point"; |
| #if defined(__x86_64__) |
| uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff), |
| static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0}; |
| #else |
| uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff), |
| static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0}; |
| #endif |
| uint8_t checkinst2[] = {0x85, 0x00}; |
| |
| ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); |
| uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP); |
| uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP); |
| |
| if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) { |
| // Second instruction is not correct (test eax,[eax]). |
| VLOG(signals) << "Not a suspension point"; |
| return false; |
| } |
| |
| // The first instruction can a little bit up the stream due to load hoisting |
| // in the compiler. |
| uint8_t* limit = pc - 100; // Compiler will hoist to a max of 20 instructions. |
| uint8_t* ptr = pc - sizeof(checkinst1); |
| bool found = false; |
| while (ptr > limit) { |
| if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) { |
| found = true; |
| break; |
| } |
| ptr -= 1; |
| } |
| |
| if (found) { |
| VLOG(signals) << "suspend check match"; |
| |
| // We need to arrange for the signal handler to return to the null pointer |
| // exception generator. The return address must be the address of the |
| // next instruction (this instruction + 2). The return address |
| // is on the stack at the top address of the current frame. |
| |
| // Push the return address onto the stack. |
| uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2); |
| uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t)); |
| *next_sp = retaddr; |
| uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp); |
| |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_test_suspend); |
| |
| // Now remove the suspend trigger that caused this fault. |
| Thread::Current()->RemoveSuspendTrigger(); |
| VLOG(signals) << "removed suspend trigger invoking test suspend"; |
| return true; |
| } |
| VLOG(signals) << "Not a suspend check match, first instruction mismatch"; |
| return false; |
| } |
| |
| // The stack overflow check is done using the following instruction: |
| // test eax, [esp+ -xxx] |
| // where 'xxx' is the size of the overflow area. |
| // |
| // This is done before any frame is established in the method. The return |
| // address for the previous method is on the stack at ESP. |
| |
| bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) { |
| ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); |
| uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP); |
| |
| uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr); |
| VLOG(signals) << "fault_addr: " << std::hex << fault_addr; |
| VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << |
| ", fault_addr: " << fault_addr; |
| |
| #if defined(__x86_64__) |
| uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86_64); |
| #else |
| uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86); |
| #endif |
| |
| // Check that the fault address is the value expected for a stack overflow. |
| if (fault_addr != overflow_addr) { |
| VLOG(signals) << "Not a stack overflow"; |
| return false; |
| } |
| |
| VLOG(signals) << "Stack overflow found"; |
| |
| // Since the compiler puts the implicit overflow |
| // check before the callee save instructions, the SP is already pointing to |
| // the previous frame. |
| |
| // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. |
| uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow); |
| |
| return true; |
| } |
| } // namespace art |