blob: adcf7acd96e087847cbb050e049b24cad3a5cf64 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/param.h>
#include <unistd.h>
#include <cstdint>
#include <fstream>
#include <iostream>
#include <optional>
#include <ostream>
#include <set>
#include <string>
#include <string_view>
#include <tuple>
#include <unordered_set>
#include <vector>
#include "android-base/parsebool.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "base/array_ref.h"
#include "base/dumpable.h"
#include "base/logging.h" // For InitLogging.
#include "base/mem_map.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/string_view_cpp20.h"
#include "base/time_utils.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "base/zip_archive.h"
#include "boot_image_profile.h"
#include "dex/art_dex_file_loader.h"
#include "dex/bytecode_utils.h"
#include "dex/class_accessor-inl.h"
#include "dex/class_reference.h"
#include "dex/code_item_accessors-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file.h"
#include "dex/dex_file_loader.h"
#include "dex/dex_file_structs.h"
#include "dex/dex_file_types.h"
#include "dex/method_reference.h"
#include "dex/type_reference.h"
#include "profile/profile_boot_info.h"
#include "profile/profile_compilation_info.h"
#include "profile_assistant.h"
#include "profman/profman_result.h"
namespace art {
using ProfileSampleAnnotation = ProfileCompilationInfo::ProfileSampleAnnotation;
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
command.reserve(original_argc);
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return android::base::Join(command, ' ');
}
static bool FdIsValid(int fd) {
return fd != File::kInvalidFd;
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
android::base::StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: profman [options]...");
UsageError("");
UsageError(" --dump-only: dumps the content of the specified profile files");
UsageError(" to standard output (default) in a human readable form.");
UsageError("");
UsageError(" --dump-output-to-fd=<number>: redirects --dump-only output to a file descriptor.");
UsageError("");
UsageError(" --dump-classes-and-methods: dumps a sorted list of classes and methods that are");
UsageError(" in the specified profile file to standard output (default) in a human");
UsageError(" readable form. The output is valid input for --create-profile-from");
UsageError("");
UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation.");
UsageError(" Can be specified multiple time, in which case the data from the different");
UsageError(" profiles will be aggregated. Can also be specified zero times, in which case");
UsageError(" profman will still analyze the reference profile against the given --apk and");
UsageError(" return exit code based on whether the reference profile is empty and whether");
UsageError(" an error occurs, but no merge will happen.");
UsageError("");
UsageError(" --profile-file-fd=<number>: same as --profile-file but accepts a file descriptor.");
UsageError(" Cannot be used together with --profile-file.");
UsageError("");
UsageError(" --reference-profile-file=<filename>: specify a reference profile.");
UsageError(" The data in this file will be compared with the data obtained by merging");
UsageError(" all the files specified with --profile-file or --profile-file-fd.");
UsageError(" If the exit code is ProfmanResult::kCompile then all --profile-file will be");
UsageError(" merged into --reference-profile-file. ");
UsageError("");
UsageError(" --reference-profile-file-fd=<number>: same as --reference-profile-file but");
UsageError(" accepts a file descriptor. Cannot be used together with");
UsageError(" --reference-profile-file.");
UsageError("");
UsageError(" --generate-test-profile=<filename>: generates a random profile file for testing.");
UsageError(" --generate-test-profile-num-dex=<number>: number of dex files that should be");
UsageError(" included in the generated profile. Defaults to 20.");
UsageError(" --generate-test-profile-method-percentage=<number>: the percentage from the maximum");
UsageError(" number of methods that should be generated. Defaults to 5.");
UsageError(" --generate-test-profile-class-percentage=<number>: the percentage from the maximum");
UsageError(" number of classes that should be generated. Defaults to 5.");
UsageError(" --generate-test-profile-seed=<number>: seed for random number generator used when");
UsageError(" generating random test profiles. Defaults to using NanoTime.");
UsageError("");
UsageError(" --create-profile-from=<filename>: creates a profile from a list of classes,");
UsageError(" methods and inline caches.");
UsageError(" --output-profile-type=(app|boot|bprof): Select output profile format for");
UsageError(" the --create-profile-from option. Default: app.");
UsageError("");
UsageError(" --dex-location=<string>: location string to use with corresponding");
UsageError(" apk-fd to find dex files");
UsageError("");
UsageError(" --apk-fd=<number>: file descriptor containing an open APK to");
UsageError(" search for dex files");
UsageError(" --apk=<filename>: an APK to search for dex files");
UsageError(" --skip-apk-verification: do not attempt to verify APKs");
UsageError("");
UsageError(" --generate-boot-image-profile: Generate a boot image profile based on input");
UsageError(" profiles. Requires passing in dex files to inspect properties of classes.");
UsageError(" --method-threshold=percentage between 0 and 100");
UsageError(" what threshold to apply to the methods when deciding whether or not to");
UsageError(" include it in the final profile.");
UsageError(" --class-threshold=percentage between 0 and 100");
UsageError(" what threshold to apply to the classes when deciding whether or not to");
UsageError(" include it in the final profile.");
UsageError(" --clean-class-threshold=percentage between 0 and 100");
UsageError(" what threshold to apply to the clean classes when deciding whether or not to");
UsageError(" include it in the final profile.");
UsageError(" --preloaded-class-threshold=percentage between 0 and 100");
UsageError(" what threshold to apply to the classes when deciding whether or not to");
UsageError(" include it in the final preloaded classes.");
UsageError(" --preloaded-classes-denylist=file");
UsageError(" a file listing the classes that should not be preloaded in Zygote");
UsageError(" --upgrade-startup-to-hot=true|false:");
UsageError(" whether or not to upgrade startup methods to hot");
UsageError(" --special-package=pkg_name:percentage between 0 and 100");
UsageError(" what threshold to apply to the methods/classes that are used by the given");
UsageError(" package when deciding whether or not to include it in the final profile.");
UsageError(" --debug-append-uses=bool: whether or not to append package use as debug info.");
UsageError(" --out-profile-path=path: boot image profile output path");
UsageError(" --out-preloaded-classes-path=path: preloaded classes output path");
UsageError(" --copy-and-update-profile-key: if present, profman will copy the profile from");
UsageError(" the file passed with --profile-fd(file) to the profile passed with");
UsageError(" --reference-profile-fd(file) and update at the same time the profile-key");
UsageError(" of entries corresponding to the apks passed with --apk(-fd).");
UsageError(" --boot-image-merge: indicates that this merge is for a boot image profile.");
UsageError(" In this case, the reference profile must have a boot profile version.");
UsageError(" --force-merge: performs a forced merge, without analyzing if there is a");
UsageError(" significant difference between before and after the merge.");
UsageError(" Deprecated. Use --force-merge-and-analyze instead.");
UsageError(" --force-merge-and-analyze: performs a forced merge and analyzes if there is any");
UsageError(" difference between before and after the merge.");
UsageError(" --min-new-methods-percent-change=percentage between 0 and 100 (default 2)");
UsageError(" the min percent of new methods to trigger a compilation.");
UsageError(" --min-new-classes-percent-change=percentage between 0 and 100 (default 2)");
UsageError(" the min percent of new classes to trigger a compilation.");
UsageError("");
exit(ProfmanResult::kErrorUsage);
}
// Note: make sure you update the Usage if you change these values.
static constexpr uint16_t kDefaultTestProfileNumDex = 20;
static constexpr uint16_t kDefaultTestProfileMethodPercentage = 5;
static constexpr uint16_t kDefaultTestProfileClassPercentage = 5;
// Separators used when parsing human friendly representation of profiles.
static const std::string kMethodSep = "->"; // NOLINT [runtime/string] [4]
static const std::string kMissingTypesMarker = "missing_types"; // NOLINT [runtime/string] [4]
static const std::string kMegamorphicTypesMarker = "megamorphic_types"; // NOLINT [runtime/string] [4]
static const std::string kClassAllMethods = "*"; // NOLINT [runtime/string] [4]
static constexpr char kAnnotationStart = '{';
static constexpr char kAnnotationEnd = '}';
static constexpr char kProfileParsingInlineChacheSep = '+';
static constexpr char kProfileParsingInlineChacheTargetSep = ']';
static constexpr char kProfileParsingTypeSep = ',';
static constexpr char kProfileParsingFirstCharInSignature = '(';
static constexpr char kMethodFlagStringHot = 'H';
static constexpr char kMethodFlagStringStartup = 'S';
static constexpr char kMethodFlagStringPostStartup = 'P';
NO_RETURN static void Abort(const char* msg) {
LOG(ERROR) << msg;
exit(1);
}
template <typename T>
static void ParseUintValue(const std::string& option_name,
const std::string& value,
T* out,
T min = std::numeric_limits<T>::min(),
T max = std::numeric_limits<T>::max()) {
int64_t parsed_integer_value = 0;
if (!android::base::ParseInt(
value,
&parsed_integer_value,
static_cast<int64_t>(min),
static_cast<int64_t>(max))) {
Usage("Failed to parse %s '%s' as an integer", option_name.c_str(), value.c_str());
}
if (parsed_integer_value < 0) {
Usage("%s passed a negative value %" PRId64, option_name.c_str(), parsed_integer_value);
}
if (static_cast<uint64_t>(parsed_integer_value) >
static_cast<std::make_unsigned_t<T>>(std::numeric_limits<T>::max())) {
Usage("%s passed a value %" PRIu64 " above max (%" PRIu64 ")",
option_name.c_str(),
static_cast<uint64_t>(parsed_integer_value),
static_cast<uint64_t>(std::numeric_limits<T>::max()));
}
*out = dchecked_integral_cast<T>(parsed_integer_value);
}
template <typename T>
static void ParseUintOption(const char* raw_option,
std::string_view option_prefix,
T* out,
T min = std::numeric_limits<T>::min(),
T max = std::numeric_limits<T>::max()) {
DCHECK(EndsWith(option_prefix, "="));
DCHECK(StartsWith(raw_option, option_prefix)) << raw_option << " " << option_prefix;
std::string option_name(option_prefix.substr(option_prefix.size() - 1u));
const char* value_string = raw_option + option_prefix.size();
ParseUintValue(option_name, value_string, out, min, max);
}
static void ParseBoolOption(const char* raw_option,
std::string_view option_prefix,
bool* out) {
DCHECK(EndsWith(option_prefix, "="));
DCHECK(StartsWith(raw_option, option_prefix)) << raw_option << " " << option_prefix;
const char* value_string = raw_option + option_prefix.size();
android::base::ParseBoolResult result = android::base::ParseBool(value_string);
if (result == android::base::ParseBoolResult::kError) {
std::string option_name(option_prefix.substr(option_prefix.size() - 1u));
Usage("Failed to parse %s '%s' as an integer", option_name.c_str(), value_string);
}
*out = result == android::base::ParseBoolResult::kTrue;
}
enum class OutputProfileType {
kApp,
kBoot,
kBprof,
};
static void ParseOutputProfileType(const char* raw_option,
std::string_view option_prefix,
OutputProfileType* out) {
DCHECK(EndsWith(option_prefix, "="));
DCHECK(StartsWith(raw_option, option_prefix)) << raw_option << " " << option_prefix;
const char* value_string = raw_option + option_prefix.size();
if (strcmp(value_string, "app") == 0) {
*out = OutputProfileType::kApp;
} else if (strcmp(value_string, "boot") == 0) {
*out = OutputProfileType::kBoot;
} else if (strcmp(value_string, "bprof") == 0) {
*out = OutputProfileType::kBprof;
} else {
std::string option_name(option_prefix.substr(option_prefix.size() - 1u));
Usage("Failed to parse %s '%s' as (app|boot|bprof)", option_name.c_str(), value_string);
}
}
// TODO(calin): This class has grown too much from its initial design. Split the functionality
// into smaller, more contained pieces.
class ProfMan final {
public:
ProfMan() :
reference_profile_file_fd_(File::kInvalidFd),
dump_only_(false),
dump_classes_and_methods_(false),
generate_boot_image_profile_(false),
output_profile_type_(OutputProfileType::kApp),
dump_output_to_fd_(File::kInvalidFd),
test_profile_num_dex_(kDefaultTestProfileNumDex),
test_profile_method_percerntage_(kDefaultTestProfileMethodPercentage),
test_profile_class_percentage_(kDefaultTestProfileClassPercentage),
test_profile_seed_(NanoTime()),
start_ns_(NanoTime()),
copy_and_update_profile_key_(false),
profile_assistant_options_(ProfileAssistant::Options()) {}
~ProfMan() {
LogCompletionTime();
}
void ParseArgs(int argc, char **argv) {
original_argc = argc;
original_argv = argv;
MemMap::Init();
InitLogging(argv, Abort);
// Skip over the command name.
argv++;
argc--;
if (argc == 0) {
Usage("No arguments specified");
}
for (int i = 0; i < argc; ++i) {
const char* raw_option = argv[i];
const std::string_view option(raw_option);
const bool log_options = false;
if (log_options) {
LOG(INFO) << "profman: option[" << i << "]=" << argv[i];
}
if (option == "--dump-only") {
dump_only_ = true;
} else if (option == "--dump-classes-and-methods") {
dump_classes_and_methods_ = true;
} else if (StartsWith(option, "--create-profile-from=")) {
create_profile_from_file_ = std::string(option.substr(strlen("--create-profile-from=")));
} else if (StartsWith(option, "--output-profile-type=")) {
ParseOutputProfileType(raw_option, "--output-profile-type=", &output_profile_type_);
} else if (StartsWith(option, "--dump-output-to-fd=")) {
ParseUintOption(raw_option, "--dump-output-to-fd=", &dump_output_to_fd_);
} else if (option == "--generate-boot-image-profile") {
generate_boot_image_profile_ = true;
} else if (StartsWith(option, "--method-threshold=")) {
ParseUintOption(raw_option,
"--method-threshold=",
&boot_image_options_.method_threshold,
0u,
100u);
} else if (StartsWith(option, "--class-threshold=")) {
ParseUintOption(raw_option,
"--class-threshold=",
&boot_image_options_.image_class_threshold,
0u,
100u);
} else if (StartsWith(option, "--clean-class-threshold=")) {
ParseUintOption(raw_option,
"--clean-class-threshold=",
&boot_image_options_.image_class_clean_threshold,
0u,
100u);
} else if (StartsWith(option, "--preloaded-class-threshold=")) {
ParseUintOption(raw_option,
"--preloaded-class-threshold=",
&boot_image_options_.preloaded_class_threshold,
0u,
100u);
} else if (StartsWith(option, "--preloaded-classes-denylist=")) {
std::string preloaded_classes_denylist =
std::string(option.substr(strlen("--preloaded-classes-denylist=")));
// Read the user-specified list of methods.
std::unique_ptr<std::set<std::string>>
denylist(ReadCommentedInputFromFile<std::set<std::string>>(
preloaded_classes_denylist.c_str(), nullptr)); // No post-processing.
boot_image_options_.preloaded_classes_denylist.insert(
denylist->begin(), denylist->end());
} else if (StartsWith(option, "--upgrade-startup-to-hot=")) {
ParseBoolOption(raw_option,
"--upgrade-startup-to-hot=",
&boot_image_options_.upgrade_startup_to_hot);
} else if (StartsWith(option, "--special-package=")) {
std::vector<std::string> values;
Split(std::string(option.substr(strlen("--special-package="))), ':', &values);
if (values.size() != 2) {
Usage("--special-package needs to be specified as pkg_name:threshold");
}
uint32_t threshold;
ParseUintValue("special-package", values[1], &threshold, 0u, 100u);
boot_image_options_.special_packages_thresholds.Overwrite(values[0], threshold);
} else if (StartsWith(option, "--debug-append-uses=")) {
ParseBoolOption(raw_option,
"--debug-append-uses=",
&boot_image_options_.append_package_use_list);
} else if (StartsWith(option, "--out-profile-path=")) {
boot_profile_out_path_ = std::string(option.substr(strlen("--out-profile-path=")));
} else if (StartsWith(option, "--out-preloaded-classes-path=")) {
preloaded_classes_out_path_ = std::string(
option.substr(strlen("--out-preloaded-classes-path=")));
} else if (StartsWith(option, "--profile-file=")) {
profile_files_.push_back(std::string(option.substr(strlen("--profile-file="))));
} else if (StartsWith(option, "--profile-file-fd=")) {
ParseFdForCollection(raw_option, "--profile-file-fd=", &profile_files_fd_);
} else if (StartsWith(option, "--reference-profile-file=")) {
reference_profile_file_ = std::string(option.substr(strlen("--reference-profile-file=")));
} else if (StartsWith(option, "--reference-profile-file-fd=")) {
ParseUintOption(raw_option, "--reference-profile-file-fd=", &reference_profile_file_fd_);
} else if (StartsWith(option, "--dex-location=")) {
dex_locations_.push_back(std::string(option.substr(strlen("--dex-location="))));
} else if (StartsWith(option, "--apk-fd=")) {
ParseFdForCollection(raw_option, "--apk-fd=", &apks_fd_);
} else if (StartsWith(option, "--apk=")) {
apk_files_.push_back(std::string(option.substr(strlen("--apk="))));
} else if (StartsWith(option, "--generate-test-profile=")) {
test_profile_ = std::string(option.substr(strlen("--generate-test-profile=")));
} else if (StartsWith(option, "--generate-test-profile-num-dex=")) {
ParseUintOption(raw_option,
"--generate-test-profile-num-dex=",
&test_profile_num_dex_);
} else if (StartsWith(option, "--generate-test-profile-method-percentage=")) {
ParseUintOption(raw_option,
"--generate-test-profile-method-percentage=",
&test_profile_method_percerntage_);
} else if (StartsWith(option, "--generate-test-profile-class-percentage=")) {
ParseUintOption(raw_option,
"--generate-test-profile-class-percentage=",
&test_profile_class_percentage_);
} else if (StartsWith(option, "--generate-test-profile-seed=")) {
ParseUintOption(raw_option, "--generate-test-profile-seed=", &test_profile_seed_);
} else if (StartsWith(option, "--min-new-methods-percent-change=")) {
uint32_t min_new_methods_percent_change;
ParseUintOption(raw_option,
"--min-new-methods-percent-change=",
&min_new_methods_percent_change,
0u,
100u);
profile_assistant_options_.SetMinNewMethodsPercentChangeForCompilation(
min_new_methods_percent_change);
} else if (StartsWith(option, "--min-new-classes-percent-change=")) {
uint32_t min_new_classes_percent_change;
ParseUintOption(raw_option,
"--min-new-classes-percent-change=",
&min_new_classes_percent_change,
0u,
100u);
profile_assistant_options_.SetMinNewClassesPercentChangeForCompilation(
min_new_classes_percent_change);
} else if (option == "--copy-and-update-profile-key") {
copy_and_update_profile_key_ = true;
} else if (option == "--boot-image-merge") {
profile_assistant_options_.SetBootImageMerge(true);
} else if (option == "--force-merge") {
// For backward compatibility only.
// TODO(jiakaiz): Remove this when S and T are no longer supported.
profile_assistant_options_.SetForceMerge(true);
} else if (option == "--force-merge-and-analyze") {
profile_assistant_options_.SetForceMergeAndAnalyze(true);
} else {
Usage("Unknown argument '%s'", raw_option);
}
}
// Validate global consistency between file/fd options.
if (!profile_files_.empty() && !profile_files_fd_.empty()) {
Usage("Profile files should not be specified with both --profile-file-fd and --profile-file");
}
if (!reference_profile_file_.empty() && FdIsValid(reference_profile_file_fd_)) {
Usage("Reference profile should not be specified with both "
"--reference-profile-file-fd and --reference-profile-file");
}
if (!apk_files_.empty() && !apks_fd_.empty()) {
Usage("APK files should not be specified with both --apk-fd and --apk");
}
}
struct ProfileFilterKey {
ProfileFilterKey(const std::string& dex_location, uint32_t checksum)
: dex_location_(dex_location), checksum_(checksum) {}
const std::string dex_location_;
uint32_t checksum_;
bool operator==(const ProfileFilterKey& other) const {
return checksum_ == other.checksum_ && dex_location_ == other.dex_location_;
}
bool operator<(const ProfileFilterKey& other) const {
return checksum_ == other.checksum_
? dex_location_ < other.dex_location_
: checksum_ < other.checksum_;
}
};
ProfmanResult::ProcessingResult ProcessProfiles() {
// Validate that a reference profile was passed, at the very least. It's okay that profiles are
// missing, in which case profman will still analyze the reference profile (to check whether
// it's empty), but no merge will happen.
if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No reference profile file specified.");
}
if ((!profile_files_.empty() && FdIsValid(reference_profile_file_fd_)) ||
(!profile_files_fd_.empty() && !FdIsValid(reference_profile_file_fd_))) {
Usage("Options --profile-file-fd and --reference-profile-file-fd "
"should only be used together");
}
// Check if we have any apks which we should use to filter the profile data.
std::set<ProfileFilterKey> profile_filter_keys;
if (!GetProfileFilterKeyFromApks(&profile_filter_keys)) {
return ProfmanResult::kErrorIO;
}
// Build the profile filter function. If the set of keys is empty it means we
// don't have any apks; as such we do not filter anything.
const ProfileCompilationInfo::ProfileLoadFilterFn& filter_fn =
[profile_filter_keys](const std::string& profile_key, uint32_t checksum) {
if (profile_filter_keys.empty()) {
// No --apk was specified. Accept all dex files.
return true;
} else {
// Remove any annotations from the profile key before comparing with the keys we get from apks.
std::string base_key = ProfileCompilationInfo::GetBaseKeyFromAugmentedKey(profile_key);
return profile_filter_keys.find(ProfileFilterKey(base_key, checksum)) !=
profile_filter_keys.end();
}
};
ProfmanResult::ProcessingResult result;
if (reference_profile_file_.empty()) {
// The file doesn't need to be flushed here (ProcessProfiles will do it)
// so don't check the usage.
File file(reference_profile_file_fd_, false);
result = ProfileAssistant::ProcessProfiles(profile_files_fd_,
reference_profile_file_fd_,
filter_fn,
profile_assistant_options_);
CloseAllFds(profile_files_fd_, "profile_files_fd_");
} else {
result = ProfileAssistant::ProcessProfiles(profile_files_,
reference_profile_file_,
filter_fn,
profile_assistant_options_);
}
return result;
}
bool GetProfileFilterKeyFromApks(std::set<ProfileFilterKey>* profile_filter_keys) {
auto process_fn = [profile_filter_keys](std::unique_ptr<const DexFile>&& dex_file) {
// Store the profile key of the location instead of the location itself.
// This will make the matching in the profile filter method much easier.
profile_filter_keys->emplace(ProfileCompilationInfo::GetProfileDexFileBaseKey(
dex_file->GetLocation()), dex_file->GetLocationChecksum());
};
return OpenApkFilesFromLocations(process_fn);
}
bool OpenApkFilesFromLocations(std::vector<std::unique_ptr<const DexFile>>* dex_files) {
auto process_fn = [dex_files](std::unique_ptr<const DexFile>&& dex_file) {
dex_files->emplace_back(std::move(dex_file));
};
return OpenApkFilesFromLocations(process_fn);
}
bool OpenApkFilesFromLocations(
const std::function<void(std::unique_ptr<const DexFile>&&)>& process_fn) {
bool use_apk_fd_list = !apks_fd_.empty();
if (use_apk_fd_list) {
// Get the APKs from the collection of FDs.
if (dex_locations_.empty()) {
// Try to compute the dex locations from the file paths of the descriptions.
// This will make it easier to invoke profman with --apk-fd and without
// being force to pass --dex-location when the location would be the apk path.
if (!ComputeDexLocationsFromApkFds()) {
return false;
}
} else {
if (dex_locations_.size() != apks_fd_.size()) {
Usage("The number of apk-fds must match the number of dex-locations.");
}
}
} else if (!apk_files_.empty()) {
if (dex_locations_.empty()) {
// If no dex locations are specified use the apk names as locations.
dex_locations_ = apk_files_;
} else if (dex_locations_.size() != apk_files_.size()) {
Usage("The number of apk-fds must match the number of dex-locations.");
}
} else {
// No APKs were specified.
CHECK(dex_locations_.empty());
return true;
}
static constexpr bool kVerifyChecksum = true;
for (size_t i = 0; i < dex_locations_.size(); ++i) {
std::string error_msg;
std::vector<std::unique_ptr<const DexFile>> dex_files_for_location;
// We do not need to verify the apk for processing profiles.
if (use_apk_fd_list) {
File file(apks_fd_[i], /*check_usage=*/false);
ArtDexFileLoader dex_file_loader(&file, dex_locations_[i]);
if (dex_file_loader.Open(/*verify=*/false,
kVerifyChecksum,
/*allow_no_dex_files=*/true,
&error_msg,
&dex_files_for_location)) {
} else {
LOG(ERROR) << "OpenZip failed for '" << dex_locations_[i] << "' " << error_msg;
return false;
}
} else {
File file(apk_files_[i], O_RDONLY, /*check_usage=*/false);
if (file.Fd() < 0) {
PLOG(ERROR) << "Unable to open '" << apk_files_[i] << "'";
return false;
}
ArtDexFileLoader dex_file_loader(&file, dex_locations_[i]);
if (dex_file_loader.Open(/*verify=*/false,
kVerifyChecksum,
/*allow_no_dex_files=*/true,
&error_msg,
&dex_files_for_location)) {
} else {
LOG(ERROR) << "Open failed for '" << dex_locations_[i] << "' " << error_msg;
return false;
}
}
for (std::unique_ptr<const DexFile>& dex_file : dex_files_for_location) {
process_fn(std::move(dex_file));
}
}
return true;
}
// Get the dex locations from the apk fds.
// The methods reads the links from /proc/self/fd/ to find the original apk paths
// and puts them in the dex_locations_ vector.
bool ComputeDexLocationsFromApkFds() {
#ifdef _WIN32
PLOG(ERROR) << "ComputeDexLocationsFromApkFds is unsupported on Windows.";
return false;
#else
// We can't use a char array of PATH_MAX size without exceeding the frame size.
// So we use a vector as the buffer for the path.
std::vector<char> buffer(PATH_MAX, 0);
for (size_t i = 0; i < apks_fd_.size(); ++i) {
std::string fd_path = "/proc/self/fd/" + std::to_string(apks_fd_[i]);
ssize_t len = readlink(fd_path.c_str(), buffer.data(), buffer.size() - 1);
if (len == -1) {
PLOG(ERROR) << "Could not open path from fd";
return false;
}
buffer[len] = '\0';
dex_locations_.push_back(buffer.data());
}
return true;
#endif
}
std::unique_ptr<const ProfileCompilationInfo> LoadProfile(const std::string& filename,
int fd,
bool for_boot_image) {
if (!filename.empty()) {
#ifdef _WIN32
int flags = O_RDWR;
#else
int flags = O_RDWR | O_CLOEXEC;
#endif
fd = open(filename.c_str(), flags);
if (fd < 0) {
PLOG(ERROR) << "Cannot open " << filename;
return nullptr;
}
}
std::unique_ptr<ProfileCompilationInfo> info(new ProfileCompilationInfo(for_boot_image));
if (!info->Load(fd)) {
LOG(ERROR) << "Cannot load profile info from fd=" << fd << "\n";
return nullptr;
}
return info;
}
int DumpOneProfile(const std::string& banner,
const std::string& filename,
int fd,
const std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::string* dump) {
// For dumping, try loading as app profile and if that fails try loading as boot profile.
std::unique_ptr<const ProfileCompilationInfo> info =
LoadProfile(filename, fd, /*for_boot_image=*/ false);
if (info == nullptr) {
info = LoadProfile(filename, fd, /*for_boot_image=*/ true);
}
if (info == nullptr) {
LOG(ERROR) << "Cannot load profile info from filename=" << filename << " fd=" << fd;
return -1;
}
*dump += banner + "\n" + info->DumpInfo(MakeNonOwningPointerVector(*dex_files)) + "\n";
return 0;
}
int DumpProfileInfo() {
// Validate that at least one profile file or reference was specified.
if (profile_files_.empty() && profile_files_fd_.empty() &&
reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No profile files or reference profile specified.");
}
static const char* kEmptyString = "";
static const char* kOrdinaryProfile = "=== profile ===";
static const char* kReferenceProfile = "=== reference profile ===";
static const char* kDexFiles = "=== Dex files ===";
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
std::string dump;
// Dump checkfiles and corresponding checksums.
dump += kDexFiles;
dump += "\n";
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
std::ostringstream oss;
oss << dex_file->GetLocation()
<< " [checksum=" << std::hex << dex_file->GetLocationChecksum() << "]\n";
dump += oss.str();
}
// Dump individual profile files.
if (!profile_files_fd_.empty()) {
for (int profile_file_fd : profile_files_fd_) {
int ret = DumpOneProfile(kOrdinaryProfile,
kEmptyString,
profile_file_fd,
&dex_files,
&dump);
if (ret != 0) {
return ret;
}
}
}
for (const std::string& profile_file : profile_files_) {
int ret = DumpOneProfile(kOrdinaryProfile, profile_file, File::kInvalidFd, &dex_files, &dump);
if (ret != 0) {
return ret;
}
}
// Dump reference profile file.
if (FdIsValid(reference_profile_file_fd_)) {
int ret = DumpOneProfile(kReferenceProfile,
kEmptyString,
reference_profile_file_fd_,
&dex_files,
&dump);
if (ret != 0) {
return ret;
}
}
if (!reference_profile_file_.empty()) {
int ret = DumpOneProfile(kReferenceProfile,
reference_profile_file_,
File::kInvalidFd,
&dex_files,
&dump);
if (ret != 0) {
return ret;
}
}
if (!FdIsValid(dump_output_to_fd_)) {
std::cout << dump;
} else {
unix_file::FdFile out_fd(dump_output_to_fd_, /*check_usage=*/ false);
if (!out_fd.WriteFully(dump.c_str(), dump.length())) {
return -1;
}
}
return 0;
}
bool ShouldOnlyDumpProfile() {
return dump_only_;
}
// Creates the inline-cache portion of a text-profile line. If the class def can't be found, or if
// there is no inline-caches this will be and empty string. Otherwise it will be '@' followed by
// an IC description matching the format described by ProcessLine below. Note that this will
// collapse all ICs with the same receiver type.
std::string GetInlineCacheLine(const ProfileCompilationInfo& profile_info,
const dex::MethodId& id,
const DexFile* dex_file,
uint16_t dex_method_idx) {
ProfileCompilationInfo::MethodHotness hotness =
profile_info.GetMethodHotness(MethodReference(dex_file, dex_method_idx));
DCHECK(!hotness.IsHot() || hotness.GetInlineCacheMap() != nullptr);
if (!hotness.IsHot() || hotness.GetInlineCacheMap()->empty()) {
return "";
}
const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
struct IcLineInfo {
bool is_megamorphic_ = false;
bool is_missing_types_ = false;
std::set<dex::TypeIndex> classes_;
};
std::unordered_map<dex::TypeIndex, IcLineInfo> ics;
const dex::ClassDef* class_def = dex_file->FindClassDef(id.class_idx_);
if (class_def == nullptr) {
// No class def found.
return "";
}
CodeItemInstructionAccessor accessor(
*dex_file, dex_file->GetCodeItem(dex_file->FindCodeItemOffset(*class_def, dex_method_idx)));
for (const auto& [pc, ic_data] : *inline_caches) {
const Instruction& inst = accessor.InstructionAt(pc);
const dex::MethodId& target = dex_file->GetMethodId(inst.VRegB());
if (ic_data.classes.empty() && !ic_data.is_megamorphic && !ic_data.is_missing_types) {
continue;
}
auto val = ics.find(target.class_idx_);
if (val == ics.end()) {
val = ics.insert({ target.class_idx_, {} }).first;
}
if (ic_data.is_megamorphic) {
val->second.is_megamorphic_ = true;
}
if (ic_data.is_missing_types) {
val->second.is_missing_types_ = true;
}
for (dex::TypeIndex type_index : ic_data.classes) {
val->second.classes_.insert(type_index);
}
}
if (ics.empty()) {
return "";
}
std::ostringstream dump_ic;
dump_ic << kProfileParsingInlineChacheSep;
for (const auto& [target, dex_data] : ics) {
dump_ic << kProfileParsingInlineChacheTargetSep;
dump_ic << dex_file->GetTypeDescriptor(dex_file->GetTypeId(target));
if (dex_data.is_missing_types_) {
dump_ic << kMissingTypesMarker;
} else if (dex_data.is_megamorphic_) {
dump_ic << kMegamorphicTypesMarker;
} else {
bool first = true;
for (dex::TypeIndex type_index : dex_data.classes_) {
if (!first) {
dump_ic << kProfileParsingTypeSep;
}
first = false;
dump_ic << profile_info.GetTypeDescriptor(dex_file, type_index);
}
}
}
return dump_ic.str();
}
bool GetClassNamesAndMethods(const ProfileCompilationInfo& profile_info,
std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::set<std::string>* out_lines) {
for (const std::unique_ptr<const DexFile>& dex_file : *dex_files) {
std::set<dex::TypeIndex> class_types;
std::set<uint16_t> hot_methods;
std::set<uint16_t> startup_methods;
std::set<uint16_t> post_startup_methods;
std::set<uint16_t> combined_methods;
if (profile_info.GetClassesAndMethods(*dex_file.get(),
&class_types,
&hot_methods,
&startup_methods,
&post_startup_methods)) {
for (const dex::TypeIndex& type_index : class_types) {
out_lines->insert(profile_info.GetTypeDescriptor(dex_file.get(), type_index));
}
combined_methods = hot_methods;
combined_methods.insert(startup_methods.begin(), startup_methods.end());
combined_methods.insert(post_startup_methods.begin(), post_startup_methods.end());
for (uint16_t dex_method_idx : combined_methods) {
const dex::MethodId& id = dex_file->GetMethodId(dex_method_idx);
std::string signature_string(dex_file->GetMethodSignature(id).ToString());
std::string type_string(dex_file->GetTypeDescriptor(dex_file->GetTypeId(id.class_idx_)));
std::string method_name(dex_file->GetMethodName(id));
std::string flags_string;
if (hot_methods.find(dex_method_idx) != hot_methods.end()) {
flags_string += kMethodFlagStringHot;
}
if (startup_methods.find(dex_method_idx) != startup_methods.end()) {
flags_string += kMethodFlagStringStartup;
}
if (post_startup_methods.find(dex_method_idx) != post_startup_methods.end()) {
flags_string += kMethodFlagStringPostStartup;
}
std::string inline_cache_string =
GetInlineCacheLine(profile_info, id, dex_file.get(), dex_method_idx);
out_lines->insert(ART_FORMAT("{}{}{}{}{}{}",
flags_string,
type_string,
kMethodSep,
method_name,
signature_string,
inline_cache_string));
}
}
}
return true;
}
bool GetClassNamesAndMethods(int fd,
std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::set<std::string>* out_lines) {
// For dumping, try loading as app profile and if that fails try loading as boot profile.
for (bool for_boot_image : {false, true}) {
ProfileCompilationInfo profile_info(for_boot_image);
if (profile_info.Load(fd)) {
return GetClassNamesAndMethods(profile_info, dex_files, out_lines);
}
}
LOG(ERROR) << "Cannot load profile info";
return false;
}
bool GetClassNamesAndMethods(const std::string& profile_file,
std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::set<std::string>* out_lines) {
#ifdef _WIN32
int flags = O_RDONLY;
#else
int flags = O_RDONLY | O_CLOEXEC;
#endif
int fd = open(profile_file.c_str(), flags);
if (!FdIsValid(fd)) {
PLOG(ERROR) << "Cannot open " << profile_file;
return false;
}
if (!GetClassNamesAndMethods(fd, dex_files, out_lines)) {
return false;
}
if (close(fd) < 0) {
PLOG(WARNING) << "Failed to close descriptor";
}
return true;
}
int DumpClassesAndMethods() {
// Validate that at least one profile file or reference was specified.
if (profile_files_.empty() && profile_files_fd_.empty() &&
reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No profile files or reference profile specified.");
}
// Open the dex files to get the names for classes.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Build a vector of class names from individual profile files.
std::set<std::string> class_names;
if (!profile_files_fd_.empty()) {
for (int profile_file_fd : profile_files_fd_) {
if (!GetClassNamesAndMethods(profile_file_fd, &dex_files, &class_names)) {
return -1;
}
}
}
if (!profile_files_.empty()) {
for (const std::string& profile_file : profile_files_) {
if (!GetClassNamesAndMethods(profile_file, &dex_files, &class_names)) {
return -1;
}
}
}
// Concatenate class names from reference profile file.
if (FdIsValid(reference_profile_file_fd_)) {
if (!GetClassNamesAndMethods(reference_profile_file_fd_, &dex_files, &class_names)) {
return -1;
}
}
if (!reference_profile_file_.empty()) {
if (!GetClassNamesAndMethods(reference_profile_file_, &dex_files, &class_names)) {
return -1;
}
}
// Dump the class names.
std::string dump;
for (const std::string& class_name : class_names) {
dump += class_name + std::string("\n");
}
if (!FdIsValid(dump_output_to_fd_)) {
std::cout << dump;
} else {
unix_file::FdFile out_fd(dump_output_to_fd_, /*check_usage=*/ false);
if (!out_fd.WriteFully(dump.c_str(), dump.length())) {
return -1;
}
}
return 0;
}
bool ShouldOnlyDumpClassesAndMethods() {
return dump_classes_and_methods_;
}
// Read lines from the given file, dropping comments and empty lines. Post-process each line with
// the given function.
template <typename T>
static T* ReadCommentedInputFromFile(
const char* input_filename, std::function<std::string(const char*)>* process) {
std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in));
if (input_file.get() == nullptr) {
LOG(ERROR) << "Failed to open input file " << input_filename;
return nullptr;
}
std::unique_ptr<T> result(
ReadCommentedInputStream<T>(*input_file, process));
input_file->close();
return result.release();
}
// Read lines from the given stream, dropping comments and empty lines. Post-process each line
// with the given function.
template <typename T>
static T* ReadCommentedInputStream(
std::istream& in_stream,
std::function<std::string(const char*)>* process) {
std::unique_ptr<T> output(new T());
while (in_stream.good()) {
std::string dot;
std::getline(in_stream, dot);
if (android::base::StartsWith(dot, "#") || dot.empty()) {
continue;
}
if (process != nullptr) {
std::string descriptor((*process)(dot.c_str()));
output->insert(output->end(), descriptor);
} else {
output->insert(output->end(), dot);
}
}
return output.release();
}
// Find class definition for a descriptor.
const dex::ClassDef* FindClassDef(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
std::string_view klass_descriptor,
/*out*/ TypeReference* class_ref) {
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
const dex::TypeId* type_id = dex_file->FindTypeId(klass_descriptor);
if (type_id != nullptr) {
dex::TypeIndex type_index = dex_file->GetIndexForTypeId(*type_id);
const dex::ClassDef* class_def = dex_file->FindClassDef(type_index);
if (class_def != nullptr) {
*class_ref = TypeReference(dex_file.get(), type_index);
return class_def;
}
}
}
return nullptr;
}
// Find class klass_descriptor in the given dex_files and store its reference
// in the out parameter class_ref.
// Return true if a reference of the class was found in any of the dex_files.
bool FindClass(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
std::string_view klass_descriptor,
/*out*/ TypeReference* class_ref) {
for (const std::unique_ptr<const DexFile>& dex_file_ptr : dex_files) {
const DexFile* dex_file = dex_file_ptr.get();
const dex::TypeId* type_id = dex_file->FindTypeId(klass_descriptor);
if (type_id != nullptr) {
*class_ref = TypeReference(dex_file, dex_file->GetIndexForTypeId(*type_id));
return true;
}
}
return false;
}
// Find the method specified by method_spec in the class class_ref.
uint32_t FindMethodIndex(const TypeReference& class_ref,
std::string_view method_spec) {
const DexFile* dex_file = class_ref.dex_file;
size_t signature_start = method_spec.find(kProfileParsingFirstCharInSignature);
if (signature_start == std::string_view::npos) {
LOG(ERROR) << "Invalid method name and signature: " << method_spec;
return dex::kDexNoIndex;
}
const std::string_view name = method_spec.substr(0u, signature_start);
const std::string_view signature = method_spec.substr(signature_start);
const dex::StringId* name_id = dex_file->FindStringId(std::string(name).c_str());
if (name_id == nullptr) {
LOG(WARNING) << "Could not find name: " << name;
return dex::kDexNoIndex;
}
dex::TypeIndex return_type_idx;
std::vector<dex::TypeIndex> param_type_idxs;
if (!dex_file->CreateTypeList(signature, &return_type_idx, &param_type_idxs)) {
LOG(WARNING) << "Could not create type list: " << signature;
return dex::kDexNoIndex;
}
const dex::ProtoId* proto_id = dex_file->FindProtoId(return_type_idx, param_type_idxs);
if (proto_id == nullptr) {
LOG(WARNING) << "Could not find proto_id: " << name;
return dex::kDexNoIndex;
}
const dex::MethodId* method_id = dex_file->FindMethodId(
dex_file->GetTypeId(class_ref.TypeIndex()), *name_id, *proto_id);
if (method_id == nullptr) {
LOG(WARNING) << "Could not find method_id: " << name;
return dex::kDexNoIndex;
}
return dex_file->GetIndexForMethodId(*method_id);
}
template <typename Visitor>
void VisitAllInstructions(const TypeReference& class_ref, uint16_t method_idx, Visitor visitor) {
const DexFile* dex_file = class_ref.dex_file;
const dex::ClassDef* def = dex_file->FindClassDef(class_ref.TypeIndex());
if (def == nullptr) {
return;
}
std::optional<uint32_t> offset = dex_file->GetCodeItemOffset(*def, method_idx);
if (offset.has_value()) {
for (const DexInstructionPcPair& inst :
CodeItemInstructionAccessor(*dex_file, dex_file->GetCodeItem(*offset))) {
if (!visitor(inst)) {
break;
}
}
} else {
LOG(WARNING) << "Could not find method " << method_idx;
}
}
// Get dex-pcs of any virtual + interface invokes referencing a method of the
// 'target' type in the given method.
void GetAllInvokes(const TypeReference& class_ref,
uint16_t method_idx,
dex::TypeIndex target,
/*out*/ std::vector<uint32_t>* dex_pcs) {
const DexFile* dex_file = class_ref.dex_file;
VisitAllInstructions(class_ref, method_idx, [&](const DexInstructionPcPair& inst) -> bool {
switch (inst->Opcode()) {
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_INTERFACE_RANGE:
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_RANGE: {
const dex::MethodId& meth = dex_file->GetMethodId(inst->VRegB());
if (meth.class_idx_ == target) {
dex_pcs->push_back(inst.DexPc());
}
break;
}
default:
break;
}
return true;
});
}
// Given a method, return true if the method has a single INVOKE_VIRTUAL in its byte code.
// Upon success it returns true and stores the method index and the invoke dex pc
// in the output parameters.
// The format of the method spec is "inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;".
bool HasSingleInvoke(const TypeReference& class_ref,
uint16_t method_index,
/*out*/ uint32_t* dex_pc) {
bool found_invoke = false;
bool found_multiple_invokes = false;
VisitAllInstructions(class_ref, method_index, [&](const DexInstructionPcPair& inst) -> bool {
if (inst->Opcode() == Instruction::INVOKE_VIRTUAL ||
inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
inst->Opcode() == Instruction::INVOKE_INTERFACE ||
inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE) {
if (found_invoke) {
LOG(ERROR) << "Multiple invoke INVOKE_VIRTUAL found: "
<< class_ref.dex_file->PrettyMethod(method_index);
return false;
}
found_invoke = true;
*dex_pc = inst.DexPc();
}
return true;
});
if (!found_invoke) {
LOG(ERROR) << "Could not find any INVOKE_VIRTUAL/INTERFACE: "
<< class_ref.dex_file->PrettyMethod(method_index);
}
return found_invoke && !found_multiple_invokes;
}
struct InlineCacheSegment {
public:
using IcArray =
std::array<std::string_view, ProfileCompilationInfo::kIndividualInlineCacheSize + 1>;
static void SplitInlineCacheSegment(std::string_view ic_line,
/*out*/ std::vector<InlineCacheSegment>* res) {
if (ic_line[0] != kProfileParsingInlineChacheTargetSep) {
// single target
InlineCacheSegment out;
Split(ic_line, kProfileParsingTypeSep, &out.inline_caches_);
res->push_back(out);
return;
}
std::vector<std::string_view> targets_and_resolutions;
// Avoid a zero-length entry.
for (std::string_view t :
SplitString(ic_line.substr(1), kProfileParsingInlineChacheTargetSep)) {
InlineCacheSegment out;
// The target may be an array for methods defined in `j.l.Object`, such as `clone()`.
size_t recv_end;
if (UNLIKELY(t[0] == '[')) {
recv_end = t.find_first_not_of('[', 1u);
DCHECK_NE(recv_end, std::string_view::npos);
if (t[recv_end] == 'L') {
recv_end = t.find_first_of(';', recv_end + 1u);
DCHECK_NE(recv_end, std::string_view::npos);
} else {
// Primitive array.
DCHECK_NE(Primitive::GetType(t[recv_end]), Primitive::kPrimNot);
}
} else {
DCHECK_EQ(t[0], 'L') << "Target is not a class? " << t;
recv_end = t.find_first_of(';', 1u);
DCHECK_NE(recv_end, std::string_view::npos);
}
out.receiver_ = t.substr(0, recv_end + 1);
Split(t.substr(recv_end + 1), kProfileParsingTypeSep, &out.inline_caches_);
res->push_back(out);
}
}
bool IsSingleReceiver() const {
return !receiver_.has_value();
}
const std::string_view& GetReceiverType() const {
DCHECK(!IsSingleReceiver());
return *receiver_;
}
const IcArray& GetIcTargets() const {
return inline_caches_;
}
size_t NumIcTargets() const {
return std::count_if(
inline_caches_.begin(), inline_caches_.end(), [](const auto& x) { return !x.empty(); });
}
std::ostream& Dump(std::ostream& os) const {
if (!IsSingleReceiver()) {
os << "[" << GetReceiverType();
}
bool first = true;
for (std::string_view target : inline_caches_) {
if (target.empty()) {
break;
} else if (!first) {
os << ",";
}
first = false;
os << target;
}
return os;
}
private:
std::optional<std::string_view> receiver_;
// Max number of ics in the profile file. Don't need to store more than this
// (although internally we can have as many as we want). If we fill this up
// we are megamorphic.
IcArray inline_caches_;
friend std::ostream& operator<<(std::ostream& os, const InlineCacheSegment& ics);
};
struct ClassMethodReference {
TypeReference type_;
uint32_t method_index_;
bool operator==(const ClassMethodReference& ref) {
return ref.type_ == type_ && ref.method_index_ == method_index_;
}
bool operator!=(const ClassMethodReference& ref) {
return !(*this == ref);
}
};
// Try to perform simple method resolution to produce a more useful profile.
// This will resolve to the nearest class+method-index which is within the
// same dexfile and in a declared supertype of the starting class. It will
// return nullopt if it cannot find an appropriate method or the nearest
// possibility is private.
// TODO: This should ideally support looking in other dex files. That's getting
// to the point of needing to have a whole class-linker so it's probably not
// worth it.
std::optional<ClassMethodReference> ResolveMethod(TypeReference class_ref,
uint32_t method_index) {
const DexFile* dex = class_ref.dex_file;
const dex::ClassDef* def = dex->FindClassDef(class_ref.TypeIndex());
if (def == nullptr || method_index >= dex->NumMethodIds()) {
// Class not in dex-file.
return std::nullopt;
}
if (LIKELY(dex->GetCodeItemOffset(*def, method_index).has_value())) {
return ClassMethodReference{class_ref, method_index};
}
// What to look for.
const dex::MethodId& method_id = dex->GetMethodId(method_index);
// No going between different dexs so use name and proto directly
const dex::ProtoIndex& method_proto = method_id.proto_idx_;
const dex::StringIndex& method_name = method_id.name_idx_;
// Floyd's algo to prevent infinite loops.
// Slow-iterator position for Floyd's
dex::TypeIndex slow_class_type = def->class_idx_;
// Whether to take a step with the slow iterator.
bool update_slow = false;
for (dex::TypeIndex cur_candidate = def->superclass_idx_;
cur_candidate != dex::TypeIndex::Invalid() && cur_candidate != slow_class_type;) {
const dex::ClassDef* cur_class_def = dex->FindClassDef(cur_candidate);
if (cur_class_def == nullptr) {
// We left the dex file.
return std::nullopt;
}
const dex::MethodId* cur_id =
dex->FindMethodIdByIndex(cur_candidate, method_name, method_proto);
if (cur_id != nullptr) {
if (dex->GetCodeItemOffset(*cur_class_def, dex->GetIndexForMethodId(*cur_id)).has_value()) {
return ClassMethodReference{TypeReference(dex, cur_candidate),
dex->GetIndexForMethodId(*cur_id)};
}
}
// Floyd's algo step.
cur_candidate = cur_class_def->superclass_idx_;
slow_class_type =
update_slow ? dex->FindClassDef(slow_class_type)->superclass_idx_ : slow_class_type;
update_slow = !update_slow;
}
return std::nullopt;
}
// Process a line defining a class or a method and its inline caches.
// Upon success return true and add the class or the method info to profile.
// Inline caches are identified by the type of the declared receiver type.
// The possible line formats are:
// "LJustTheClass;".
// "LTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;".
// "LTestInline;->inlineMissingTypes(LSuper;)I+missing_types".
// // Note no ',' after [LTarget;
// "LTestInline;->multiInlinePolymorphic(LSuper;)I+]LTarget1;LResA;,LResB;]LTarget2;LResC;,LResD;".
// "LTestInline;->multiInlinePolymorphic(LSuper;)I+]LTarget1;missing_types]LTarget2;LResC;,LResD;".
// "{annotation}LTestInline;->inlineNoInlineCaches(LSuper;)I".
// "LTestInline;->*".
// The method and classes are searched only in the given dex files.
bool ProcessLine(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
std::string_view maybe_annotated_line,
/*out*/ProfileCompilationInfo* profile) {
// First, process the annotation.
if (maybe_annotated_line.empty()) {
return true;
}
// Working line variable which will contain the user input without the annotations.
std::string_view line = maybe_annotated_line;
std::string_view annotation_string;
if (maybe_annotated_line[0] == kAnnotationStart) {
size_t end_pos = maybe_annotated_line.find(kAnnotationEnd, 0);
if (end_pos == std::string::npos || end_pos == 0) {
LOG(ERROR) << "Invalid line: " << maybe_annotated_line;
return false;
}
annotation_string = maybe_annotated_line.substr(1, end_pos - 1);
// Update the working line.
line = maybe_annotated_line.substr(end_pos + 1);
}
ProfileSampleAnnotation annotation = annotation_string.empty()
? ProfileSampleAnnotation::kNone
: ProfileSampleAnnotation(std::string(annotation_string));
// Now process the rest of the line.
std::string_view klass;
std::string_view method_str;
bool is_hot = false;
bool is_startup = false;
bool is_post_startup = false;
const size_t method_sep_index = line.find(kMethodSep, 0);
if (method_sep_index == std::string::npos) {
klass = line;
} else {
// The method prefix flags are only valid for method strings.
size_t start_index = 0;
while (start_index < line.size() && line[start_index] != 'L') {
const char c = line[start_index];
if (c == kMethodFlagStringHot) {
is_hot = true;
} else if (c == kMethodFlagStringStartup) {
is_startup = true;
} else if (c == kMethodFlagStringPostStartup) {
is_post_startup = true;
} else {
LOG(WARNING) << "Invalid flag " << c;
return false;
}
++start_index;
}
klass = line.substr(start_index, method_sep_index - start_index);
method_str = line.substr(method_sep_index + kMethodSep.size());
}
if (!IsValidDescriptor(std::string(klass).c_str())) {
LOG(ERROR) << "Invalid descriptor: " << klass;
return false;
}
if (method_str.empty()) {
auto array_it = std::find_if(klass.begin(), klass.end(), [](char c) { return c != '['; });
size_t array_dim = std::distance(klass.begin(), array_it);
if (klass.size() == array_dim + 1u) {
// Attribute primitive types and their arrays to the first dex file.
profile->AddClass(*dex_files[0], klass, annotation);
return true;
}
// Attribute non-primitive classes and their arrays to the dex file with the definition.
TypeReference class_ref(/* dex_file= */ nullptr, dex::TypeIndex());
if (FindClassDef(dex_files, klass.substr(array_dim), &class_ref) == nullptr) {
LOG(WARNING) << "Could not find class definition: " << klass.substr(array_dim);
return false;
}
if (array_dim != 0) {
// Let the ProfileCompilationInfo find the type index or add an extra descriptor.
return profile->AddClass(*class_ref.dex_file, klass, annotation);
} else {
return profile->AddClass(*class_ref.dex_file, class_ref.TypeIndex(), annotation);
}
}
DCHECK_NE(klass[0], '[');
TypeReference class_ref(/* dex_file= */ nullptr, dex::TypeIndex());
const dex::ClassDef* class_def = FindClassDef(dex_files, klass, &class_ref);
if (class_def == nullptr) {
LOG(WARNING) << "Could not find class definition: " << klass;
return false;
}
uint32_t flags = 0;
if (is_hot) {
flags |= ProfileCompilationInfo::MethodHotness::kFlagHot;
}
if (is_startup) {
flags |= ProfileCompilationInfo::MethodHotness::kFlagStartup;
}
if (is_post_startup) {
flags |= ProfileCompilationInfo::MethodHotness::kFlagPostStartup;
}
if (method_str == kClassAllMethods) {
// Start by adding the class.
profile->AddClass(*class_ref.dex_file, class_ref.TypeIndex(), annotation);
uint16_t class_def_index = class_ref.dex_file->GetIndexForClassDef(*class_def);
ClassAccessor accessor(*class_ref.dex_file, class_def_index);
std::vector<ProfileMethodInfo> methods;
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
if (method.GetCodeItemOffset() != 0) {
// Add all of the methods that have code to the profile.
methods.push_back(ProfileMethodInfo(method.GetReference()));
}
}
// TODO: Check return value?
profile->AddMethods(
methods, static_cast<ProfileCompilationInfo::MethodHotness::Flag>(flags), annotation);
return true;
}
// Process the method.
std::string method_spec;
// If none of the flags are set, default to hot.
// TODO: Why is this done after we have already calculated `flags`?
is_hot = is_hot || (!is_hot && !is_startup && !is_post_startup);
// Lifetime of segments is same as method_elems since it contains pointers into the string-data
std::vector<InlineCacheSegment> segments;
std::vector<std::string_view> method_elems;
Split(method_str, kProfileParsingInlineChacheSep, &method_elems);
if (method_elems.size() == 2) {
method_spec = method_elems[0];
InlineCacheSegment::SplitInlineCacheSegment(method_elems[1], &segments);
} else if (method_elems.size() == 1) {
method_spec = method_elems[0];
} else {
LOG(ERROR) << "Invalid method line: " << line;
return false;
}
const uint32_t method_index = FindMethodIndex(class_ref, method_spec);
if (method_index == dex::kDexNoIndex) {
LOG(WARNING) << "Could not find method " << klass << "->" << method_spec;
return false;
}
std::optional<ClassMethodReference>
resolved_class_method_ref = ResolveMethod(class_ref, method_index);
std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches;
// We can only create inline-caches when we actually have code we can
// examine. If we couldn't resolve the method don't bother trying to create
// inline-caches.
if (resolved_class_method_ref) {
for (const InlineCacheSegment& segment : segments) {
std::vector<uint32_t> dex_pcs;
if (segment.IsSingleReceiver()) {
DCHECK_EQ(segments.size(), 1u);
dex_pcs.resize(1, -1);
// TODO This single invoke format should really be phased out and
// removed.
if (!HasSingleInvoke(class_ref, method_index, &dex_pcs[0])) {
return false;
}
} else {
// Get the type-ref the method code will use.
std::string receiver_str(segment.GetReceiverType());
const dex::TypeId *type_id =
class_ref.dex_file->FindTypeId(receiver_str.c_str());
if (type_id == nullptr) {
LOG(WARNING) << "Could not find class: "
<< segment.GetReceiverType() << " in dex-file "
<< class_ref.dex_file << ". Ignoring IC group: '"
<< segment << "'";
continue;
}
dex::TypeIndex target_index =
class_ref.dex_file->GetIndexForTypeId(*type_id);
GetAllInvokes(resolved_class_method_ref->type_,
resolved_class_method_ref->method_index_,
target_index,
&dex_pcs);
}
bool missing_types = segment.GetIcTargets()[0] == kMissingTypesMarker;
bool megamorphic_types =
segment.GetIcTargets()[0] == kMegamorphicTypesMarker;
std::vector<TypeReference> classes;
if (!missing_types && !megamorphic_types) {
classes.reserve(segment.NumIcTargets());
for (const std::string_view& ic_class : segment.GetIcTargets()) {
if (ic_class.empty()) {
break;
}
if (!IsValidDescriptor(std::string(ic_class).c_str())) {
LOG(ERROR) << "Invalid descriptor for inline cache: " << ic_class;
return false;
}
// TODO: Allow referencing classes without a `dex::TypeId` in any of the dex files.
TypeReference ic_class_ref(/* dex_file= */ nullptr, dex::TypeIndex());
if (!FindClass(dex_files, ic_class, &ic_class_ref)) {
LOG(segment.IsSingleReceiver() ? ERROR : WARNING)
<< "Could not find class: " << ic_class << " in " << segment;
if (segment.IsSingleReceiver()) {
return false;
} else {
// Be a bit more forgiving with profiles from servers.
missing_types = true;
classes.clear();
break;
}
}
classes.push_back(ic_class_ref);
}
}
for (size_t dex_pc : dex_pcs) {
inline_caches.emplace_back(dex_pc, missing_types, classes, megamorphic_types);
}
}
}
MethodReference ref(class_ref.dex_file, method_index);
if (is_hot) {
ClassMethodReference orig_cmr { class_ref, method_index };
if (!inline_caches.empty() &&
resolved_class_method_ref &&
orig_cmr != *resolved_class_method_ref) {
// We have inline-caches on a method that doesn't actually exist. We
// want to put the inline caches on the resolved version of the method
// (if we could find one) and just mark the actual method as present.
const DexFile *dex = resolved_class_method_ref->type_.dex_file;
LOG(VERBOSE) << "Adding "
<< dex->PrettyMethod(
resolved_class_method_ref->method_index_)
<< " as alias for " << dex->PrettyMethod(method_index);
// The inline-cache refers to a supertype of the actual profile line.
// Include this supertype method in the profile as well.
MethodReference resolved_ref(class_ref.dex_file,
resolved_class_method_ref->method_index_);
profile->AddMethod(
ProfileMethodInfo(resolved_ref, inline_caches),
static_cast<ProfileCompilationInfo::MethodHotness::Flag>(flags),
annotation);
profile->AddMethod(
ProfileMethodInfo(ref),
static_cast<ProfileCompilationInfo::MethodHotness::Flag>(flags),
annotation);
} else {
profile->AddMethod(
ProfileMethodInfo(ref, inline_caches),
static_cast<ProfileCompilationInfo::MethodHotness::Flag>(flags),
annotation);
}
}
if (flags != 0) {
if (!profile->AddMethod(ProfileMethodInfo(ref),
static_cast<ProfileCompilationInfo::MethodHotness::Flag>(flags),
annotation)) {
return false;
}
DCHECK(profile->GetMethodHotness(ref, annotation).IsInProfile()) << method_spec;
}
return true;
}
bool ProcessBootLine(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
std::string_view line,
ProfileBootInfo* boot_profiling_info) {
const size_t method_sep_index = line.find(kMethodSep, 0);
if (method_sep_index == std::string_view::npos) {
LOG(ERROR) << "Invalid boot line: " << line;
return false;
}
std::string_view klass_str = line.substr(0, method_sep_index);
std::string_view method_str = line.substr(method_sep_index + kMethodSep.size());
TypeReference class_ref(/* dex_file= */ nullptr, dex::TypeIndex());
if (FindClassDef(dex_files, klass_str, &class_ref) == nullptr) {
LOG(WARNING) << "Could not find class definition: " << klass_str;
return false;
}
const uint32_t method_index = FindMethodIndex(class_ref, method_str);
if (method_index == dex::kDexNoIndex) {
LOG(WARNING) << "Could not find method: " << line;
return false;
}
boot_profiling_info->Add(class_ref.dex_file, method_index);
return true;
}
int OpenReferenceProfile() const {
int fd = reference_profile_file_fd_;
if (!FdIsValid(fd)) {
CHECK(!reference_profile_file_.empty());
#ifdef _WIN32
int flags = O_CREAT | O_TRUNC | O_WRONLY;
#else
int flags = O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC;
#endif
fd = open(reference_profile_file_.c_str(), flags, 0644);
if (fd < 0) {
PLOG(ERROR) << "Cannot open " << reference_profile_file_;
return File::kInvalidFd;
}
}
return fd;
}
// Create and store a ProfileBootInfo.
int CreateBootProfile() {
// Validate parameters for this command.
if (apk_files_.empty() && apks_fd_.empty()) {
Usage("APK files must be specified");
}
if (dex_locations_.empty()) {
Usage("DEX locations must be specified");
}
if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("Reference profile must be specified with --reference-profile-file or "
"--reference-profile-file-fd");
}
if (!profile_files_.empty() || !profile_files_fd_.empty()) {
Usage("Profile must be specified with --reference-profile-file or "
"--reference-profile-file-fd");
}
// Open the profile output file if needed.
int fd = OpenReferenceProfile();
if (!FdIsValid(fd)) {
return -1;
}
// Read the user-specified list of methods.
std::unique_ptr<std::vector<std::string>>
user_lines(ReadCommentedInputFromFile<std::vector<std::string>>(
create_profile_from_file_.c_str(), nullptr)); // No post-processing.
// Open the dex files to look up classes and methods.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Process the lines one by one and add the successful ones to the profile.
ProfileBootInfo info;
for (const auto& line : *user_lines) {
ProcessBootLine(dex_files, line, &info);
}
// Write the profile file.
CHECK(info.Save(fd));
if (close(fd) < 0) {
PLOG(WARNING) << "Failed to close descriptor";
}
return 0;
}
// Creates a profile from a human friendly textual representation.
// The expected input format is:
// # Classes
// Ljava/lang/Comparable;
// Ljava/lang/Math;
// # Methods with inline caches
// LTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;
// LTestInline;->noInlineCache(LSuper;)I
int CreateProfile() {
// Validate parameters for this command.
if (apk_files_.empty() && apks_fd_.empty()) {
Usage("APK files must be specified");
}
if (dex_locations_.empty()) {
Usage("DEX locations must be specified");
}
if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("Reference profile must be specified with --reference-profile-file or "
"--reference-profile-file-fd");
}
if (!profile_files_.empty() || !profile_files_fd_.empty()) {
Usage("Profile must be specified with --reference-profile-file or "
"--reference-profile-file-fd");
}
// Open the profile output file if needed.
int fd = OpenReferenceProfile();
if (!FdIsValid(fd)) {
return -1;
}
// Read the user-specified list of classes and methods.
std::unique_ptr<std::unordered_set<std::string>>
user_lines(ReadCommentedInputFromFile<std::unordered_set<std::string>>(
create_profile_from_file_.c_str(), nullptr)); // No post-processing.
// Open the dex files to look up classes and methods.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Process the lines one by one and add the successful ones to the profile.
bool for_boot_image = GetOutputProfileType() == OutputProfileType::kBoot;
ProfileCompilationInfo info(for_boot_image);
if (for_boot_image) {
// Add all dex files to the profile. This is needed for jitzygote to indicate
// which dex files are part of the boot image extension to compile in memory.
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
if (info.FindOrAddDexFile(*dex_file) == info.MaxProfileIndex()) {
LOG(ERROR) << "Failed to add dex file to boot image profile: " << dex_file->GetLocation();
return -1;
}
}
}
for (const auto& line : *user_lines) {
ProcessLine(dex_files, line, &info);
}
// Write the profile file.
CHECK(info.Save(fd));
if (close(fd) < 0) {
PLOG(WARNING) << "Failed to close descriptor";
}
return 0;
}
bool ShouldCreateBootImageProfile() const {
return generate_boot_image_profile_;
}
OutputProfileType GetOutputProfileType() const {
return output_profile_type_;
}
// Create and store a ProfileCompilationInfo for the boot image.
int CreateBootImageProfile() {
// Open the input profile file.
if (profile_files_.size() < 1) {
LOG(ERROR) << "At least one --profile-file must be specified.";
return -1;
}
// Open the dex files.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
if (dex_files.empty()) {
PLOG(ERROR) << "Expected dex files for creating boot profile";
return -2;
}
if (!GenerateBootImageProfile(dex_files,
profile_files_,
boot_image_options_,
boot_profile_out_path_,
preloaded_classes_out_path_)) {
LOG(ERROR) << "There was an error when generating the boot image profiles";
return -4;
}
return 0;
}
bool ShouldCreateProfile() {
return !create_profile_from_file_.empty();
}
int GenerateTestProfile() {
// Validate parameters for this command.
if (test_profile_method_percerntage_ > 100) {
Usage("Invalid percentage for --generate-test-profile-method-percentage");
}
if (test_profile_class_percentage_ > 100) {
Usage("Invalid percentage for --generate-test-profile-class-percentage");
}
// If given APK files or DEX locations, check that they're ok.
if (!apk_files_.empty() || !apks_fd_.empty() || !dex_locations_.empty()) {
if (apk_files_.empty() && apks_fd_.empty()) {
Usage("APK files must be specified when passing DEX locations to --generate-test-profile");
}
if (dex_locations_.empty()) {
Usage("DEX locations must be specified when passing APK files to --generate-test-profile");
}
}
// ShouldGenerateTestProfile confirms !test_profile_.empty().
#ifdef _WIN32
int flags = O_CREAT | O_TRUNC | O_WRONLY;
#else
int flags = O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC;
#endif
int profile_test_fd = open(test_profile_.c_str(), flags, 0644);
if (profile_test_fd < 0) {
PLOG(ERROR) << "Cannot open " << test_profile_;
return -1;
}
bool result;
if (apk_files_.empty() && apks_fd_.empty() && dex_locations_.empty()) {
result = ProfileCompilationInfo::GenerateTestProfile(profile_test_fd,
test_profile_num_dex_,
test_profile_method_percerntage_,
test_profile_class_percentage_,
test_profile_seed_);
} else {
// Open the dex files to look up classes and methods.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Create a random profile file based on the set of dex files.
result = ProfileCompilationInfo::GenerateTestProfile(profile_test_fd,
dex_files,
test_profile_method_percerntage_,
test_profile_class_percentage_,
test_profile_seed_);
}
close(profile_test_fd); // ignore close result.
return result ? 0 : -1;
}
bool ShouldGenerateTestProfile() {
return !test_profile_.empty();
}
bool ShouldCopyAndUpdateProfileKey() const {
return copy_and_update_profile_key_;
}
ProfmanResult::CopyAndUpdateResult CopyAndUpdateProfileKey() {
// Validate that at least one profile file was passed, as well as a reference profile.
if (!(profile_files_.size() == 1 ^ profile_files_fd_.size() == 1)) {
Usage("Only one profile file should be specified.");
}
if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No reference profile file specified.");
}
if (apk_files_.empty() && apks_fd_.empty()) {
Usage("No apk files specified");
}
bool use_fds = profile_files_fd_.size() == 1;
ProfileCompilationInfo profile;
// Do not clear if invalid. The input might be an archive.
bool load_ok = use_fds
? profile.Load(profile_files_fd_[0])
: profile.Load(profile_files_[0], /*clear_if_invalid=*/ false);
if (load_ok) {
// Open the dex files to look up classes and methods.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
bool matched = false;
if (!profile.UpdateProfileKeys(dex_files, &matched)) {
return ProfmanResult::kCopyAndUpdateErrorFailedToUpdateProfile;
}
bool result = use_fds
? profile.Save(reference_profile_file_fd_)
: profile.Save(reference_profile_file_, /*bytes_written=*/ nullptr);
if (!result) {
return ProfmanResult::kCopyAndUpdateErrorFailedToSaveProfile;
}
return matched ? ProfmanResult::kCopyAndUpdateSuccess : ProfmanResult::kCopyAndUpdateNoMatch;
} else {
return ProfmanResult::kCopyAndUpdateErrorFailedToLoadProfile;
}
}
private:
static void ParseFdForCollection(const char* raw_option,
std::string_view option_prefix,
std::vector<int>* fds) {
int fd;
ParseUintOption(raw_option, option_prefix, &fd);
fds->push_back(fd);
}
static void CloseAllFds(const std::vector<int>& fds, const char* descriptor) {
for (size_t i = 0; i < fds.size(); i++) {
if (close(fds[i]) < 0) {
PLOG(WARNING) << "Failed to close descriptor for "
<< descriptor << " at index " << i << ": " << fds[i];
}
}
}
void LogCompletionTime() {
static constexpr uint64_t kLogThresholdTime = MsToNs(100); // 100ms
uint64_t time_taken = NanoTime() - start_ns_;
if (time_taken > kLogThresholdTime) {
LOG(WARNING) << "profman took " << PrettyDuration(time_taken);
}
}
std::vector<std::string> profile_files_;
std::vector<int> profile_files_fd_;
std::vector<std::string> dex_locations_;
std::vector<std::string> apk_files_;
std::vector<int> apks_fd_;
std::string reference_profile_file_;
int reference_profile_file_fd_;
bool dump_only_;
bool dump_classes_and_methods_;
bool generate_boot_image_profile_;
OutputProfileType output_profile_type_;
int dump_output_to_fd_;
BootImageOptions boot_image_options_;
std::string test_profile_;
std::string create_profile_from_file_;
uint16_t test_profile_num_dex_;
uint16_t test_profile_method_percerntage_;
uint16_t test_profile_class_percentage_;
uint32_t test_profile_seed_;
uint64_t start_ns_;
bool copy_and_update_profile_key_;
ProfileAssistant::Options profile_assistant_options_;
std::string boot_profile_out_path_;
std::string preloaded_classes_out_path_;
};
std::ostream& operator<<(std::ostream& os, const ProfMan::InlineCacheSegment& ics) {
return ics.Dump(os);
}
// See ProfmanResult for return codes.
static int profman(int argc, char** argv) {
ProfMan profman;
// Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
profman.ParseArgs(argc, argv);
// Initialize MemMap for ZipArchive::OpenFromFd.
MemMap::Init();
if (profman.ShouldGenerateTestProfile()) {
return profman.GenerateTestProfile();
}
if (profman.ShouldOnlyDumpProfile()) {
return profman.DumpProfileInfo();
}
if (profman.ShouldOnlyDumpClassesAndMethods()) {
return profman.DumpClassesAndMethods();
}
if (profman.ShouldCreateProfile()) {
if (profman.GetOutputProfileType() == OutputProfileType::kBprof) {
return profman.CreateBootProfile();
} else {
return profman.CreateProfile();
}
}
if (profman.ShouldCreateBootImageProfile()) {
return profman.CreateBootImageProfile();
}
if (profman.ShouldCopyAndUpdateProfileKey()) {
return profman.CopyAndUpdateProfileKey();
}
// Process profile information and assess if we need to do a profile guided compilation.
// This operation involves I/O.
return profman.ProcessProfiles();
}
} // namespace art
int main(int argc, char **argv) {
return art::profman(argc, argv);
}