| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "utils.h" |
| |
| #include <dirent.h> |
| #include <inttypes.h> |
| #include <pthread.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <fstream> |
| #include <memory> |
| #include <string> |
| |
| #include "android-base/file.h" |
| #include "android-base/stringprintf.h" |
| #include "android-base/strings.h" |
| |
| #include "base/mem_map.h" |
| #include "base/stl_util.h" |
| #include "bit_utils.h" |
| #include "os.h" |
| |
| #if defined(__APPLE__) |
| #include <crt_externs.h> |
| // NOLINTNEXTLINE - inclusion of syscall is dependent on arch |
| #include <sys/syscall.h> |
| #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED |
| #endif |
| |
| #if defined(__BIONIC__) |
| // membarrier(2) is only supported for target builds (b/111199492). |
| #include <linux/membarrier.h> |
| // NOLINTNEXTLINE - inclusion of syscall is dependent on arch |
| #include <sys/syscall.h> |
| #endif |
| |
| #if defined(__linux__) |
| #include <linux/unistd.h> |
| // NOLINTNEXTLINE - inclusion of syscall is dependent on arch |
| #include <sys/syscall.h> |
| #endif |
| |
| #if defined(_WIN32) |
| #include <windows.h> |
| // This include needs to be here due to our coding conventions. Unfortunately |
| // it drags in the definition of the dread ERROR macro. |
| #ifdef ERROR |
| #undef ERROR |
| #endif |
| #endif |
| |
| namespace art { |
| |
| using android::base::ReadFileToString; // NOLINT - ReadFileToString is actually used |
| using android::base::StringPrintf; |
| |
| #if defined(__arm__) |
| |
| namespace { |
| |
| // Bitmap of caches to flush for cacheflush(2). Must be zero for ARM. |
| static constexpr int kCacheFlushFlags = 0x0; |
| |
| // Number of retry attempts when flushing cache ranges. |
| static constexpr size_t kMaxFlushAttempts = 4; |
| |
| int CacheFlush(uintptr_t start, uintptr_t limit) { |
| // The signature of cacheflush(2) seems to vary by source. On ARM the system call wrapper |
| // (bionic/SYSCALLS.TXT) has the form: int cacheflush(long start, long end, long flags); |
| int r = cacheflush(start, limit, kCacheFlushFlags); |
| if (r == -1) { |
| CHECK_NE(errno, EINVAL); |
| } |
| return r; |
| } |
| |
| bool TouchAndFlushCacheLinesWithinPage(uintptr_t start, uintptr_t limit, size_t attempts, |
| size_t page_size) { |
| CHECK_LT(start, limit); |
| CHECK_EQ(RoundDown(start, page_size), RoundDown(limit - 1, page_size)) << "range spans pages"; |
| // Declare a volatile variable so the compiler does not elide reads from the page being touched. |
| [[maybe_unused]] volatile uint8_t v = 0; |
| for (size_t i = 0; i < attempts; ++i) { |
| // Touch page to maximize chance page is resident. |
| v = *reinterpret_cast<uint8_t*>(start); |
| |
| if (LIKELY(CacheFlush(start, limit) == 0)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| bool FlushCpuCaches(void* begin, void* end) { |
| // This method is specialized for ARM as the generic implementation below uses the |
| // __builtin___clear_cache() intrinsic which is declared as void. On ARMv7 flushing the CPU |
| // caches is a privileged operation. The Linux kernel allows these operations to fail when they |
| // trigger a fault (e.g. page not resident). We use a wrapper for the ARM specific cacheflush() |
| // system call to detect the failure and potential erroneous state of the data and instruction |
| // caches. |
| // |
| // The Android bug for this is b/132205399 and there's a similar discussion on |
| // https://reviews.llvm.org/D37788. This is primarily an issue for the dual view JIT where the |
| // pages where code is executed are only ever RX and never RWX. When attempting to invalidate |
| // instruction cache lines in the RX mapping after writing fresh code in the RW mapping, the |
| // page may not be resident (due to memory pressure), and this means that a fault is raised in |
| // the midst of a cacheflush() call and the instruction cache lines are not invalidated and so |
| // have stale code. |
| // |
| // Other architectures fair better for reasons such as: |
| // |
| // (1) stronger coherence between the data and instruction caches. |
| // |
| // (2) fault handling that allows flushing/invalidation to continue after |
| // a missing page has been faulted in. |
| |
| const size_t page_size = MemMap::GetPageSize(); |
| |
| uintptr_t start = reinterpret_cast<uintptr_t>(begin); |
| const uintptr_t limit = reinterpret_cast<uintptr_t>(end); |
| if (LIKELY(CacheFlush(start, limit) == 0)) { |
| return true; |
| } |
| |
| // A rare failure has occurred implying that part of the range (begin, end] has been swapped |
| // out. Retry flushing but this time grouping cache-line flushes on individual pages and |
| // touching each page before flushing. |
| uintptr_t next_page = RoundUp(start + 1, page_size); |
| while (start < limit) { |
| uintptr_t boundary = std::min(next_page, limit); |
| if (!TouchAndFlushCacheLinesWithinPage(start, boundary, kMaxFlushAttempts, page_size)) { |
| return false; |
| } |
| start = boundary; |
| next_page += page_size; |
| } |
| return true; |
| } |
| |
| #else |
| |
| bool FlushCpuCaches(void* begin, void* end) { |
| __builtin___clear_cache(reinterpret_cast<char*>(begin), reinterpret_cast<char*>(end)); |
| return true; |
| } |
| |
| #endif |
| |
| #if defined(__linux__) |
| bool IsKernelVersionAtLeast(int reqd_major, int reqd_minor) { |
| struct utsname uts; |
| int major, minor; |
| CHECK_EQ(uname(&uts), 0); |
| CHECK_EQ(strcmp(uts.sysname, "Linux"), 0); |
| CHECK_EQ(sscanf(uts.release, "%d.%d:", &major, &minor), 2); |
| return major > reqd_major || (major == reqd_major && minor >= reqd_minor); |
| } |
| #endif |
| |
| bool CacheOperationsMaySegFault() { |
| #if defined(__linux__) && defined(__aarch64__) |
| // Avoid issue on older ARM64 kernels where data cache operations could be classified as writes |
| // and cause segmentation faults. This was fixed in Linux 3.11rc2: |
| // |
| // https://github.com/torvalds/linux/commit/db6f41063cbdb58b14846e600e6bc3f4e4c2e888 |
| // |
| // This behaviour means we should avoid the dual view JIT on the device. This is just |
| // an issue when running tests on devices that have an old kernel. |
| return !IsKernelVersionAtLeast(3, 12); |
| #else |
| return false; |
| #endif |
| } |
| |
| uint32_t GetTid() { |
| #if defined(__APPLE__) |
| uint64_t owner; |
| CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6 |
| return owner; |
| #elif defined(__BIONIC__) |
| return gettid(); |
| #elif defined(_WIN32) |
| return static_cast<pid_t>(::GetCurrentThreadId()); |
| #else |
| return syscall(__NR_gettid); |
| #endif |
| } |
| |
| std::string GetThreadName(pid_t tid) { |
| std::string result; |
| #ifdef _WIN32 |
| UNUSED(tid); |
| result = "<unknown>"; |
| #else |
| // TODO: make this less Linux-specific. |
| if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) { |
| result.resize(result.size() - 1); // Lose the trailing '\n'. |
| } else { |
| result = "<unknown>"; |
| } |
| #endif |
| return result; |
| } |
| |
| std::string PrettySize(uint64_t byte_count) { |
| // The byte thresholds at which we display amounts. A byte count is displayed |
| // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. |
| static const uint64_t kUnitThresholds[] = { |
| 0, // B up to... |
| 10*KB, // KB up to... |
| 10*MB, // MB up to... |
| 10ULL*GB // GB from here. |
| }; |
| static const uint64_t kBytesPerUnit[] = { 1, KB, MB, GB }; |
| static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" }; |
| int i = arraysize(kUnitThresholds); |
| while (--i > 0) { |
| if (byte_count >= kUnitThresholds[i]) { |
| break; |
| } |
| } |
| return StringPrintf("%" PRIu64 "%s", |
| byte_count / kBytesPerUnit[i], kUnitStrings[i]); |
| } |
| |
| template <typename StrIn, typename Str> |
| void Split(const StrIn& s, char separator, std::vector<Str>* out_result) { |
| auto split = SplitString(std::string_view(s), separator); |
| for (std::string_view p : split) { |
| if (p.empty()) { |
| continue; |
| } |
| out_result->push_back(Str(p)); |
| } |
| } |
| |
| template void Split(const char *const& s, char separator, std::vector<std::string>* out_result); |
| template void Split(const std::string& s, char separator, std::vector<std::string>* out_result); |
| template void Split(const char *const& s, char separator, std::vector<std::string_view>* out_result); |
| template void Split(const std::string_view& s, |
| char separator, |
| std::vector<std::string_view>* out_result); |
| template void Split(const std::string_view& s, |
| char separator, |
| std::vector<std::string>* out_result); |
| |
| template <typename Str> |
| void Split(const Str& s, char separator, size_t len, Str* out_result) { |
| Str* last = out_result + len; |
| auto split = SplitString(std::string_view(s), separator); |
| for (std::string_view p : split) { |
| if (p.empty()) { |
| continue; |
| } |
| if (out_result == last) { |
| return; |
| } |
| *out_result++ = Str(p); |
| } |
| } |
| |
| template void Split(const std::string& s, char separator, size_t len, std::string* out_result); |
| template void Split(const std::string_view& s, |
| char separator, |
| size_t len, |
| std::string_view* out_result); |
| |
| void SetThreadName(const char* thread_name) { |
| bool hasAt = false; |
| bool hasDot = false; |
| const char* s = thread_name; |
| while (*s) { |
| if (*s == '.') { |
| hasDot = true; |
| } else if (*s == '@') { |
| hasAt = true; |
| } |
| s++; |
| } |
| int len = s - thread_name; |
| if (len < 15 || hasAt || !hasDot) { |
| s = thread_name; |
| } else { |
| s = thread_name + len - 15; |
| } |
| #if defined(__linux__) || defined(_WIN32) |
| // pthread_setname_np fails rather than truncating long strings. |
| char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel. |
| strncpy(buf, s, sizeof(buf)-1); |
| buf[sizeof(buf)-1] = '\0'; |
| errno = pthread_setname_np(pthread_self(), buf); |
| if (errno != 0) { |
| PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; |
| } |
| #else // __APPLE__ |
| pthread_setname_np(thread_name); |
| #endif |
| } |
| |
| void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) { |
| *utime = *stime = *task_cpu = 0; |
| #ifdef _WIN32 |
| // TODO: implement this. |
| UNUSED(tid); |
| *state = 'S'; |
| #else |
| std::string stats; |
| // TODO: make this less Linux-specific. |
| if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) { |
| return; |
| } |
| // Skip the command, which may contain spaces. |
| stats = stats.substr(stats.find(')') + 2); |
| // Extract the three fields we care about. |
| std::vector<std::string> fields; |
| Split(stats, ' ', &fields); |
| *state = fields[0][0]; |
| *utime = strtoull(fields[11].c_str(), nullptr, 10); |
| *stime = strtoull(fields[12].c_str(), nullptr, 10); |
| *task_cpu = strtoull(fields[36].c_str(), nullptr, 10); |
| #endif |
| } |
| |
| void SleepForever() { |
| while (true) { |
| sleep(100000000); |
| } |
| } |
| |
| std::string GetProcessStatus(const char* key) { |
| // Build search pattern of key and separator. |
| std::string pattern(key); |
| pattern.push_back(':'); |
| |
| // Search for status lines starting with pattern. |
| std::ifstream fs("/proc/self/status"); |
| std::string line; |
| while (std::getline(fs, line)) { |
| if (strncmp(pattern.c_str(), line.c_str(), pattern.size()) == 0) { |
| // Skip whitespace in matching line (if any). |
| size_t pos = line.find_first_not_of(" \t", pattern.size()); |
| if (UNLIKELY(pos == std::string::npos)) { |
| break; |
| } |
| return std::string(line, pos); |
| } |
| } |
| return "<unknown>"; |
| } |
| |
| bool IsAddressKnownBackedByFileOrShared(const void* addr) { |
| // We use the Linux pagemap interface for knowing if an address is backed |
| // by a file or is shared. See: |
| // https://www.kernel.org/doc/Documentation/vm/pagemap.txt |
| const size_t page_size = MemMap::GetPageSize(); |
| uintptr_t vmstart = reinterpret_cast<uintptr_t>(AlignDown(addr, page_size)); |
| off_t index = (vmstart / page_size) * sizeof(uint64_t); |
| android::base::unique_fd pagemap(open("/proc/self/pagemap", O_RDONLY | O_CLOEXEC)); |
| if (pagemap == -1) { |
| return false; |
| } |
| if (lseek(pagemap, index, SEEK_SET) != index) { |
| return false; |
| } |
| uint64_t flags; |
| if (read(pagemap, &flags, sizeof(uint64_t)) != sizeof(uint64_t)) { |
| return false; |
| } |
| // From https://www.kernel.org/doc/Documentation/vm/pagemap.txt: |
| // * Bit 61 page is file-page or shared-anon (since 3.5) |
| return (flags & (1LL << 61)) != 0; |
| } |
| |
| int GetTaskCount() { |
| DIR* directory = opendir("/proc/self/task"); |
| if (directory == nullptr) { |
| return -1; |
| } |
| |
| uint32_t count = 0; |
| struct dirent* entry = nullptr; |
| while ((entry = readdir(directory)) != nullptr) { |
| if ((strcmp(entry->d_name, ".") == 0) || (strcmp(entry->d_name, "..") == 0)) { |
| continue; |
| } |
| ++count; |
| } |
| closedir(directory); |
| return count; |
| } |
| |
| } // namespace art |