| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_writer.h" |
| |
| #include <lz4.h> |
| #include <lz4hc.h> |
| #include <sys/stat.h> |
| #include <zlib.h> |
| |
| #include <charconv> |
| #include <memory> |
| #include <numeric> |
| #include <vector> |
| |
| #include "android-base/strings.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/callee_save_type.h" |
| #include "base/enums.h" |
| #include "base/globals.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/stl_util.h" |
| #include "base/unix_file/fd_file.h" |
| #include "class_linker-inl.h" |
| #include "class_root-inl.h" |
| #include "dex/dex_file-inl.h" |
| #include "dex/dex_file_types.h" |
| #include "driver/compiler_options.h" |
| #include "elf/elf_utils.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/collector/concurrent_copying.h" |
| #include "gc/heap-visit-objects-inl.h" |
| #include "gc/heap.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/region_space.h" |
| #include "gc/space/space-inl.h" |
| #include "gc/verification.h" |
| #include "handle_scope-inl.h" |
| #include "imt_conflict_table.h" |
| #include "indirect_reference_table-inl.h" |
| #include "intern_table-inl.h" |
| #include "jni/java_vm_ext-inl.h" |
| #include "jni/jni_internal.h" |
| #include "linear_alloc.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_ext-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/executable.h" |
| #include "mirror/method.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object-refvisitor-inl.h" |
| #include "mirror/object_array-alloc-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string-inl.h" |
| #include "mirror/var_handle.h" |
| #include "nterp_helpers-inl.h" |
| #include "nterp_helpers.h" |
| #include "oat/elf_file.h" |
| #include "oat/image-inl.h" |
| #include "oat/oat.h" |
| #include "oat/oat_file.h" |
| #include "oat/oat_file_manager.h" |
| #include "optimizing/intrinsic_objects.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "subtype_check.h" |
| #include "well_known_classes-inl.h" |
| |
| using ::art::mirror::Class; |
| using ::art::mirror::DexCache; |
| using ::art::mirror::Object; |
| using ::art::mirror::ObjectArray; |
| using ::art::mirror::String; |
| |
| namespace art { |
| namespace linker { |
| |
| // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables |
| // are never resized, but we still need to pass a reasonable value to the constructor. |
| constexpr double kImageClassTableMinLoadFactor = 0.5; |
| // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables |
| // to make them full. We never insert additional elements to them, so we do not want to waste |
| // extra memory. And unlike runtime class tables, we do not want this to depend on runtime |
| // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode). |
| constexpr double kImageClassTableMaxLoadFactor = 0.6; |
| |
| // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables |
| // are never resized, but we still need to pass a reasonable value to the constructor. |
| constexpr double kImageInternTableMinLoadFactor = 0.5; |
| // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables |
| // to make them full. We never insert additional elements to them, so we do not want to waste |
| // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime |
| // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode). |
| constexpr double kImageInternTableMaxLoadFactor = 0.6; |
| |
| // Separate objects into multiple bins to optimize dirty memory use. |
| static constexpr bool kBinObjects = true; |
| |
| namespace { |
| |
| // Dirty object data from dirty-image-objects. |
| struct DirtyEntry { |
| // Reference field name and type. |
| struct RefInfo { |
| std::string_view name; |
| std::string_view type; |
| }; |
| |
| std::string_view class_descriptor; |
| // A "path" from class object to the dirty object. If empty -- the class itself is dirty. |
| std::vector<RefInfo> reference_path; |
| uint32_t sort_key = std::numeric_limits<uint32_t>::max(); |
| }; |
| |
| // Parse dirty-image-object line of the format: |
| // <class_descriptor>[.<reference_field_name>:<reference_field_type>]* [<sort_key>] |
| std::optional<DirtyEntry> ParseDirtyEntry(std::string_view entry_str) { |
| DirtyEntry entry; |
| std::vector<std::string_view> tokens; |
| Split(entry_str, ' ', &tokens); |
| if (tokens.empty()) { |
| // entry_str is empty. |
| return std::nullopt; |
| } |
| |
| std::string_view path_to_root = tokens[0]; |
| // Parse sort_key if present, otherwise it will be uint32::max by default. |
| if (tokens.size() > 1) { |
| std::from_chars_result res = |
| std::from_chars(tokens[1].data(), tokens[1].data() + tokens[1].size(), entry.sort_key); |
| if (res.ec != std::errc()) { |
| LOG(WARNING) << "Failed to parse dirty object sort key: \"" << entry_str << "\""; |
| return std::nullopt; |
| } |
| } |
| |
| std::vector<std::string_view> path_components; |
| Split(path_to_root, '.', &path_components); |
| if (path_components.empty()) { |
| return std::nullopt; |
| } |
| entry.class_descriptor = path_components[0]; |
| for (size_t i = 1; i < path_components.size(); ++i) { |
| std::string_view name_and_type = path_components[i]; |
| std::vector<std::string_view> ref_data; |
| Split(name_and_type, ':', &ref_data); |
| if (ref_data.size() != 2) { |
| LOG(WARNING) << "Failed to parse dirty object reference field: \"" << entry_str << "\""; |
| return std::nullopt; |
| } |
| |
| std::string_view field_name = ref_data[0]; |
| std::string_view field_type = ref_data[1]; |
| entry.reference_path.push_back({field_name, field_type}); |
| } |
| |
| return entry; |
| } |
| |
| // Calls VisitFunc for each non-null (reference)Object/ArtField pair. |
| // Doesn't work with ObjectArray instances, because array elements don't have ArtField. |
| class ReferenceFieldVisitor { |
| public: |
| using VisitFunc = std::function<void(mirror::Object&, ArtField&)>; |
| |
| explicit ReferenceFieldVisitor(VisitFunc visit_func) : visit_func_(std::move(visit_func)) {} |
| |
| void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CHECK(!obj->IsObjectArray()); |
| mirror::Object* field_obj = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| // Skip fields that contain null. |
| if (field_obj == nullptr) { |
| return; |
| } |
| // Skip self references. |
| if (field_obj == obj.Ptr()) { |
| return; |
| } |
| |
| ArtField* field = nullptr; |
| // Don't use Object::FindFieldByOffset, because it can't find instance fields in classes. |
| // field = obj->FindFieldByOffset(offset); |
| if (is_static) { |
| CHECK(obj->IsClass()); |
| field = ArtField::FindStaticFieldWithOffset(obj->AsClass(), offset.Uint32Value()); |
| } else { |
| field = ArtField:: |
| FindInstanceFieldWithOffset</*kExactOffset*/ true, kVerifyNone, kWithoutReadBarrier>( |
| obj->GetClass<kVerifyNone, kWithoutReadBarrier>(), offset.Uint32Value()); |
| } |
| DCHECK(field != nullptr); |
| visit_func_(*field_obj, *field); |
| } |
| |
| void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| void VisitRootIfNonNull([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots"; |
| } |
| |
| void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots"; |
| } |
| |
| private: |
| VisitFunc visit_func_; |
| }; |
| |
| // Finds Class objects for descriptors of dirty entries. |
| // Map keys are string_views, that point to strings from `dirty_image_objects`. |
| // If there is no Class for a descriptor, the result map will have an entry with nullptr value. |
| static HashMap<std::string_view, mirror::Object*> FindClassesByDescriptor( |
| const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) { |
| HashMap<std::string_view, mirror::Object*> descriptor_to_class; |
| // Collect class descriptors that are used in dirty-image-objects. |
| for (const std::string& entry : dirty_image_objects) { |
| auto it = std::find_if(entry.begin(), entry.end(), [](char c) { return c == '.' || c == ' '; }); |
| size_t descriptor_len = std::distance(entry.begin(), it); |
| |
| std::string_view descriptor = std::string_view(entry).substr(0, descriptor_len); |
| descriptor_to_class.insert(std::make_pair(descriptor, nullptr)); |
| } |
| |
| // Find Class objects for collected descriptors. |
| auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(obj != nullptr); |
| if (obj->IsClass()) { |
| std::string temp; |
| const char* descriptor = obj->AsClass()->GetDescriptor(&temp); |
| auto it = descriptor_to_class.find(descriptor); |
| if (it != descriptor_to_class.end()) { |
| it->second = obj; |
| } |
| } |
| }; |
| Runtime::Current()->GetHeap()->VisitObjects(visitor); |
| |
| return descriptor_to_class; |
| } |
| |
| // Get all objects that match dirty_entries by path from class. |
| // Map values are sort_keys from DirtyEntry. |
| HashMap<mirror::Object*, uint32_t> MatchDirtyObjectPaths( |
| const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) { |
| auto get_array_element = [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info) |
| REQUIRES_SHARED(Locks::mutator_lock_) -> mirror::Object* { |
| if (!cur_obj->IsObjectArray()) { |
| return nullptr; |
| } |
| int32_t idx = 0; |
| std::from_chars_result idx_parse_res = |
| std::from_chars(ref_info.name.data(), ref_info.name.data() + ref_info.name.size(), idx); |
| if (idx_parse_res.ec != std::errc()) { |
| return nullptr; |
| } |
| |
| ObjPtr<ObjectArray<mirror::Object>> array = cur_obj->AsObjectArray<mirror::Object>(); |
| if (idx < 0 || idx >= array->GetLength()) { |
| return nullptr; |
| } |
| |
| ObjPtr<mirror::Object> next_obj = |
| array->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(idx); |
| if (next_obj == nullptr) { |
| return nullptr; |
| } |
| |
| std::string temp; |
| if (next_obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->GetDescriptor(&temp) != |
| ref_info.type) { |
| return nullptr; |
| } |
| return next_obj.Ptr(); |
| }; |
| auto get_object_field = |
| [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* next_obj = nullptr; |
| ReferenceFieldVisitor::VisitFunc visit_func = |
| [&](mirror::Object& ref_obj, ArtField& ref_field) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (ref_field.GetName() == ref_info.name && |
| ref_field.GetTypeDescriptor() == ref_info.type) { |
| next_obj = &ref_obj; |
| } |
| }; |
| ReferenceFieldVisitor visitor(visit_func); |
| cur_obj->VisitReferences</*kVisitNativeRoots=*/false, kVerifyNone, kWithoutReadBarrier>( |
| visitor, visitor); |
| |
| return next_obj; |
| }; |
| |
| HashMap<mirror::Object*, uint32_t> dirty_objects; |
| const HashMap<std::string_view, mirror::Object*> descriptor_to_class = |
| FindClassesByDescriptor(dirty_image_objects); |
| for (const std::string& entry_str : dirty_image_objects) { |
| const std::optional<DirtyEntry> entry = ParseDirtyEntry(entry_str); |
| if (entry == std::nullopt) { |
| continue; |
| } |
| |
| auto root_it = descriptor_to_class.find(entry->class_descriptor); |
| if (root_it == descriptor_to_class.end() || root_it->second == nullptr) { |
| LOG(WARNING) << "Class not found: \"" << entry->class_descriptor << "\""; |
| continue; |
| } |
| |
| mirror::Object* cur_obj = root_it->second; |
| for (const DirtyEntry::RefInfo& ref_info : entry->reference_path) { |
| if (std::all_of( |
| ref_info.name.begin(), ref_info.name.end(), [](char c) { return std::isdigit(c); })) { |
| cur_obj = get_array_element(cur_obj, ref_info); |
| } else { |
| cur_obj = get_object_field(cur_obj, ref_info); |
| } |
| if (cur_obj == nullptr) { |
| LOG(WARNING) << ART_FORMAT("Failed to find field \"{}:{}\", entry: \"{}\"", |
| ref_info.name, |
| ref_info.type, |
| entry_str); |
| break; |
| } |
| } |
| if (cur_obj == nullptr) { |
| continue; |
| } |
| |
| dirty_objects.insert(std::make_pair(cur_obj, entry->sort_key)); |
| } |
| |
| return dirty_objects; |
| } |
| |
| } // namespace |
| |
| static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects( |
| Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| // The objects used for intrinsics must remain live even if references |
| // to them are removed using reflection. Image roots are not accessible through reflection, |
| // so the array we construct here shall keep them alive. |
| StackHandleScope<1> hs(self); |
| size_t live_objects_size = |
| enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) + |
| IntrinsicObjects::GetNumberOfIntrinsicObjects(); |
| ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects = |
| mirror::ObjectArray<mirror::Object>::Alloc( |
| self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size); |
| if (live_objects == nullptr) { |
| return nullptr; |
| } |
| int32_t index = 0u; |
| auto set_entry = [&](ImageHeader::BootImageLiveObjects entry, |
| ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_EQ(index, enum_cast<int32_t>(entry)); |
| live_objects->Set</*kTransacrionActive=*/ false>(index, value); |
| ++index; |
| }; |
| set_entry(ImageHeader::kOomeWhenThrowingException, |
| runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException()); |
| set_entry(ImageHeader::kOomeWhenThrowingOome, |
| runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()); |
| set_entry(ImageHeader::kOomeWhenHandlingStackOverflow, |
| runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()); |
| set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError()); |
| set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read()); |
| |
| DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart)); |
| IntrinsicObjects::FillIntrinsicObjects(live_objects, index); |
| return live_objects; |
| } |
| |
| template <typename MirrorType> |
| ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) { |
| DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal); |
| return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj)); |
| } |
| |
| template <typename MirrorType> |
| ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB( |
| JavaVMExt* vm, Thread* self, jobject obj) { |
| DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal); |
| DCHECK(vm->MayAccessWeakGlobals(self)); |
| return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj)); |
| } |
| |
| ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return compiler_options_.IsAppImage() |
| ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_)) |
| : nullptr; |
| } |
| |
| bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const { |
| // For boot image, we keep all dex caches. |
| if (compiler_options_.IsBootImage()) { |
| return true; |
| } |
| // Dex caches already in the boot image do not belong to the image being written. |
| if (IsInBootImage(dex_cache.Ptr())) { |
| return false; |
| } |
| // Dex caches for the boot class path components that are not part of the boot image |
| // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to |
| // include them in the app image. |
| if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) { |
| return false; |
| } |
| return true; |
| } |
| |
| static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) { |
| auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(obj != nullptr); |
| Class* klass = obj->GetClass(); |
| if (klass == WellKnownClasses::dalvik_system_DexFile) { |
| ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie; |
| // Null out the cookie to enable determinism. b/34090128 |
| field->SetObject</*kTransactionActive*/false>(obj, nullptr); |
| } |
| }; |
| Runtime::Current()->GetHeap()->VisitObjects(visitor); |
| } |
| |
| bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) { |
| target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet()); |
| |
| Thread* const self = Thread::Current(); |
| |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| { |
| ScopedObjectAccess soa(self); |
| { |
| TimingLogger::ScopedTiming t("PruneNonImageClasses", timings); |
| PruneNonImageClasses(); // Remove junk |
| } |
| |
| if (UNLIKELY(!CreateImageRoots())) { |
| self->AssertPendingOOMException(); |
| self->ClearException(); |
| return false; |
| } |
| |
| if (compiler_options_.IsAppImage()) { |
| TimingLogger::ScopedTiming t("ClearDexFileCookies", timings); |
| // Clear dex file cookies for app images to enable app image determinism. This is required |
| // since the cookie field contains long pointers to DexFiles which are not deterministic. |
| // b/34090128 |
| ClearDexFileCookies(); |
| } |
| } |
| |
| { |
| TimingLogger::ScopedTiming t("CollectGarbage", timings); |
| heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage. |
| } |
| |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(self); |
| CheckNonImageClassesRemoved(); |
| } |
| |
| // From this point on, there should be no GC, so we should not use unnecessary read barriers. |
| ScopedDebugDisallowReadBarriers sddrb(self); |
| |
| { |
| // All remaining weak interns are referenced. Promote them to strong interns. Whether a |
| // string was strongly or weakly interned, we shall make it strongly interned in the image. |
| TimingLogger::ScopedTiming t("PromoteInterns", timings); |
| ScopedObjectAccess soa(self); |
| PromoteWeakInternsToStrong(self); |
| } |
| |
| { |
| TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings); |
| ScopedObjectAccess soa(self); |
| CalculateNewObjectOffsets(); |
| } |
| |
| // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and |
| // bin size sums being calculated. |
| TimingLogger::ScopedTiming t("AllocMemory", timings); |
| return AllocMemory(); |
| } |
| |
| void ImageWriter::CopyMetadata() { |
| DCHECK(compiler_options_.IsAppImage()); |
| CHECK_EQ(image_infos_.size(), 1u); |
| |
| const ImageInfo& image_info = image_infos_.back(); |
| dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second; |
| |
| auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>( |
| image_info.image_.Begin() + |
| image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset()); |
| |
| std::copy(image_info.string_reference_offsets_.begin(), |
| image_info.string_reference_offsets_.end(), |
| sfo_section_base); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded. |
| bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS { |
| uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode()); |
| if (hash == 0u && str->ComputeHashCode() != 0) { |
| // A string with uninitialized hash code cannot be interned. |
| return false; |
| } |
| InternTable* intern_table = Runtime::Current()->GetInternTable(); |
| for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) { |
| auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash); |
| if (it != table.set_.end()) { |
| return it->Read<kWithoutReadBarrier>() == str; |
| } |
| } |
| return false; |
| } |
| |
| bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const { |
| return referred_obj != nullptr && |
| !IsInBootImage(referred_obj.Ptr()) && |
| referred_obj->IsString() && |
| IsStronglyInternedString(referred_obj->AsString()); |
| } |
| |
| bool ImageWriter::Write(int image_fd, |
| const std::vector<std::string>& image_filenames, |
| size_t component_count) { |
| // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in |
| // image_filenames or oat_filenames. |
| CHECK(!image_filenames.empty()); |
| if (image_fd != File::kInvalidFd) { |
| CHECK_EQ(image_filenames.size(), 1u); |
| } |
| DCHECK(!oat_filenames_.empty()); |
| CHECK_EQ(image_filenames.size(), oat_filenames_.size()); |
| |
| Thread* const self = Thread::Current(); |
| ScopedDebugDisallowReadBarriers sddrb(self); |
| { |
| ScopedObjectAccess soa(self); |
| for (size_t i = 0; i < oat_filenames_.size(); ++i) { |
| CreateHeader(i, component_count); |
| CopyAndFixupNativeData(i); |
| } |
| } |
| |
| { |
| // TODO: heap validation can't handle these fix up passes. |
| ScopedObjectAccess soa(self); |
| Runtime::Current()->GetHeap()->DisableObjectValidation(); |
| CopyAndFixupObjects(); |
| } |
| |
| if (compiler_options_.IsAppImage()) { |
| CopyMetadata(); |
| } |
| |
| // Primary image header shall be written last for two reasons. First, this ensures |
| // that we shall not end up with a valid primary image and invalid secondary image. |
| // Second, its checksum shall include the checksums of the secondary images (XORed). |
| // This way only the primary image checksum needs to be checked to determine whether |
| // any of the images or oat files are out of date. (Oat file checksums are included |
| // in the image checksum calculation.) |
| ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin()); |
| ImageFileGuard primary_image_file; |
| for (size_t i = 0; i < image_filenames.size(); ++i) { |
| const std::string& image_filename = image_filenames[i]; |
| ImageInfo& image_info = GetImageInfo(i); |
| ImageFileGuard image_file; |
| if (image_fd != File::kInvalidFd) { |
| // Ignore image_filename, it is supplied only for better diagnostic. |
| image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage)); |
| // Empty the file in case it already exists. |
| if (image_file != nullptr) { |
| TEMP_FAILURE_RETRY(image_file->SetLength(0)); |
| TEMP_FAILURE_RETRY(image_file->Flush()); |
| } |
| } else { |
| image_file.reset(OS::CreateEmptyFile(image_filename.c_str())); |
| } |
| |
| if (image_file == nullptr) { |
| LOG(ERROR) << "Failed to open image file " << image_filename; |
| return false; |
| } |
| |
| // Make file world readable if we have created it, i.e. when not passed as file descriptor. |
| if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) { |
| PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; |
| return false; |
| } |
| |
| // Image data size excludes the bitmap and the header. |
| ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin()); |
| std::string error_msg; |
| if (!image_header->WriteData(image_file, |
| image_info.image_.Begin(), |
| reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()), |
| image_storage_mode_, |
| compiler_options_.MaxImageBlockSize(), |
| /* update_checksum= */ true, |
| &error_msg)) { |
| LOG(ERROR) << error_msg; |
| return false; |
| } |
| |
| // Write header last in case the compiler gets killed in the middle of image writing. |
| // We do not want to have a corrupted image with a valid header. |
| // Delay the writing of the primary image header until after writing secondary images. |
| if (i == 0u) { |
| primary_image_file = std::move(image_file); |
| } else { |
| if (!image_file.WriteHeaderAndClose(image_filename, image_header, &error_msg)) { |
| LOG(ERROR) << error_msg; |
| return false; |
| } |
| // Update the primary image checksum with the secondary image checksum. |
| primary_header->SetImageChecksum( |
| primary_header->GetImageChecksum() ^ image_header->GetImageChecksum()); |
| } |
| } |
| DCHECK(primary_image_file != nullptr); |
| std::string error_msg; |
| if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header, &error_msg)) { |
| LOG(ERROR) << error_msg; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const { |
| BinSlot bin_slot = GetImageBinSlot(object, oat_index); |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset(); |
| DCHECK_LT(offset, image_info.image_end_); |
| return offset; |
| } |
| |
| void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK(!IsImageBinSlotAssigned(object)); |
| |
| // Before we stomp over the lock word, save the hash code for later. |
| LockWord lw(object->GetLockWord(false)); |
| switch (lw.GetState()) { |
| case LockWord::kFatLocked: |
| FALLTHROUGH_INTENDED; |
| case LockWord::kThinLocked: { |
| std::ostringstream oss; |
| bool thin = (lw.GetState() == LockWord::kThinLocked); |
| oss << (thin ? "Thin" : "Fat") |
| << " locked object " << object << "(" << object->PrettyTypeOf() |
| << ") found during object copy"; |
| if (thin) { |
| oss << ". Lock owner:" << lw.ThinLockOwner(); |
| } |
| LOG(FATAL) << oss.str(); |
| UNREACHABLE(); |
| } |
| case LockWord::kUnlocked: |
| // No hash, don't need to save it. |
| break; |
| case LockWord::kHashCode: |
| DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end()); |
| saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode())); |
| break; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), |
| /*as_volatile=*/ false); |
| DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| } |
| |
| ImageWriter::Bin ImageWriter::GetImageBin(mirror::Object* object) { |
| DCHECK(object != nullptr); |
| |
| // The magic happens here. We segregate objects into different bins based |
| // on how likely they are to get dirty at runtime. |
| // |
| // Likely-to-dirty objects get packed together into the same bin so that |
| // at runtime their page dirtiness ratio (how many dirty objects a page has) is |
| // maximized. |
| // |
| // This means more pages will stay either clean or shared dirty (with zygote) and |
| // the app will use less of its own (private) memory. |
| Bin bin = Bin::kRegular; |
| |
| if (kBinObjects) { |
| // |
| // Changing the bin of an object is purely a memory-use tuning. |
| // It has no change on runtime correctness. |
| // |
| // Memory analysis has determined that the following types of objects get dirtied |
| // the most: |
| // |
| // * Class'es which are verified [their clinit runs only at runtime] |
| // - classes in general [because their static fields get overwritten] |
| // - initialized classes with all-final statics are unlikely to be ever dirty, |
| // so bin them separately |
| // * Art Methods that are: |
| // - native [their native entry point is not looked up until runtime] |
| // - have declaring classes that aren't initialized |
| // [their interpreter/quick entry points are trampolines until the class |
| // becomes initialized] |
| // |
| // We also assume the following objects get dirtied either never or extremely rarely: |
| // * Strings (they are immutable) |
| // * Art methods that aren't native and have initialized declared classes |
| // |
| // We assume that "regular" bin objects are highly unlikely to become dirtied, |
| // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. |
| // |
| ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| if (klass->IsStringClass<kVerifyNone>()) { |
| // Assign strings to their bin before checking dirty objects, because |
| // string intern processing expects strings to be in Bin::kString. |
| bin = Bin::kString; // Strings are almost always immutable (except for object header). |
| } else if (dirty_objects_.find(object) != dirty_objects_.end()) { |
| bin = Bin::kKnownDirty; |
| } else if (klass->IsClassClass()) { |
| bin = Bin::kClassVerified; |
| ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>(); |
| if (as_klass->IsVisiblyInitialized<kVerifyNone>()) { |
| bin = Bin::kClassInitialized; |
| |
| // If the class's static fields are all final, put it into a separate bin |
| // since it's very likely it will stay clean. |
| uint32_t num_static_fields = as_klass->NumStaticFields(); |
| if (num_static_fields == 0) { |
| bin = Bin::kClassInitializedFinalStatics; |
| } else { |
| // Maybe all the statics are final? |
| bool all_final = true; |
| for (uint32_t i = 0; i < num_static_fields; ++i) { |
| ArtField* field = as_klass->GetStaticField(i); |
| if (!field->IsFinal()) { |
| all_final = false; |
| break; |
| } |
| } |
| |
| if (all_final) { |
| bin = Bin::kClassInitializedFinalStatics; |
| } |
| } |
| } |
| } else if (!klass->HasSuperClass()) { |
| // Only `j.l.Object` and primitive classes lack the superclass and |
| // there are no instances of primitive classes. |
| DCHECK(klass->IsObjectClass()); |
| // Instance of java lang object, probably a lock object. This means it will be dirty when we |
| // synchronize on it. |
| bin = Bin::kMiscDirty; |
| } else if (klass->IsDexCacheClass<kVerifyNone>()) { |
| // Dex file field becomes dirty when the image is loaded. |
| bin = Bin::kMiscDirty; |
| } |
| // else bin = kBinRegular |
| } |
| |
| return bin; |
| } |
| |
| void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) { |
| DCHECK(object != nullptr); |
| size_t object_size = object->SizeOf(); |
| |
| // Assign the oat index too. |
| if (IsMultiImage()) { |
| DCHECK(oat_index_map_.find(object) == oat_index_map_.end()); |
| oat_index_map_.insert(std::make_pair(object, oat_index)); |
| } else { |
| DCHECK(oat_index_map_.empty()); |
| } |
| |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| |
| size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment |
| // How many bytes the current bin is at (aligned). |
| size_t current_offset = image_info.GetBinSlotSize(bin); |
| // Move the current bin size up to accommodate the object we just assigned a bin slot. |
| image_info.IncrementBinSlotSize(bin, offset_delta); |
| |
| BinSlot new_bin_slot(bin, current_offset); |
| SetImageBinSlot(object, new_bin_slot); |
| |
| image_info.IncrementBinSlotCount(bin, 1u); |
| |
| // Grow the image closer to the end by the object we just assigned. |
| image_info.image_end_ += offset_delta; |
| } |
| |
| bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const { |
| if (m->IsNative()) { |
| return true; |
| } |
| ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>(); |
| // Initialized is highly unlikely to dirty since there's no entry points to mutate. |
| return declaring_class == nullptr || |
| declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized; |
| } |
| |
| bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| |
| // We always stash the bin slot into a lockword, in the 'forwarding address' state. |
| // If it's in some other state, then we haven't yet assigned an image bin slot. |
| if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { |
| return false; |
| } else if (kIsDebugBuild) { |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| BinSlot bin_slot(offset); |
| size_t oat_index = GetOatIndex(object); |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin())) |
| << "bin slot offset should not exceed the size of that bin"; |
| } |
| return true; |
| } |
| |
| ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t |
| DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); |
| |
| BinSlot bin_slot(static_cast<uint32_t>(offset)); |
| DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin())); |
| |
| return bin_slot; |
| } |
| |
| void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object, |
| size_t oat_index, |
| size_t new_offset) { |
| BinSlot old_bin_slot = GetImageBinSlot(object, oat_index); |
| DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin())); |
| BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset); |
| object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()), |
| /*as_volatile=*/ false); |
| DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| } |
| |
| bool ImageWriter::AllocMemory() { |
| for (ImageInfo& image_info : image_infos_) { |
| const size_t length = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment); |
| |
| std::string error_msg; |
| image_info.image_ = MemMap::MapAnonymous("image writer image", |
| length, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ false, |
| &error_msg); |
| if (UNLIKELY(!image_info.image_.IsValid())) { |
| LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; |
| return false; |
| } |
| |
| // Create the image bitmap, only needs to cover mirror object section which is up to image_end_. |
| // The covered size is rounded up to kCardSize to match the bitmap size expected by Loader::Init |
| // at art::gc::space::ImageSpace. |
| CHECK_LE(image_info.image_end_, length); |
| image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create("image bitmap", |
| image_info.image_.Begin(), |
| RoundUp(image_info.image_end_, gc::accounting::CardTable::kCardSize)); |
| if (!image_info.image_bitmap_.IsValid()) { |
| LOG(ERROR) << "Failed to allocate memory for image bitmap"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // This visitor follows the references of an instance, recursively then prune this class |
| // if a type of any field is pruned. |
| class ImageWriter::PruneObjectReferenceVisitor { |
| public: |
| PruneObjectReferenceVisitor(ImageWriter* image_writer, |
| bool* early_exit, |
| HashSet<mirror::Object*>* visited, |
| bool* result) |
| : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {} |
| |
| ALWAYS_INLINE void VisitRootIfNonNull( |
| [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) {} |
| |
| ALWAYS_INLINE void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) |
| const REQUIRES_SHARED(Locks::mutator_lock_) {} |
| |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| [[maybe_unused]] bool is_static) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| if (ref == nullptr || visited_->find(ref) != visited_->end()) { |
| return; |
| } |
| |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = |
| Runtime::Current()->GetClassLinker()->GetClassRoots(); |
| ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass(); |
| if (klass == GetClassRoot<mirror::Method>(class_roots) || |
| klass == GetClassRoot<mirror::Constructor>(class_roots)) { |
| // Prune all classes using reflection because the content they held will not be fixup. |
| *result_ = true; |
| } |
| |
| if (ref->IsClass()) { |
| *result_ = *result_ || |
| image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_); |
| } else { |
| // Record the object visited in case of circular reference. |
| visited_->insert(ref); |
| *result_ = *result_ || |
| image_writer_->PruneImageClassInternal(klass, early_exit_, visited_); |
| ref->VisitReferences(*this, *this); |
| // Clean up before exit for next call of this function. |
| auto it = visited_->find(ref); |
| DCHECK(it != visited_->end()); |
| visited_->erase(it); |
| } |
| } |
| |
| ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| private: |
| ImageWriter* image_writer_; |
| bool* early_exit_; |
| HashSet<mirror::Object*>* visited_; |
| bool* const result_; |
| }; |
| |
| |
| bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) { |
| bool early_exit = false; |
| HashSet<mirror::Object*> visited; |
| return PruneImageClassInternal(klass, &early_exit, &visited); |
| } |
| |
| bool ImageWriter::PruneImageClassInternal( |
| ObjPtr<mirror::Class> klass, |
| bool* early_exit, |
| HashSet<mirror::Object*>* visited) { |
| DCHECK(early_exit != nullptr); |
| DCHECK(visited != nullptr); |
| DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension()); |
| if (klass == nullptr || IsInBootImage(klass.Ptr())) { |
| return false; |
| } |
| auto found = prune_class_memo_.find(klass.Ptr()); |
| if (found != prune_class_memo_.end()) { |
| // Already computed, return the found value. |
| return found->second; |
| } |
| // Circular dependencies, return false but do not store the result in the memoization table. |
| if (visited->find(klass.Ptr()) != visited->end()) { |
| *early_exit = true; |
| return false; |
| } |
| visited->insert(klass.Ptr()); |
| bool result = klass->IsBootStrapClassLoaded(); |
| std::string temp; |
| // Prune if not an image class, this handles any broken sets of image classes such as having a |
| // class in the set but not it's superclass. |
| result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp)); |
| bool my_early_exit = false; // Only for ourselves, ignore caller. |
| // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the |
| // app image. |
| if (klass->IsErroneous()) { |
| result = true; |
| } else { |
| ObjPtr<mirror::ClassExt> ext(klass->GetExtData()); |
| CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass(); |
| } |
| if (!result) { |
| // Check interfaces since these wont be visited through VisitReferences.) |
| ObjPtr<mirror::IfTable> if_table = klass->GetIfTable(); |
| for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { |
| result = result || PruneImageClassInternal(if_table->GetInterface(i), |
| &my_early_exit, |
| visited); |
| } |
| } |
| if (klass->IsObjectArrayClass()) { |
| result = result || PruneImageClassInternal(klass->GetComponentType(), |
| &my_early_exit, |
| visited); |
| } |
| // Check static fields and their classes. |
| if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) { |
| size_t num_static_fields = klass->NumReferenceStaticFields(); |
| // Presumably GC can happen when we are cross compiling, it should not cause performance |
| // problems to do pointer size logic. |
| MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset( |
| Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| for (size_t i = 0u; i < num_static_fields; ++i) { |
| mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset); |
| if (ref != nullptr) { |
| if (ref->IsClass()) { |
| result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited); |
| } else { |
| mirror::Class* type = ref->GetClass(); |
| result = result || PruneImageClassInternal(type, &my_early_exit, visited); |
| if (!result) { |
| // For non-class case, also go through all the types mentioned by it's fields' |
| // references recursively to decide whether to keep this class. |
| bool tmp = false; |
| PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp); |
| ref->VisitReferences(visitor, visitor); |
| result = result || tmp; |
| } |
| } |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| } |
| result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited); |
| // Remove the class if the dex file is not in the set of dex files. This happens for classes that |
| // are from uses-library if there is no profile. b/30688277 |
| ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache(); |
| if (dex_cache != nullptr) { |
| result = result || |
| dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end(); |
| } |
| // Erase the element we stored earlier since we are exiting the function. |
| auto it = visited->find(klass.Ptr()); |
| DCHECK(it != visited->end()); |
| visited->erase(it); |
| // Only store result if it is true or none of the calls early exited due to circular |
| // dependencies. If visited is empty then we are the root caller, in this case the cycle was in |
| // a child call and we can remember the result. |
| if (result == true || !my_early_exit || visited->empty()) { |
| prune_class_memo_.Overwrite(klass.Ptr(), result); |
| } |
| *early_exit |= my_early_exit; |
| return result; |
| } |
| |
| bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) { |
| if (klass == nullptr) { |
| return false; |
| } |
| if (IsInBootImage(klass.Ptr())) { |
| // Already in boot image, return true. |
| DCHECK(!compiler_options_.IsBootImage()); |
| return true; |
| } |
| std::string temp; |
| if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) { |
| return false; |
| } |
| if (compiler_options_.IsAppImage()) { |
| // For app images, we need to prune classes that |
| // are defined by the boot class path we're compiling against but not in |
| // the boot image spaces since these may have already been loaded at |
| // run time when this image is loaded. Keep classes in the boot image |
| // spaces we're compiling against since we don't want to re-resolve these. |
| return !PruneImageClass(klass); |
| } |
| return true; |
| } |
| |
| class ImageWriter::PruneClassesVisitor : public ClassVisitor { |
| public: |
| PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader) |
| : image_writer_(image_writer), |
| class_loader_(class_loader), |
| classes_to_prune_(), |
| defined_class_count_(0u) { } |
| |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!image_writer_->KeepClass(klass.Ptr())) { |
| classes_to_prune_.insert(klass.Ptr()); |
| if (klass->GetClassLoader() == class_loader_) { |
| ++defined_class_count_; |
| } |
| } |
| return true; |
| } |
| |
| size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassTable* class_table = |
| Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_); |
| WriterMutexLock mu(Thread::Current(), class_table->lock_); |
| // App class loader class tables contain only one internal set. The boot class path class |
| // table also contains class sets from boot images we're compiling against but we are not |
| // pruning these boot image classes, so all classes to remove are in the last set. |
| DCHECK(!class_table->classes_.empty()); |
| ClassTable::ClassSet& last_class_set = class_table->classes_.back(); |
| for (mirror::Class* klass : classes_to_prune_) { |
| uint32_t hash = klass->DescriptorHash(); |
| auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash); |
| DCHECK(it != last_class_set.end()); |
| last_class_set.erase(it); |
| DCHECK(std::none_of(class_table->classes_.begin(), |
| class_table->classes_.end(), |
| [klass, hash](ClassTable::ClassSet& class_set) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassTable::TableSlot slot(klass, hash); |
| return class_set.FindWithHash(slot, hash) != class_set.end(); |
| })); |
| } |
| return defined_class_count_; |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| const ObjPtr<mirror::ClassLoader> class_loader_; |
| HashSet<mirror::Class*> classes_to_prune_; |
| size_t defined_class_count_; |
| }; |
| |
| class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor { |
| public: |
| explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer) |
| : image_writer_(image_writer), removed_class_count_(0) {} |
| |
| void Visit(ObjPtr<mirror::ClassLoader> class_loader) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| PruneClassesVisitor classes_visitor(image_writer_, class_loader); |
| ClassTable* class_table = |
| Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader); |
| class_table->Visit(classes_visitor); |
| removed_class_count_ += classes_visitor.Prune(); |
| } |
| |
| size_t GetRemovedClassCount() const { |
| return removed_class_count_; |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| size_t removed_class_count_; |
| }; |
| |
| void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) { |
| WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); |
| visitor->Visit(nullptr); // Visit boot class loader. |
| Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor); |
| } |
| |
| void ImageWriter::PruneNonImageClasses() { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| ScopedAssertNoThreadSuspension sa(__FUNCTION__); |
| |
| // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make |
| // sure the other ones don't get unloaded before the OatWriter runs. |
| class_linker->VisitClassTables( |
| [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) { |
| table->RemoveStrongRoots( |
| [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> obj = root.Read(); |
| if (obj->IsDexCache()) { |
| // Return true if the dex file is not one of the ones in the map. |
| return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) == |
| dex_file_oat_index_map_.end(); |
| } |
| // Return false to avoid removing. |
| return false; |
| }); |
| }); |
| |
| // Remove the undesired classes from the class roots. |
| { |
| PruneClassLoaderClassesVisitor class_loader_visitor(this); |
| VisitClassLoaders(&class_loader_visitor); |
| VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes"; |
| } |
| |
| // Completely clear DexCaches. |
| dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self); |
| for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) { |
| dex_cache->ResetNativeArrays(); |
| } |
| |
| // Drop the array class cache in the ClassLinker, as these are roots holding those classes live. |
| class_linker->DropFindArrayClassCache(); |
| |
| // Clear to save RAM. |
| prune_class_memo_.clear(); |
| } |
| |
| dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) { |
| dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches; |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ReaderMutexLock mu2(self, *Locks::dex_lock_); |
| dex_caches.reserve(class_linker->GetDexCachesData().size()); |
| for (const auto& entry : class_linker->GetDexCachesData()) { |
| const ClassLinker::DexCacheData& data = entry.second; |
| if (self->IsJWeakCleared(data.weak_root)) { |
| continue; |
| } |
| dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache()); |
| } |
| return dex_caches; |
| } |
| |
| void ImageWriter::CheckNonImageClassesRemoved() { |
| auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (obj->IsClass() && !IsInBootImage(obj)) { |
| ObjPtr<Class> klass = obj->AsClass(); |
| if (!KeepClass(klass)) { |
| DumpImageClasses(); |
| CHECK(KeepClass(klass)) |
| << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass); |
| } |
| } |
| }; |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->VisitObjects(visitor); |
| } |
| |
| void ImageWriter::PromoteWeakInternsToStrong(Thread* self) { |
| InternTable* intern_table = Runtime::Current()->GetInternTable(); |
| MutexLock mu(self, *Locks::intern_table_lock_); |
| DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u); |
| for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) { |
| ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>(); |
| DCHECK(!IsStronglyInternedString(s)); |
| uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode()); |
| intern_table->InsertStrong(s, hash); |
| } |
| intern_table->weak_interns_.tables_.front().set_.clear(); |
| } |
| |
| void ImageWriter::DumpImageClasses() { |
| for (const std::string& image_class : compiler_options_.GetImageClasses()) { |
| LOG(INFO) << " " << image_class; |
| } |
| } |
| |
| bool ImageWriter::CreateImageRoots() { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| VariableSizedHandleScope handles(self); |
| |
| // Prepare boot image live objects if we're compiling a boot image or boot image extension. |
| Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects; |
| if (compiler_options_.IsBootImage()) { |
| boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime)); |
| if (boot_image_live_objects == nullptr) { |
| return false; |
| } |
| } else if (compiler_options_.IsBootImageExtension()) { |
| gc::Heap* heap = runtime->GetHeap(); |
| DCHECK(!heap->GetBootImageSpaces().empty()); |
| const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader(); |
| boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast( |
| primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects))); |
| DCHECK(boot_image_live_objects != nullptr); |
| } |
| |
| // Collect dex caches and the sizes of dex cache arrays. |
| struct DexCacheRecord { |
| uint64_t registration_index; |
| Handle<mirror::DexCache> dex_cache; |
| size_t oat_index; |
| }; |
| size_t num_oat_files = oat_filenames_.size(); |
| dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u); |
| dchecked_vector<DexCacheRecord> dex_cache_records; |
| dex_cache_records.reserve(dex_file_oat_index_map_.size()); |
| { |
| ReaderMutexLock mu(self, *Locks::dex_lock_); |
| // Count number of dex caches not in the boot image. |
| for (const auto& entry : class_linker->GetDexCachesData()) { |
| const ClassLinker::DexCacheData& data = entry.second; |
| ObjPtr<mirror::DexCache> dex_cache = |
| ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root)); |
| if (dex_cache == nullptr) { |
| continue; |
| } |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| auto it = dex_file_oat_index_map_.find(dex_file); |
| if (it != dex_file_oat_index_map_.end()) { |
| size_t oat_index = it->second; |
| DCHECK(IsImageDexCache(dex_cache)); |
| ++dex_cache_counts[oat_index]; |
| Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache); |
| dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index}); |
| } |
| } |
| } |
| |
| // Allocate dex cache arrays. |
| dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays; |
| dex_cache_arrays.reserve(num_oat_files); |
| for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) { |
| ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc( |
| self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]); |
| if (dex_caches == nullptr) { |
| return false; |
| } |
| dex_cache_counts[oat_index] = 0u; // Reset count for filling in dex caches below. |
| dex_cache_arrays.push_back(handles.NewHandle(dex_caches)); |
| } |
| |
| // Sort dex caches by registration index to make output deterministic. |
| std::sort(dex_cache_records.begin(), |
| dex_cache_records.end(), |
| [](const DexCacheRecord& lhs, const DexCacheRecord&rhs) { |
| return lhs.registration_index < rhs.registration_index; |
| }); |
| |
| // Fill dex cache arrays. |
| for (const DexCacheRecord& record : dex_cache_records) { |
| ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get(); |
| dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>( |
| dex_cache_counts[record.oat_index], record.dex_cache.Get()); |
| ++dex_cache_counts[record.oat_index]; |
| } |
| |
| // Create image roots with empty dex cache arrays. |
| image_roots_.reserve(num_oat_files); |
| JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) { |
| // Build an Object[] of the roots needed to restore the runtime. |
| int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage()); |
| ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc( |
| self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size); |
| if (image_roots == nullptr) { |
| return false; |
| } |
| ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get(); |
| CHECK_EQ(dex_cache_counts[oat_index], |
| dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>())) |
| << "The number of non-image dex caches changed."; |
| image_roots->SetWithoutChecks</*kTransactionActive=*/ false>( |
| ImageHeader::kDexCaches, dex_caches); |
| image_roots->SetWithoutChecks</*kTransactionActive=*/ false>( |
| ImageHeader::kClassRoots, class_linker->GetClassRoots()); |
| if (!compiler_options_.IsAppImage()) { |
| DCHECK(boot_image_live_objects != nullptr); |
| image_roots->SetWithoutChecks</*kTransactionActive=*/ false>( |
| ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get()); |
| } else { |
| DCHECK(boot_image_live_objects.GetReference() == nullptr); |
| image_roots->SetWithoutChecks</*kTransactionActive=*/ false>( |
| ImageHeader::kAppImageClassLoader, GetAppClassLoader()); |
| } |
| for (int32_t i = 0; i != image_roots_size; ++i) { |
| CHECK(image_roots->Get(i) != nullptr); |
| } |
| image_roots_.push_back(vm->AddGlobalRef(self, image_roots)); |
| } |
| |
| return true; |
| } |
| |
| void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) { |
| // Visit and assign offsets for fields and field arrays. |
| DCHECK_EQ(oat_index, GetOatIndexForClass(klass)); |
| DCHECK(!klass->IsErroneous()) << klass->GetStatus(); |
| if (compiler_options_.IsAppImage()) { |
| // Extra consistency check: no boot loader classes should be left! |
| CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass(); |
| } |
| LengthPrefixedArray<ArtField>* fields[] = { |
| klass->GetSFieldsPtr(), klass->GetIFieldsPtr(), |
| }; |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| for (LengthPrefixedArray<ArtField>* cur_fields : fields) { |
| // Total array length including header. |
| if (cur_fields != nullptr) { |
| // Forward the entire array at once. |
| size_t offset = image_info.GetBinSlotSize(Bin::kArtField); |
| DCHECK(!IsInBootImage(cur_fields)); |
| bool inserted = |
| native_object_relocations_.insert(std::make_pair( |
| cur_fields, |
| NativeObjectRelocation{ |
| oat_index, offset, NativeObjectRelocationType::kArtFieldArray |
| })).second; |
| CHECK(inserted) << "Field array " << cur_fields << " already forwarded"; |
| const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size()); |
| offset += size; |
| image_info.IncrementBinSlotSize(Bin::kArtField, size); |
| DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField)); |
| } |
| } |
| // Visit and assign offsets for methods. |
| size_t num_methods = klass->NumMethods(); |
| if (num_methods != 0) { |
| bool any_dirty = false; |
| for (auto& m : klass->GetMethods(target_ptr_size_)) { |
| if (WillMethodBeDirty(&m)) { |
| any_dirty = true; |
| break; |
| } |
| } |
| NativeObjectRelocationType type = any_dirty |
| ? NativeObjectRelocationType::kArtMethodDirty |
| : NativeObjectRelocationType::kArtMethodClean; |
| Bin bin_type = BinTypeForNativeRelocationType(type); |
| // Forward the entire array at once, but header first. |
| const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); |
| const size_t method_size = ArtMethod::Size(target_ptr_size_); |
| const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0, |
| method_size, |
| method_alignment); |
| LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr(); |
| size_t offset = image_info.GetBinSlotSize(bin_type); |
| DCHECK(!IsInBootImage(array)); |
| bool inserted = |
| native_object_relocations_.insert(std::make_pair( |
| array, |
| NativeObjectRelocation{ |
| oat_index, |
| offset, |
| any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty |
| : NativeObjectRelocationType::kArtMethodArrayClean |
| })).second; |
| CHECK(inserted) << "Method array " << array << " already forwarded"; |
| image_info.IncrementBinSlotSize(bin_type, header_size); |
| for (auto& m : klass->GetMethods(target_ptr_size_)) { |
| AssignMethodOffset(&m, type, oat_index); |
| } |
| (any_dirty ? dirty_methods_ : clean_methods_) += num_methods; |
| } |
| // Assign offsets for all runtime methods in the IMT since these may hold conflict tables |
| // live. |
| if (klass->ShouldHaveImt()) { |
| ImTable* imt = klass->GetImt(target_ptr_size_); |
| if (TryAssignImTableOffset(imt, oat_index)) { |
| // Since imt's can be shared only do this the first time to not double count imt method |
| // fixups. |
| for (size_t i = 0; i < ImTable::kSize; ++i) { |
| ArtMethod* imt_method = imt->Get(i, target_ptr_size_); |
| DCHECK(imt_method != nullptr); |
| if (imt_method->IsRuntimeMethod() && |
| !IsInBootImage(imt_method) && |
| !NativeRelocationAssigned(imt_method)) { |
| AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index); |
| } |
| } |
| } |
| } |
| } |
| |
| bool ImageWriter::NativeRelocationAssigned(void* ptr) const { |
| return native_object_relocations_.find(ptr) != native_object_relocations_.end(); |
| } |
| |
| bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) { |
| // No offset, or already assigned. |
| if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) { |
| return false; |
| } |
| // If the method is a conflict method we also want to assign the conflict table offset. |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| const size_t size = ImTable::SizeInBytes(target_ptr_size_); |
| native_object_relocations_.insert(std::make_pair( |
| imt, |
| NativeObjectRelocation{ |
| oat_index, |
| image_info.GetBinSlotSize(Bin::kImTable), |
| NativeObjectRelocationType::kIMTable |
| })); |
| image_info.IncrementBinSlotSize(Bin::kImTable, size); |
| return true; |
| } |
| |
| void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) { |
| // No offset, or already assigned. |
| if (table == nullptr || NativeRelocationAssigned(table)) { |
| return; |
| } |
| CHECK(!IsInBootImage(table)); |
| // If the method is a conflict method we also want to assign the conflict table offset. |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| const size_t size = table->ComputeSize(target_ptr_size_); |
| native_object_relocations_.insert(std::make_pair( |
| table, |
| NativeObjectRelocation{ |
| oat_index, |
| image_info.GetBinSlotSize(Bin::kIMTConflictTable), |
| NativeObjectRelocationType::kIMTConflictTable |
| })); |
| image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size); |
| } |
| |
| void ImageWriter::AssignMethodOffset(ArtMethod* method, |
| NativeObjectRelocationType type, |
| size_t oat_index) { |
| DCHECK(!IsInBootImage(method)); |
| CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned " |
| << ArtMethod::PrettyMethod(method); |
| if (method->IsRuntimeMethod()) { |
| TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index); |
| } |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| Bin bin_type = BinTypeForNativeRelocationType(type); |
| size_t offset = image_info.GetBinSlotSize(bin_type); |
| native_object_relocations_.insert( |
| std::make_pair(method, NativeObjectRelocation{oat_index, offset, type})); |
| image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_)); |
| } |
| |
| class ImageWriter::LayoutHelper { |
| public: |
| explicit LayoutHelper(ImageWriter* image_writer) |
| : image_writer_(image_writer) { |
| bin_objects_.resize(image_writer_->image_infos_.size()); |
| for (auto& inner : bin_objects_) { |
| inner.resize(enum_cast<size_t>(Bin::kMirrorCount)); |
| } |
| } |
| |
| void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_); |
| // Recreate dirty object offsets (kKnownDirty bin) with objects sorted by sort_key. |
| void SortDirtyObjects(const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| /* |
| * Collects the string reference info necessary for loading app images. |
| * |
| * Because AppImages may contain interned strings that must be deduplicated |
| * with previously interned strings when loading the app image, we need to |
| * visit references to these strings and update them to point to the correct |
| * string. To speed up the visiting of references at load time we include |
| * a list of offsets to string references in the AppImage. |
| */ |
| void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| class CollectClassesVisitor; |
| class CollectStringReferenceVisitor; |
| class VisitReferencesVisitor; |
| |
| void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>; |
| |
| void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| ImageWriter::Bin AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| ImageWriter* const image_writer_; |
| |
| // Work list of <object, oat_index> for objects. Everything in the queue must already be |
| // assigned a bin slot. |
| WorkQueue work_queue_; |
| |
| // Objects for individual bins. Indexed by `oat_index` and `bin`. |
| // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects(). |
| dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_; |
| |
| // Interns that do not have a corresponding StringId in any of the input dex files. |
| // These shall be assigned to individual images based on the `oat_index` that we |
| // see as we visit them during the work queue processing. |
| dchecked_vector<mirror::String*> non_dex_file_interns_; |
| }; |
| |
| class ImageWriter::LayoutHelper::CollectClassesVisitor { |
| public: |
| explicit CollectClassesVisitor(ImageWriter* image_writer) |
| : image_writer_(image_writer), |
| dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {} |
| |
| bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!image_writer_->IsInBootImage(klass.Ptr())) { |
| ObjPtr<mirror::Class> component_type = klass; |
| size_t dimension = 0u; |
| while (component_type->IsArrayClass<kVerifyNone>()) { |
| ++dimension; |
| component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>(); |
| } |
| DCHECK(!component_type->IsProxyClass()); |
| size_t dex_file_index; |
| uint32_t class_def_index = 0u; |
| if (UNLIKELY(component_type->IsPrimitive())) { |
| DCHECK(image_writer_->compiler_options_.IsBootImage()); |
| dex_file_index = 0u; |
| class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType()); |
| } else { |
| auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile()); |
| DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor(); |
| dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types. |
| class_def_index = component_type->GetDexClassDefIndex(); |
| } |
| klasses_.push_back({klass, dex_file_index, class_def_index, dimension}); |
| } |
| return true; |
| } |
| |
| WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { |
| std::sort(klasses_.begin(), klasses_.end()); |
| |
| ImageWriter* image_writer = image_writer_; |
| WorkQueue work_queue; |
| size_t last_dex_file_index = static_cast<size_t>(-1); |
| size_t last_oat_index = static_cast<size_t>(-1); |
| for (const ClassEntry& entry : klasses_) { |
| if (last_dex_file_index != entry.dex_file_index) { |
| if (UNLIKELY(entry.dex_file_index == 0u)) { |
| last_oat_index = GetDefaultOatIndex(); // Primitive type. |
| } else { |
| uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types. |
| last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]); |
| } |
| last_dex_file_index = entry.dex_file_index; |
| } |
| // Count the number of classes for class tables. |
| image_writer->image_infos_[last_oat_index].class_table_size_ += 1u; |
| work_queue.emplace_back(entry.klass, last_oat_index); |
| } |
| klasses_.clear(); |
| |
| // Prepare image class tables. |
| dchecked_vector<mirror::Class*> boot_image_classes; |
| if (image_writer->compiler_options_.IsAppImage()) { |
| DCHECK_EQ(image_writer->image_infos_.size(), 1u); |
| ImageInfo& image_info = image_writer->image_infos_[0]; |
| // Log the non-boot image class count for app image for debugging purposes. |
| VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_; |
| // Collect boot image classes referenced by app class loader's class table. |
| JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>( |
| vm, image_writer->app_class_loader_); |
| ClassTable* app_class_table = app_class_loader->GetClassTable(); |
| ReaderMutexLock lock(self, app_class_table->lock_); |
| DCHECK_EQ(app_class_table->classes_.size(), 1u); |
| const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0]; |
| DCHECK_GE(app_class_set.size(), image_info.class_table_size_); |
| boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_); |
| for (const ClassTable::TableSlot& slot : app_class_set) { |
| mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr(); |
| if (image_writer->IsInBootImage(klass)) { |
| boot_image_classes.push_back(klass); |
| } |
| } |
| DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size()); |
| // Increase the app class table size to include referenced boot image classes. |
| image_info.class_table_size_ = app_class_set.size(); |
| } |
| for (ImageInfo& image_info : image_writer->image_infos_) { |
| if (image_info.class_table_size_ != 0u) { |
| // Make sure the class table shall be full by allocating a buffer of the right size. |
| size_t buffer_size = static_cast<size_t>( |
| ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor)); |
| image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]); |
| DCHECK(image_info.class_table_buffer_ != nullptr); |
| image_info.class_table_.emplace(kImageClassTableMinLoadFactor, |
| kImageClassTableMaxLoadFactor, |
| image_info.class_table_buffer_.get(), |
| buffer_size); |
| } |
| } |
| for (const auto& pair : work_queue) { |
| ObjPtr<mirror::Class> klass = pair.first->AsClass(); |
| size_t oat_index = pair.second; |
| DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value()); |
| ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_; |
| uint32_t hash = klass->DescriptorHash(); |
| bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second; |
| DCHECK(inserted) << "Class " << klass->PrettyDescriptor() |
| << " (" << klass.Ptr() << ") already inserted"; |
| } |
| if (image_writer->compiler_options_.IsAppImage()) { |
| DCHECK_EQ(image_writer->image_infos_.size(), 1u); |
| ImageInfo& image_info = image_writer->image_infos_[0]; |
| if (image_info.class_table_size_ != 0u) { |
| // Insert boot image class references to the app class table. |
| // The order of insertion into the app class loader's ClassTable is non-deterministic, |
| // so sort the boot image classes by the boot image address to get deterministic table. |
| std::sort(boot_image_classes.begin(), boot_image_classes.end()); |
| DCHECK(image_info.class_table_.has_value()); |
| ClassTable::ClassSet& table = *image_info.class_table_; |
| for (mirror::Class* klass : boot_image_classes) { |
| uint32_t hash = klass->DescriptorHash(); |
| bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second; |
| DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor() |
| << " (" << klass << ") already inserted"; |
| } |
| DCHECK_EQ(table.size(), image_info.class_table_size_); |
| } |
| } |
| for (ImageInfo& image_info : image_writer->image_infos_) { |
| DCHECK_EQ(image_info.class_table_bytes_, 0u); |
| if (image_info.class_table_size_ != 0u) { |
| DCHECK(image_info.class_table_.has_value()); |
| DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_); |
| image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr); |
| DCHECK_NE(image_info.class_table_bytes_, 0u); |
| } else { |
| DCHECK(!image_info.class_table_.has_value()); |
| } |
| } |
| |
| return work_queue; |
| } |
| |
| private: |
| struct ClassEntry { |
| ObjPtr<mirror::Class> klass; |
| // We shall sort classes by dex file, class def index and array dimension. |
| size_t dex_file_index; |
| uint32_t class_def_index; |
| size_t dimension; |
| |
| bool operator<(const ClassEntry& other) const { |
| return std::tie(dex_file_index, class_def_index, dimension) < |
| std::tie(other.dex_file_index, other.class_def_index, other.dimension); |
| } |
| }; |
| |
| ImageWriter* const image_writer_; |
| const ArrayRef<const DexFile* const> dex_files_; |
| std::deque<ClassEntry> klasses_; |
| }; |
| |
| class ImageWriter::LayoutHelper::CollectStringReferenceVisitor { |
| public: |
| explicit CollectStringReferenceVisitor( |
| const ImageWriter* image_writer, |
| size_t oat_index, |
| dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets, |
| ObjPtr<mirror::Object> current_obj) |
| : image_writer_(image_writer), |
| oat_index_(oat_index), |
| string_reference_offsets_(string_reference_offsets), |
| current_obj_(current_obj) {} |
| |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Only dex caches have native String roots. These are collected separately. |
| DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) || |
| !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr())) |
| << mirror::Object::PrettyTypeOf(current_obj_); |
| } |
| |
| // Collects info for managed fields that reference managed Strings. |
| void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset member_offset, |
| [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> referred_obj = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset); |
| |
| if (image_writer_->IsInternedAppImageStringReference(referred_obj)) { |
| size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_); |
| string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value()); |
| } |
| } |
| |
| ALWAYS_INLINE |
| void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| private: |
| const ImageWriter* const image_writer_; |
| const size_t oat_index_; |
| dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_; |
| const ObjPtr<mirror::Object> current_obj_; |
| }; |
| |
| class ImageWriter::LayoutHelper::VisitReferencesVisitor { |
| public: |
| VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index) |
| : helper_(helper), oat_index_(oat_index) {} |
| |
| // We do not visit native roots. These are handled with other logic. |
| void VisitRootIfNonNull( |
| [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const { |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const { |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| [[maybe_unused]] bool is_static) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| VisitReference(ref); |
| } |
| |
| ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| private: |
| void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (helper_->TryAssignBinSlot(ref, oat_index_)) { |
| // Remember how many objects we're adding at the front of the queue as we want |
| // to reverse that range to process these references in the order of addition. |
| helper_->work_queue_.emplace_front(ref, oat_index_); |
| } |
| if (ClassLinker::kAppImageMayContainStrings && |
| helper_->image_writer_->compiler_options_.IsAppImage() && |
| helper_->image_writer_->IsInternedAppImageStringReference(ref)) { |
| helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u; |
| } |
| } |
| |
| LayoutHelper* const helper_; |
| const size_t oat_index_; |
| }; |
| |
| // Visit method pointer arrays in `klass` that were not inherited from its superclass. |
| template <typename Visitor> |
| static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>(); |
| ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (vtable != nullptr && |
| (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) { |
| visitor(vtable); |
| } |
| int32_t iftable_count = klass->GetIfTableCount(); |
| int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0; |
| ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); |
| ObjPtr<mirror::IfTable> super_iftable = |
| (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr; |
| for (int32_t i = 0; i < iftable_count; ++i) { |
| ObjPtr<mirror::PointerArray> methods = |
| iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i); |
| ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count) |
| ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i) |
| : nullptr; |
| if (methods != super_methods) { |
| DCHECK(methods != nullptr); |
| if (i < super_iftable_count) { |
| DCHECK(super_methods != nullptr); |
| DCHECK_EQ(methods->GetLength(), super_methods->GetLength()); |
| } |
| visitor(methods); |
| } |
| } |
| } |
| |
| void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| const CompilerOptions& compiler_options = image_writer_->compiler_options_; |
| JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| |
| // To ensure deterministic output, populate the work queue with objects in a pre-defined order. |
| // Note: If we decide to implement a profile-guided layout, this is the place to do so. |
| |
| // Get initial work queue with the image classes and assign their bin slots. |
| CollectClassesVisitor visitor(image_writer_); |
| { |
| WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); |
| if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) { |
| // No need to filter based on class loader, boot class table contains only |
| // classes defined by the boot class loader. |
| ClassTable* class_table = class_linker->boot_class_table_.get(); |
| class_table->Visit<kWithoutReadBarrier>(visitor); |
| } else { |
| // No need to visit boot class table as there are no classes there for the app image. |
| for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) { |
| auto class_loader = |
| DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root); |
| if (class_loader != nullptr) { |
| ClassTable* class_table = class_loader->GetClassTable(); |
| if (class_table != nullptr) { |
| // Visit only classes defined in this class loader (avoid visiting multiple times). |
| auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) { |
| visitor(klass); |
| } |
| return true; |
| }; |
| class_table->Visit<kWithoutReadBarrier>(filtering_visitor); |
| } |
| } |
| } |
| } |
| } |
| DCHECK(work_queue_.empty()); |
| work_queue_ = visitor.ProcessCollectedClasses(self); |
| for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) { |
| DCHECK(entry.first != nullptr); |
| ObjPtr<mirror::Class> klass = entry.first->AsClass(); |
| size_t oat_index = entry.second; |
| image_writer_->RecordNativeRelocations(klass, oat_index); |
| AssignImageBinSlot(klass.Ptr(), oat_index); |
| |
| auto method_pointer_array_visitor = |
| [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) { |
| constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular; |
| AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin); |
| // No need to add to the work queue. The class reference, if not in the boot image |
| // (that is, when compiling the primary boot image), is already in the work queue. |
| }; |
| VisitNewMethodPointerArrays(klass, method_pointer_array_visitor); |
| } |
| |
| // Assign bin slots to dex caches. |
| { |
| ReaderMutexLock mu(self, *Locks::dex_lock_); |
| for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) { |
| auto it = image_writer_->dex_file_oat_index_map_.find(dex_file); |
| DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation(); |
| const size_t oat_index = it->second; |
| // Assign bin slot to this file's dex cache and add it to the end of the work queue. |
| auto dcd_it = class_linker->GetDexCachesData().find(dex_file); |
| DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation(); |
| auto dex_cache = |
| DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root); |
| DCHECK(dex_cache != nullptr); |
| bool assigned = TryAssignBinSlot(dex_cache, oat_index); |
| DCHECK(assigned); |
| work_queue_.emplace_back(dex_cache, oat_index); |
| } |
| } |
| |
| // Assign interns to images depending on the first dex file they appear in. |
| // Record those that do not have a StringId in any dex file. |
| ProcessInterns(self); |
| |
| // Since classes and dex caches have been assigned to their bins, when we process a class |
| // we do not follow through the class references or dex caches, so we correctly process |
| // only objects actually belonging to that class before taking a new class from the queue. |
| // If multiple class statics reference the same object (directly or indirectly), the object |
| // is treated as belonging to the first encountered referencing class. |
| ProcessWorkQueue(); |
| } |
| |
| void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) { |
| // Assign bin slots to the image roots and boot image live objects, add them to the work queue |
| // and process the work queue. These objects reference other objects needed for the image, for |
| // example the array of dex cache references, or the pre-allocated exceptions for the boot image. |
| DCHECK(work_queue_.empty()); |
| |
| constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular; |
| size_t num_oat_files = image_writer_->oat_filenames_.size(); |
| JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) { |
| // Put image roots and dex caches into `clean_bin`. |
| auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>( |
| vm, image_writer_->image_roots_[oat_index]); |
| AssignImageBinSlot(image_roots, oat_index, clean_bin); |
| work_queue_.emplace_back(image_roots, oat_index); |
| // Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin. |
| ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast( |
| image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches)); |
| AssignImageBinSlot(dex_caches, oat_index, clean_bin); |
| work_queue_.emplace_back(dex_caches, oat_index); |
| } |
| // Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin. |
| if (image_writer_->compiler_options_.IsBootImage()) { |
| ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects = |
| image_writer_->boot_image_live_objects_; |
| AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin); |
| work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex()); |
| } |
| |
| ProcessWorkQueue(); |
| } |
| |
| void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) { |
| // String bins are empty at this point. |
| DCHECK(std::all_of(bin_objects_.begin(), |
| bin_objects_.end(), |
| [](const auto& bins) { |
| return bins[enum_cast<size_t>(Bin::kString)].empty(); |
| })); |
| |
| // There is only one non-boot image intern table and it's the last one. |
| InternTable* const intern_table = Runtime::Current()->GetInternTable(); |
| MutexLock mu(self, *Locks::intern_table_lock_); |
| DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(), |
| intern_table->strong_interns_.tables_.end(), |
| [](const InternTable::Table::InternalTable& table) { |
| return !table.IsBootImage(); |
| }), |
| 1); |
| DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage()); |
| const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_; |
| |
| // Assign bin slots to all interns with a corresponding StringId in one of the input dex files. |
| ImageWriter* image_writer = image_writer_; |
| for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) { |
| auto it = image_writer->dex_file_oat_index_map_.find(dex_file); |
| DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation(); |
| const size_t oat_index = it->second; |
| // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order. |
| for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) { |
| uint32_t utf16_length; |
| const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i), |
| &utf16_length); |
| uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data); |
| auto intern_it = |
| intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash); |
| if (intern_it != intern_set.end()) { |
| mirror::String* string = intern_it->Read<kWithoutReadBarrier>(); |
| DCHECK(string != nullptr); |
| DCHECK(!image_writer->IsInBootImage(string)); |
| if (!image_writer->IsImageBinSlotAssigned(string)) { |
| Bin bin = AssignImageBinSlot(string, oat_index); |
| DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular); |
| } else { |
| // We have already seen this string in a previous dex file. |
| DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front()); |
| } |
| } |
| } |
| } |
| |
| // String bins have been filled with dex file interns. Record their numbers in image infos. |
| DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size()); |
| size_t total_dex_file_interns = 0u; |
| for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) { |
| size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size(); |
| ImageInfo& image_info = image_writer_->GetImageInfo(oat_index); |
| DCHECK_EQ(image_info.intern_table_size_, 0u); |
| image_info.intern_table_size_ = num_dex_file_interns; |
| total_dex_file_interns += num_dex_file_interns; |
| } |
| |
| // Collect interns that do not have a corresponding StringId in any of the input dex files. |
| non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns); |
| for (const GcRoot<mirror::String>& root : intern_set) { |
| mirror::String* string = root.Read<kWithoutReadBarrier>(); |
| if (!image_writer->IsImageBinSlotAssigned(string)) { |
| non_dex_file_interns_.push_back(string); |
| } |
| } |
| DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size()); |
| } |
| |
| void ImageWriter::LayoutHelper::FinalizeInternTables() { |
| // Remove interns that do not have a bin slot assigned. These correspond |
| // to the DexCache locations excluded in VerifyImageBinSlotsAssigned(). |
| ImageWriter* image_writer = image_writer_; |
| auto retained_end = std::remove_if( |
| non_dex_file_interns_.begin(), |
| non_dex_file_interns_.end(), |
| [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return !image_writer->IsImageBinSlotAssigned(string); |
| }); |
| non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end)); |
| |
| // Sort `non_dex_file_interns_` based on oat index and bin offset. |
| ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_); |
| std::sort(non_dex_file_interns.begin(), |
| non_dex_file_interns.end(), |
| [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) { |
| size_t lhs_oat_index = image_writer->GetOatIndex(lhs); |
| size_t rhs_oat_index = image_writer->GetOatIndex(rhs); |
| if (lhs_oat_index != rhs_oat_index) { |
| return lhs_oat_index < rhs_oat_index; |
| } |
| BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index); |
| BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index); |
| return lhs_bin_slot < rhs_bin_slot; |
| }); |
| |
| // Allocate and fill intern tables. |
| size_t ndfi_index = 0u; |
| DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size()); |
| for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) { |
| // Find the end of `non_dex_file_interns` for this oat file. |
| size_t ndfi_end = ndfi_index; |
| while (ndfi_end != non_dex_file_interns.size() && |
| image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) { |
| ++ndfi_end; |
| } |
| |
| // Calculate final intern table size. |
| ImageInfo& image_info = image_writer->GetImageInfo(oat_index); |
| DCHECK_EQ(image_info.intern_table_bytes_, 0u); |
| size_t num_dex_file_interns = image_info.intern_table_size_; |
| size_t num_non_dex_file_interns = ndfi_end - ndfi_index; |
| image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns; |
| if (image_info.intern_table_size_ != 0u) { |
| // Make sure the intern table shall be full by allocating a buffer of the right size. |
| size_t buffer_size = static_cast<size_t>( |
| ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor)); |
| image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]); |
| DCHECK(image_info.intern_table_buffer_ != nullptr); |
| image_info.intern_table_.emplace(kImageInternTableMinLoadFactor, |
| kImageInternTableMaxLoadFactor, |
| image_info.intern_table_buffer_.get(), |
| buffer_size); |
| |
| // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString]. |
| InternTable::UnorderedSet& table = *image_info.intern_table_; |
| const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)]; |
| DCHECK_LE(num_dex_file_interns, oat_file_strings.size()); |
| ArrayRef<mirror::Object* const> dex_file_interns( |
| oat_file_strings.data(), num_dex_file_interns); |
| for (mirror::Object* string : dex_file_interns) { |
| bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second; |
| DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8(); |
| } |
| ArrayRef<mirror::String*> current_non_dex_file_interns = |
| non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns); |
| for (mirror::String* string : current_non_dex_file_interns) { |
| bool inserted = table.insert(GcRoot<mirror::String>(string)).second; |
| DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8(); |
| } |
| |
| // Record the intern table size in bytes. |
| image_info.intern_table_bytes_ = table.WriteToMemory(nullptr); |
| } |
| |
| ndfi_index = ndfi_end; |
| } |
| } |
| |
| void ImageWriter::LayoutHelper::ProcessWorkQueue() { |
| while (!work_queue_.empty()) { |
| std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front(); |
| work_queue_.pop_front(); |
| VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second); |
| } |
| } |
| |
| void ImageWriter::LayoutHelper::SortDirtyObjects( |
| const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) { |
| constexpr Bin bin = Bin::kKnownDirty; |
| ImageInfo& image_info = image_writer_->GetImageInfo(oat_index); |
| |
| dchecked_vector<mirror::Object*>& known_dirty = bin_objects_[oat_index][enum_cast<size_t>(bin)]; |
| if (known_dirty.empty()) { |
| return; |
| } |
| |
| // Collect objects and their combined sort_keys. |
| // Combined key contains sort_key and original offset to ensure deterministic sorting. |
| using CombinedKey = std::pair<uint32_t, uint32_t>; |
| using ObjSortPair = std::pair<mirror::Object*, CombinedKey>; |
| dchecked_vector<ObjSortPair> objects; |
| objects.reserve(known_dirty.size()); |
| for (mirror::Object* obj : known_dirty) { |
| const BinSlot bin_slot = image_writer_->GetImageBinSlot(obj, oat_index); |
| const uint32_t original_offset = bin_slot.GetOffset(); |
| const auto it = dirty_objects.find(obj); |
| const uint32_t sort_key = (it != dirty_objects.end()) ? it->second : 0; |
| objects.emplace_back(obj, std::make_pair(sort_key, original_offset)); |
| } |
| // Sort by combined sort_key. |
| std::sort(std::begin(objects), std::end(objects), [&](ObjSortPair& lhs, ObjSortPair& rhs) { |
| return lhs.second < rhs.second; |
| }); |
| |
| // Fill known_dirty objects in sorted order, update bin offsets. |
| known_dirty.clear(); |
| size_t offset = 0; |
| for (const ObjSortPair& entry : objects) { |
| mirror::Object* obj = entry.first; |
| |
| known_dirty.push_back(obj); |
| image_writer_->UpdateImageBinSlotOffset(obj, oat_index, offset); |
| |
| const size_t aligned_object_size = RoundUp(obj->SizeOf<kVerifyNone>(), kObjectAlignment); |
| offset += aligned_object_size; |
| } |
| DCHECK_EQ(offset, image_info.GetBinSlotSize(bin)); |
| } |
| |
| void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() { |
| dchecked_vector<mirror::Object*> carveout; |
| JavaVMExt* vm = nullptr; |
| if (image_writer_->compiler_options_.IsAppImage()) { |
| // Exclude boot class path dex caches that are not part of the boot image. |
| // Also exclude their locations if they have not been visited through another path. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| ReaderMutexLock mu(self, *Locks::dex_lock_); |
| for (const auto& entry : class_linker->GetDexCachesData()) { |
| const ClassLinker::DexCacheData& data = entry.second; |
| auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root); |
| if (dex_cache == nullptr || |
| image_writer_->IsInBootImage(dex_cache.Ptr()) || |
| ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(), |
| dex_cache->GetDexFile())) { |
| continue; |
| } |
| CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr())); |
| carveout.push_back(dex_cache.Ptr()); |
| ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>(); |
| if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) { |
| carveout.push_back(location.Ptr()); |
| } |
| } |
| } |
| |
| dchecked_vector<mirror::Object*> missed_objects; |
| auto ensure_bin_slots_assigned = [&](mirror::Object* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!image_writer_->IsInBootImage(obj)) { |
| if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) { |
| // Ignore the `carveout` objects. |
| if (ContainsElement(carveout, obj)) { |
| return; |
| } |
| // Ignore finalizer references for the dalvik.system.DexFile objects referenced by |
| // the app class loader. |
| ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| if (klass->IsFinalizerReferenceClass<kVerifyNone>()) { |
| ObjPtr<mirror::Class> reference_class = |
| klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>(); |
| DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;")); |
| ArtField* ref_field = reference_class->FindDeclaredInstanceField( |
| "referent", "Ljava/lang/Object;"); |
| CHECK(ref_field != nullptr); |
| ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj); |
| CHECK(ref != nullptr); |
| CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr())); |
| ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| CHECK(ref_klass == WellKnownClasses::dalvik_system_DexFile.Get<kWithoutReadBarrier>()); |
| // Note: The app class loader is used only for checking against the runtime |
| // class loader, the dex file cookie is cleared and therefore we do not need |
| // to run the finalizer even if we implement app image objects collection. |
| ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie; |
| CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr); |
| return; |
| } |
| if (klass->IsStringClass()) { |
| // Ignore interned strings. These may come from reflection interning method names. |
| // TODO: Make dex file strings weak interns and GC them before writing the image. |
| if (IsStronglyInternedString(obj->AsString())) { |
| return; |
| } |
| } |
| missed_objects.push_back(obj); |
| } |
| } |
| }; |
| Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned); |
| if (!missed_objects.empty()) { |
| const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification(); |
| size_t num_missed_objects = missed_objects.size(); |
| size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output. |
| ArrayRef<mirror::Object*> missed_objects_head = |
| ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths); |
| for (mirror::Object* obj : missed_objects_head) { |
| LOG(ERROR) << "Image object without assigned bin slot: " |
| << mirror::Object::PrettyTypeOf(obj) << " " << obj |
| << " " << v->FirstPathFromRootSet(obj); |
| } |
| LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots."; |
| } |
| } |
| |
| void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() { |
| // Calculate bin slot offsets and adjust for region padding if needed. |
| const size_t region_size = image_writer_->region_size_; |
| const size_t num_image_infos = image_writer_->image_infos_.size(); |
| for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) { |
| ImageInfo& image_info = image_writer_->image_infos_[oat_index]; |
| size_t bin_offset = image_writer_->image_objects_offset_begin_; |
| |
| for (size_t i = 0; i != kNumberOfBins; ++i) { |
| Bin bin = enum_cast<Bin>(i); |
| switch (bin) { |
| case Bin::kArtMethodClean: |
| case Bin::kArtMethodDirty: { |
| bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_)); |
| break; |
| } |
| case Bin::kImTable: |
| case Bin::kIMTConflictTable: { |
| bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_)); |
| break; |
| } |
| default: { |
| // Normal alignment. |
| } |
| } |
| image_info.bin_slot_offsets_[i] = bin_offset; |
| |
| // If the bin is for mirror objects, we may need to add region padding and update offsets. |
| if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) { |
| const size_t offset_after_header = bin_offset - sizeof(ImageHeader); |
| size_t remaining_space = |
| RoundUp(offset_after_header + 1u, region_size) - offset_after_header; |
| // Exercise the loop below in debug builds to get coverage. |
| if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) { |
| // The bin crosses a region boundary. Add padding if needed. |
| size_t object_offset = 0u; |
| size_t padding = 0u; |
| for (mirror::Object* object : bin_objects_[oat_index][i]) { |
| BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index); |
| DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i); |
| DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset); |
| size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment); |
| |
| auto add_padding = [&](bool tail_region) { |
| DCHECK_NE(remaining_space, 0u); |
| DCHECK_LT(remaining_space, region_size); |
| DCHECK_ALIGNED(remaining_space, kObjectAlignment); |
| // TODO When copying to heap regions, leave the tail region padding zero-filled. |
| if (!tail_region || true) { |
| image_info.padding_offsets_.push_back(bin_offset + object_offset); |
| } |
| image_info.bin_slot_sizes_[i] += remaining_space; |
| padding += remaining_space; |
| object_offset += remaining_space; |
| remaining_space = region_size; |
| }; |
| if (object_size > remaining_space) { |
| // Padding needed if we're not at region boundary (with a multi-region object). |
| if (remaining_space != region_size) { |
| // TODO: Instead of adding padding, we should consider reordering the bins |
| // or objects to reduce wasted space. |
| add_padding(/*tail_region=*/ false); |
| } |
| DCHECK_EQ(remaining_space, region_size); |
| // For huge objects, adjust the remaining space to hold the object and some more. |
| if (object_size > region_size) { |
| remaining_space = RoundUp(object_size + 1u, region_size); |
| } |
| } else if (remaining_space == object_size) { |
| // Move to the next region, no padding needed. |
| remaining_space += region_size; |
| } |
| DCHECK_GT(remaining_space, object_size); |
| remaining_space -= object_size; |
| image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset); |
| object_offset += object_size; |
| // Add padding to the tail region of huge objects if not region-aligned. |
| if (object_size > region_size && remaining_space != region_size) { |
| DCHECK(!IsAlignedParam(object_size, region_size)); |
| add_padding(/*tail_region=*/ true); |
| } |
| } |
| image_writer_->region_alignment_wasted_ += padding; |
| image_info.image_end_ += padding; |
| } |
| } |
| bin_offset += image_info.bin_slot_sizes_[i]; |
| } |
| // NOTE: There may be additional padding between the bin slots and the intern table. |
| DCHECK_EQ( |
| image_info.image_end_, |
| image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_); |
| } |
| |
| VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_; |
| } |
| |
| void ImageWriter::LayoutHelper::CollectStringReferenceInfo() { |
| size_t total_string_refs = 0u; |
| |
| const size_t num_image_infos = image_writer_->image_infos_.size(); |
| for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) { |
| ImageInfo& image_info = image_writer_->image_infos_[oat_index]; |
| DCHECK(image_info.string_reference_offsets_.empty()); |
| image_info.string_reference_offsets_.reserve(image_info.num_string_references_); |
| |
| for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) { |
| for (mirror::Object* obj : bin_objects_[oat_index][i]) { |
| CollectStringReferenceVisitor visitor(image_writer_, |
| oat_index, |
| &image_info.string_reference_offsets_, |
| obj); |
| /* |
| * References to managed strings can occur either in the managed heap or in |
| * native memory regions. Information about managed references is collected |
| * by the CollectStringReferenceVisitor and directly added to the image info. |
| * |
| * Native references to managed strings can only occur through DexCache |
| * objects. This is verified by the visitor in debug mode and the references |
| * are collected separately below. |
| */ |
| obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild, |
| kVerifyNone, |
| kWithoutReadBarrier>(visitor, visitor); |
| } |
| } |
| |
| total_string_refs += image_info.string_reference_offsets_.size(); |
| |
| // Check that we collected the same number of string references as we saw in the previous pass. |
| CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_); |
| } |
| |
| VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs; |
| } |
| |
| void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) { |
| size_t old_work_queue_size = work_queue_.size(); |
| VisitReferencesVisitor visitor(this, oat_index); |
| // Walk references and assign bin slots for them. |
| obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>( |
| visitor, |
| visitor); |
| // Put the added references in the queue in the order in which they were added. |
| // The visitor just pushes them to the front as it visits them. |
| DCHECK_LE(old_work_queue_size, work_queue_.size()); |
| size_t num_added = work_queue_.size() - old_work_queue_size; |
| std::reverse(work_queue_.begin(), work_queue_.begin() + num_added); |
| } |
| |
| bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) { |
| if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) { |
| // Object is null or already in the image, there is no work to do. |
| return false; |
| } |
| bool assigned = false; |
| if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) { |
| AssignImageBinSlot(obj.Ptr(), oat_index); |
| assigned = true; |
| } |
| return assigned; |
| } |
| |
| ImageWriter::Bin ImageWriter::LayoutHelper::AssignImageBinSlot(ObjPtr<mirror::Object> object, |
| size_t oat_index) { |
| DCHECK(object != nullptr); |
| Bin bin = image_writer_->GetImageBin(object.Ptr()); |
| AssignImageBinSlot(object.Ptr(), oat_index, bin); |
| return bin; |
| } |
| |
| void ImageWriter::LayoutHelper::AssignImageBinSlot( |
| ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) { |
| DCHECK(object != nullptr); |
| DCHECK(!image_writer_->IsInBootImage(object.Ptr())); |
| DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr())); |
| image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin); |
| bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr()); |
| } |
| |
| void ImageWriter::CalculateNewObjectOffsets() { |
| Thread* const self = Thread::Current(); |
| Runtime* const runtime = Runtime::Current(); |
| gc::Heap* const heap = runtime->GetHeap(); |
| |
| // Leave space for the header, but do not write it yet, we need to |
| // know where image_roots is going to end up |
| image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment |
| |
| // Write the image runtime methods. |
| image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod(); |
| image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod(); |
| image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod(); |
| image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves); |
| image_methods_[ImageHeader::kSaveRefsOnlyMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly); |
| image_methods_[ImageHeader::kSaveRefsAndArgsMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs); |
| image_methods_[ImageHeader::kSaveEverythingMethod] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything); |
| image_methods_[ImageHeader::kSaveEverythingMethodForClinit] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit); |
| image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] = |
| runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck); |
| // Visit image methods first to have the main runtime methods in the first image. |
| for (auto* m : image_methods_) { |
| CHECK(m != nullptr); |
| CHECK(m->IsRuntimeMethod()); |
| DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m)) |
| << "Trampolines should be in boot image"; |
| if (!IsInBootImage(m)) { |
| AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex()); |
| } |
| } |
| |
| // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring |
| // this lock while holding other locks may cause lock order violations. |
| { |
| auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| Monitor::Deflate(Thread::Current(), obj); |
| }; |
| heap->VisitObjects(deflate_monitor); |
| } |
| |
| // From this point on, there shall be no GC anymore and no objects shall be allocated. |
| // We can now assign a BitSlot to each object and store it in its lockword. |
| |
| JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) { |
| // Record the address of boot image live objects. |
| auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>( |
| vm, image_roots_[0]); |
| boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast( |
| image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>( |
| ImageHeader::kBootImageLiveObjects)).Ptr(); |
| } |
| |
| // If dirty_image_objects_ is present - try optimizing object layout. |
| // Parse dirty-image-objects entries and put them in dirty_objects_ map, which is then used in |
| // `AssignImageBinSlot` method to put the objects in dirty bin. |
| if (compiler_options_.IsBootImage() && dirty_image_objects_ != nullptr) { |
| dirty_objects_ = MatchDirtyObjectPaths(*dirty_image_objects_); |
| LOG(INFO) << ART_FORMAT("Matched {} out of {} dirty-image-objects", |
| dirty_objects_.size(), |
| dirty_image_objects_->size()); |
| } |
| |
| LayoutHelper layout_helper(this); |
| layout_helper.ProcessDexFileObjects(self); |
| layout_helper.ProcessRoots(self); |
| layout_helper.FinalizeInternTables(); |
| |
| // Sort objects in dirty bin. |
| if (!dirty_objects_.empty()) { |
| for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) { |
| layout_helper.SortDirtyObjects(dirty_objects_, oat_index); |
| } |
| } |
| |
| // Verify that all objects have assigned image bin slots. |
| layout_helper.VerifyImageBinSlotsAssigned(); |
| |
| // Finalize bin slot offsets. This may add padding for regions. |
| layout_helper.FinalizeBinSlotOffsets(); |
| |
| // Collect string reference info for app images. |
| if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) { |
| layout_helper.CollectStringReferenceInfo(); |
| } |
| |
| // Calculate image offsets. |
| size_t image_offset = 0; |
| for (ImageInfo& image_info : image_infos_) { |
| image_info.image_begin_ = global_image_begin_ + image_offset; |
| image_info.image_offset_ = image_offset; |
| image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment); |
| // There should be no gaps until the next image. |
| image_offset += image_info.image_size_; |
| } |
| |
| size_t oat_index = 0; |
| for (ImageInfo& image_info : image_infos_) { |
| auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>( |
| vm, image_roots_[oat_index]); |
| image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr())); |
| ++oat_index; |
| } |
| |
| // Update the native relocations by adding their bin sums. |
| for (auto& pair : native_object_relocations_) { |
| NativeObjectRelocation& relocation = pair.second; |
| Bin bin_type = BinTypeForNativeRelocationType(relocation.type); |
| ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| relocation.offset += image_info.GetBinSlotOffset(bin_type); |
| } |
| } |
| |
| std::pair<size_t, dchecked_vector<ImageSection>> |
| ImageWriter::ImageInfo::CreateImageSections() const { |
| dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount); |
| |
| // Do not round up any sections here that are represented by the bins since it |
| // will break offsets. |
| |
| /* |
| * Objects section |
| */ |
| sections[ImageHeader::kSectionObjects] = |
| ImageSection(0u, image_end_); |
| |
| /* |
| * Field section |
| */ |
| sections[ImageHeader::kSectionArtFields] = |
| ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField)); |
| |
| /* |
| * Method section |
| */ |
| sections[ImageHeader::kSectionArtMethods] = |
| ImageSection(GetBinSlotOffset(Bin::kArtMethodClean), |
| GetBinSlotSize(Bin::kArtMethodClean) + |
| GetBinSlotSize(Bin::kArtMethodDirty)); |
| |
| /* |
| * IMT section |
| */ |
| sections[ImageHeader::kSectionImTables] = |
| ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable)); |
| |
| /* |
| * Conflict Tables section |
| */ |
| sections[ImageHeader::kSectionIMTConflictTables] = |
| ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable)); |
| |
| /* |
| * Runtime Methods section |
| */ |
| sections[ImageHeader::kSectionRuntimeMethods] = |
| ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod)); |
| |
| /* |
| * Interned Strings section |
| */ |
| |
| // Round up to the alignment the string table expects. See HashSet::WriteToMemory. |
| size_t cur_pos = RoundUp(sections[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t)); |
| |
| const ImageSection& interned_strings_section = |
| sections[ImageHeader::kSectionInternedStrings] = |
| ImageSection(cur_pos, intern_table_bytes_); |
| |
| /* |
| * Class Table section |
| */ |
| |
| // Obtain the new position and round it up to the appropriate alignment. |
| cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t)); |
| |
| const ImageSection& class_table_section = |
| sections[ImageHeader::kSectionClassTable] = |
| ImageSection(cur_pos, class_table_bytes_); |
| |
| /* |
| * String Field Offsets section |
| */ |
| |
| // Round up to the alignment of the offsets we are going to store. |
| cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t)); |
| |
| // The size of string_reference_offsets_ can't be used here because it hasn't |
| // been filled with AppImageReferenceOffsetInfo objects yet. The |
| // num_string_references_ value is calculated separately, before we can |
| // compute the actual offsets. |
| const ImageSection& string_reference_offsets = |
| sections[ImageHeader::kSectionStringReferenceOffsets] = |
| ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_); |
| |
| /* |
| * DexCache arrays section |
| */ |
| |
| // Round up to the alignment dex caches arrays expects. |
| cur_pos = RoundUp(sections[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(uint32_t)); |
| // We don't generate dex cache arrays in an image generated by dex2oat. |
| sections[ImageHeader::kSectionDexCacheArrays] = ImageSection(cur_pos, 0u); |
| |
| /* |
| * Metadata section. |
| */ |
| |
| // Round up to the alignment of the offsets we are going to store. |
| cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t)); |
| |
| const ImageSection& metadata_section = |
| sections[ImageHeader::kSectionMetadata] = |
| ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata)); |
| |
| // Return the number of bytes described by these sections, and the sections |
| // themselves. |
| return make_pair(metadata_section.End(), std::move(sections)); |
| } |
| |
| void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) { |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| const uint8_t* oat_file_begin = image_info.oat_file_begin_; |
| const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_; |
| const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_; |
| |
| uint32_t image_reservation_size = image_info.image_size_; |
| DCHECK_ALIGNED(image_reservation_size, kElfSegmentAlignment); |
| uint32_t current_component_count = 1u; |
| if (compiler_options_.IsAppImage()) { |
| DCHECK_EQ(oat_index, 0u); |
| DCHECK_EQ(component_count, current_component_count); |
| } else { |
| DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count) |
| << image_infos_.size() << " " << component_count; |
| if (oat_index == 0u) { |
| const ImageInfo& last_info = image_infos_.back(); |
| const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_; |
| DCHECK_ALIGNED(image_info.image_begin_, kElfSegmentAlignment); |
| image_reservation_size = dchecked_integral_cast<uint32_t>( |
| RoundUp(end - image_info.image_begin_, kElfSegmentAlignment)); |
| current_component_count = component_count; |
| } else { |
| image_reservation_size = 0u; |
| current_component_count = 0u; |
| } |
| } |
| |
| // Compute boot image checksums for the primary component, leave as 0 otherwise. |
| uint32_t boot_image_components = 0u; |
| uint32_t boot_image_checksums = 0u; |
| if (oat_index == 0u) { |
| const std::vector<gc::space::ImageSpace*>& image_spaces = |
| Runtime::Current()->GetHeap()->GetBootImageSpaces(); |
| DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage()); |
| for (size_t i = 0u, size = image_spaces.size(); i != size; ) { |
| const ImageHeader& header = image_spaces[i]->GetImageHeader(); |
| boot_image_components += header.GetComponentCount(); |
| boot_image_checksums ^= header.GetImageChecksum(); |
| DCHECK_LE(header.GetImageSpaceCount(), size - i); |
| i += header.GetImageSpaceCount(); |
| } |
| } |
| |
| // Create the image sections. |
| auto section_info_pair = image_info.CreateImageSections(); |
| const size_t image_end = section_info_pair.first; |
| dchecked_vector<ImageSection>& sections = section_info_pair.second; |
| |
| // Finally bitmap section. |
| const size_t bitmap_bytes = image_info.image_bitmap_.Size(); |
| auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap]; |
| // The offset of the bitmap section should be aligned to kElfSegmentAlignment to enable mapping |
| // the section from file to memory. However the section size doesn't have to be rounded up as it |
| // is located at the end of the file. When mapping file contents to memory, if the last page of |
| // the mapping is only partially filled with data, the rest will be zero-filled. |
| *bitmap_section = ImageSection(RoundUp(image_end, kElfSegmentAlignment), bitmap_bytes); |
| if (VLOG_IS_ON(compiler)) { |
| LOG(INFO) << "Creating header for " << oat_filenames_[oat_index]; |
| size_t idx = 0; |
| for (const ImageSection& section : sections) { |
| LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section; |
| ++idx; |
| } |
| LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_; |
| LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec; |
| LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_) |
| << " Image offset=" << image_info.image_offset_ << std::dec; |
| LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin) |
| << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_) |
| << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end) |
| << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end); |
| } |
| |
| // Create the header, leave 0 for data size since we will fill this in as we are writing the |
| // image. |
| new (image_info.image_.Begin()) ImageHeader( |
| image_reservation_size, |
| current_component_count, |
| PointerToLowMemUInt32(image_info.image_begin_), |
| image_end, |
| sections.data(), |
| image_info.image_roots_address_, |
| image_info.oat_checksum_, |
| PointerToLowMemUInt32(oat_file_begin), |
| PointerToLowMemUInt32(image_info.oat_data_begin_), |
| PointerToLowMemUInt32(oat_data_end), |
| PointerToLowMemUInt32(oat_file_end), |
| boot_image_begin_, |
| boot_image_size_, |
| boot_image_components, |
| boot_image_checksums, |
| static_cast<uint32_t>(target_ptr_size_)); |
| } |
| |
| ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) { |
| NativeObjectRelocation relocation = GetNativeRelocation(method); |
| const ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects"; |
| return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset); |
| } |
| |
| const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) { |
| DCHECK(compiler_options_.IsBootImage()); |
| switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) { |
| case IntrinsicObjects::PatchType::kValueOfArray: { |
| uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data); |
| const uint8_t* base_address = |
| reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_)); |
| MemberOffset data_offset = |
| IntrinsicObjects::GetValueOfArrayDataOffset(boot_image_live_objects_, index); |
| return base_address + data_offset.Uint32Value(); |
| } |
| case IntrinsicObjects::PatchType::kValueOfObject: { |
| uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data); |
| ObjPtr<mirror::Object> value = IntrinsicObjects::GetValueOfObject(boot_image_live_objects_, |
| /* start_index= */ 0u, |
| index); |
| return GetImageAddress(value.Ptr()); |
| } |
| } |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| |
| class ImageWriter::FixupRootVisitor : public RootVisitor { |
| public: |
| explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) { |
| } |
| |
| void VisitRoots([[maybe_unused]] mirror::Object*** roots, |
| [[maybe_unused]] size_t count, |
| [[maybe_unused]] const RootInfo& info) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| LOG(FATAL) << "Unsupported"; |
| } |
| |
| void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, |
| size_t count, |
| [[maybe_unused]] const RootInfo& info) override |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (size_t i = 0; i < count; ++i) { |
| // Copy the reference. Since we do not have the address for recording the relocation, |
| // it needs to be recorded explicitly by the user of FixupRootVisitor. |
| ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr(); |
| roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr())); |
| } |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) { |
| for (size_t i = 0; i < ImTable::kSize; ++i) { |
| ArtMethod* method = orig->Get(i, target_ptr_size_); |
| void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_)); |
| CopyAndFixupPointer(address, method); |
| DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method)); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) { |
| const size_t count = orig->NumEntries(target_ptr_size_); |
| for (size_t i = 0; i < count; ++i) { |
| ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_); |
| ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_); |
| CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method); |
| CopyAndFixupPointer( |
| copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method); |
| DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_), |
| NativeLocationInImage(interface_method)); |
| DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_), |
| NativeLocationInImage(implementation_method)); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupNativeData(size_t oat_index) { |
| const ImageInfo& image_info = GetImageInfo(oat_index); |
| // Copy ArtFields and methods to their locations and update the array for convenience. |
| for (auto& pair : native_object_relocations_) { |
| NativeObjectRelocation& relocation = pair.second; |
| // Only work with fields and methods that are in the current oat file. |
| if (relocation.oat_index != oat_index) { |
| continue; |
| } |
| auto* dest = image_info.image_.Begin() + relocation.offset; |
| DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_); |
| DCHECK(!IsInBootImage(pair.first)); |
| switch (relocation.type) { |
| case NativeObjectRelocationType::kRuntimeMethod: |
| case NativeObjectRelocationType::kArtMethodClean: |
| case NativeObjectRelocationType::kArtMethodDirty: { |
| CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first), |
| reinterpret_cast<ArtMethod*>(dest), |
| oat_index); |
| break; |
| } |
| case NativeObjectRelocationType::kArtFieldArray: { |
| // Copy and fix up the entire field array. |
| auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first); |
| auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest); |
| size_t size = src_array->size(); |
| memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size)); |
| for (size_t i = 0; i != size; ++i) { |
| CopyAndFixupReference( |
| dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(), |
| src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>()); |
| } |
| break; |
| } |
| case NativeObjectRelocationType::kArtMethodArrayClean: |
| case NativeObjectRelocationType::kArtMethodArrayDirty: { |
| // For method arrays, copy just the header since the elements will |
| // get copied by their corresponding relocations. |
| size_t size = ArtMethod::Size(target_ptr_size_); |
| size_t alignment = ArtMethod::Alignment(target_ptr_size_); |
| memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment)); |
| // Clear padding to avoid non-deterministic data in the image. |
| // Historical note: We also did that to placate Valgrind. |
| reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment); |
| break; |
| } |
| case NativeObjectRelocationType::kIMTable: { |
| ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first); |
| ImTable* dest_imt = reinterpret_cast<ImTable*>(dest); |
| CopyAndFixupImTable(orig_imt, dest_imt); |
| break; |
| } |
| case NativeObjectRelocationType::kIMTConflictTable: { |
| auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first); |
| CopyAndFixupImtConflictTable( |
| orig_table, |
| new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_)); |
| break; |
| } |
| case NativeObjectRelocationType::kGcRootPointer: { |
| auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first); |
| auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest); |
| CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read()); |
| break; |
| } |
| } |
| } |
| // Fixup the image method roots. |
| auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin()); |
| for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) { |
| ArtMethod* method = image_methods_[i]; |
| CHECK(method != nullptr); |
| CopyAndFixupPointer( |
| reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32); |
| } |
| FixupRootVisitor root_visitor(this); |
| |
| // Write the intern table into the image. |
| if (image_info.intern_table_bytes_ > 0) { |
| const ImageSection& intern_table_section = image_header->GetInternedStringsSection(); |
| DCHECK(image_info.intern_table_.has_value()); |
| const InternTable::UnorderedSet& intern_table = *image_info.intern_table_; |
| uint8_t* const intern_table_memory_ptr = |
| image_info.image_.Begin() + intern_table_section.Offset(); |
| const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr); |
| CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_); |
| // Fixup the pointers in the newly written intern table to contain image addresses. |
| InternTable temp_intern_table; |
| // Note that we require that ReadFromMemory does not make an internal copy of the elements so |
| // that the VisitRoots() will update the memory directly rather than the copies. |
| // This also relies on visit roots not doing any verification which could fail after we update |
| // the roots to be the image addresses. |
| temp_intern_table.AddTableFromMemory(intern_table_memory_ptr, |
| VoidFunctor(), |
| /*is_boot_image=*/ false); |
| CHECK_EQ(temp_intern_table.Size(), intern_table.size()); |
| temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots); |
| |
| if (kIsDebugBuild) { |
| MutexLock lock(Thread::Current(), *Locks::intern_table_lock_); |
| CHECK(!temp_intern_table.strong_interns_.tables_.empty()); |
| // The UnorderedSet was inserted at the beginning. |
| CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size()); |
| } |
| } |
| |
| // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple |
| // class loaders. Writing multiple class tables into the image is currently unsupported. |
| if (image_info.class_table_bytes_ > 0u) { |
| const ImageSection& class_table_section = image_header->GetClassTableSection(); |
| uint8_t* const class_table_memory_ptr = |
| image_info.image_.Begin() + class_table_section.Offset(); |
| |
| DCHECK(image_info.class_table_.has_value()); |
| const ClassTable::ClassSet& table = *image_info.class_table_; |
| CHECK_EQ(table.size(), image_info.class_table_size_); |
| const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr); |
| CHECK_EQ(class_table_bytes, image_info.class_table_bytes_); |
| |
| // Fixup the pointers in the newly written class table to contain image addresses. See |
| // above comment for intern tables. |
| ClassTable temp_class_table; |
| temp_class_table.ReadFromMemory(class_table_memory_ptr); |
| CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size()); |
| UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown)); |
| temp_class_table.VisitRoots(visitor); |
| |
| if (kIsDebugBuild) { |
| ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_); |
| CHECK(!temp_class_table.classes_.empty()); |
| // The ClassSet was inserted at the beginning. |
| CHECK_EQ(temp_class_table.classes_[0].size(), table.size()); |
| } |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) { |
| // Pointer arrays are processed early and each is visited just once. |
| // Therefore we know that this array has not been copied yet. |
| mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr); |
| DCHECK(dst != nullptr); |
| DCHECK(arr->IsIntArray() || arr->IsLongArray()) |
| << arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr; |
| // Fixup int and long pointers for the ArtMethod or ArtField arrays. |
| const size_t num_elements = arr->GetLength(); |
| CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), |
| arr->GetClass<kVerifyNone, kWithoutReadBarrier>()); |
| auto* dest_array = down_cast<mirror::PointerArray*>(dst); |
| for (size_t i = 0, count = num_elements; i < count; ++i) { |
| void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_); |
| if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) { |
| auto it = native_object_relocations_.find(elem); |
| if (UNLIKELY(it == native_object_relocations_.end())) { |
| auto* method = reinterpret_cast<ArtMethod*>(elem); |
| LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ " |
| << method << " idx=" << i << "/" << num_elements << " with declaring class " |
| << Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>()); |
| UNREACHABLE(); |
| } |
| } |
| CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupObject(Object* obj) { |
| if (!IsImageBinSlotAssigned(obj)) { |
| return; |
| } |
| // Some objects (such as method pointer arrays) may have been processed before. |
| mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj); |
| if (dst != nullptr) { |
| FixupObject(obj, dst); |
| } |
| } |
| |
| template <bool kCheckIfDone> |
| inline Object* ImageWriter::CopyObject(Object* obj) { |
| size_t oat_index = GetOatIndex(obj); |
| size_t offset = GetImageOffset(obj, oat_index); |
| ImageInfo& image_info = GetImageInfo(oat_index); |
| auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset); |
| DCHECK_LT(offset, image_info.image_end_); |
| const auto* src = reinterpret_cast<const uint8_t*>(obj); |
| |
| bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live. |
| // Check if the object was already copied, unless the caller indicated that it was not. |
| if (kCheckIfDone && done) { |
| return nullptr; |
| } |
| DCHECK(!done); |
| |
| const size_t n = obj->SizeOf(); |
| |
| if (kIsDebugBuild && region_size_ != 0u) { |
| const size_t offset_after_header = offset - sizeof(ImageHeader); |
| const size_t next_region = RoundUp(offset_after_header, region_size_); |
| if (offset_after_header != next_region) { |
| // If the object is not on a region bondary, it must not be cross region. |
| CHECK_LT(offset_after_header, next_region) |
| << "offset_after_header=" << offset_after_header << " size=" << n; |
| CHECK_LE(offset_after_header + n, next_region) |
| << "offset_after_header=" << offset_after_header << " size=" << n; |
| } |
| } |
| DCHECK_LE(offset + n, image_info.image_.Size()); |
| memcpy(dst, src, n); |
| |
| // Write in a hash code of objects which have inflated monitors or a hash code in their monitor |
| // word. |
| const auto it = saved_hashcode_map_.find(obj); |
| dst->SetLockWord(it != saved_hashcode_map_.end() ? |
| LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false); |
| if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) { |
| // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is |
| // safe since we mark all of the objects that may reference non immune objects as gray. |
| CHECK(dst->AtomicSetMarkBit(0, 1)); |
| } |
| return dst; |
| } |
| |
| // Rewrite all the references in the copied object to point to their image address equivalent |
| class ImageWriter::FixupVisitor { |
| public: |
| FixupVisitor(ImageWriter* image_writer, Object* copy) |
| : image_writer_(image_writer), copy_(copy) { |
| } |
| |
| // We do not visit native roots. These are handled with other logic. |
| void VisitRootIfNonNull( |
| [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const { |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const { |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| |
| void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| // Copy the reference and record the fixup if necessary. |
| image_writer_->CopyAndFixupReference( |
| copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref); |
| } |
| |
| // java.lang.ref.Reference visitor. |
| void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false); |
| } |
| |
| protected: |
| ImageWriter* const image_writer_; |
| mirror::Object* const copy_; |
| }; |
| |
| void ImageWriter::CopyAndFixupObjects() { |
| // Copy and fix up pointer arrays first as they require special treatment. |
| auto method_pointer_array_visitor = |
| [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) { |
| CopyAndFixupMethodPointerArray(pointer_array.Ptr()); |
| }; |
| for (ImageInfo& image_info : image_infos_) { |
| if (image_info.class_table_size_ != 0u) { |
| DCHECK(image_info.class_table_.has_value()); |
| for (const ClassTable::TableSlot& slot : *image_info.class_table_) { |
| ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>(); |
| DCHECK(klass != nullptr); |
| // Do not process boot image classes present in app image class table. |
| DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage()); |
| if (!IsInBootImage(klass.Ptr())) { |
| // Do not fix up method pointer arrays inherited from superclass. If they are part |
| // of the current image, they were or shall be copied when visiting the superclass. |
| VisitNewMethodPointerArrays(klass, method_pointer_array_visitor); |
| } |
| } |
| } |
| } |
| |
| auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(obj != nullptr); |
| CopyAndFixupObject(obj); |
| }; |
| Runtime::Current()->GetHeap()->VisitObjects(visitor); |
| |
| // Fill the padding objects since they are required for in order traversal of the image space. |
| for (ImageInfo& image_info : image_infos_) { |
| for (const size_t start_offset : image_info.padding_offsets_) { |
| const size_t offset_after_header = start_offset - sizeof(ImageHeader); |
| size_t remaining_space = |
| RoundUp(offset_after_header + 1u, region_size_) - offset_after_header; |
| DCHECK_NE(remaining_space, 0u); |
| DCHECK_LT(remaining_space, region_size_); |
| Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset); |
| ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>(); |
| DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize()); |
| Object* end = dst + remaining_space / object_class->GetObjectSize(); |
| Class* image_object_class = GetImageAddress(object_class.Ptr()); |
| while (dst != end) { |
| dst->SetClass<kVerifyNone>(image_object_class); |
| dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false); |
| image_info.image_bitmap_.Set(dst); // Mark the obj as live. |
| ++dst; |
| } |
| } |
| } |
| |
| // We no longer need the hashcode map, values have already been copied to target objects. |
| saved_hashcode_map_.clear(); |
| } |
| |
| class ImageWriter::FixupClassVisitor final : public FixupVisitor { |
| public: |
| FixupClassVisitor(ImageWriter* image_writer, Object* copy) |
| : FixupVisitor(image_writer, copy) {} |
| |
| void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const |
| REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| DCHECK(obj->IsClass()); |
| FixupVisitor::operator()(obj, offset, /*is_static*/false); |
| } |
| |
| void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, |
| [[maybe_unused]] ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| LOG(FATAL) << "Reference not expected here."; |
| } |
| }; |
| |
| ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) { |
| DCHECK(obj != nullptr); |
| DCHECK(!IsInBootImage(obj)); |
| auto it = native_object_relocations_.find(obj); |
| CHECK(it != native_object_relocations_.end()) << obj << " spaces " |
| << Runtime::Current()->GetHeap()->DumpSpaces(); |
| return it->second; |
| } |
| |
| template <typename T> |
| std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) { |
| std::ostringstream oss; |
| oss << ptr; |
| return oss.str(); |
| } |
| |
| template <> |
| std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return ArtMethod::PrettyMethod(method); |
| } |
| |
| template <typename T> |
| T* ImageWriter::NativeLocationInImage(T* obj) { |
| if (obj == nullptr || IsInBootImage(obj)) { |
| return obj; |
| } else { |
| NativeObjectRelocation relocation = GetNativeRelocation(obj); |
| const ImageInfo& image_info = GetImageInfo(relocation.oat_index); |
| return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset); |
| } |
| } |
| |
| ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) { |
| // Fields are not individually stored in the native relocation map. Use the field array. |
| ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>(); |
| LengthPrefixedArray<ArtField>* src_fields = |
| src_field->IsStatic() ? declaring_class->GetSFieldsPtr() : declaring_class->GetIFieldsPtr(); |
| DCHECK(src_fields != nullptr); |
| LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields); |
| DCHECK(dst_fields != nullptr); |
| size_t field_offset = |
| reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields); |
| return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset); |
| } |
| |
| class ImageWriter::NativeLocationVisitor { |
| public: |
| explicit NativeLocationVisitor(ImageWriter* image_writer) |
| : image_writer_(image_writer) {} |
| |
| template <typename T> |
| T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (ptr != nullptr) { |
| image_writer_->CopyAndFixupPointer(dest_addr, ptr); |
| } |
| // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer() |
| // with the value we return here. We should try to avoid the duplicate work. |
| return image_writer_->NativeLocationInImage(ptr); |
| } |
| |
| private: |
| ImageWriter* const image_writer_; |
| }; |
| |
| void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { |
| orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this)); |
| FixupClassVisitor visitor(this, copy); |
| ObjPtr<mirror::Object>(orig)->VisitReferences< |
| /*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor); |
| |
| if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) { |
| // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring |
| // values to the parent of that class. |
| // |
| // Every time this happens, the parent class has to mutate to increment |
| // the "Next" value. |
| // |
| // If any of these parents are in the boot image, the changes [in the parents] |
| // would be lost when the app image is reloaded. |
| // |
| // To prevent newly loaded classes (not in the app image) from being reassigned |
| // the same bitstring value as an existing app image class, uninitialize |
| // all the classes in the app image. |
| // |
| // On startup, the class linker will then re-initialize all the app |
| // image bitstrings. See also ClassLinker::AddImageSpace. |
| // |
| // FIXME: Deal with boot image extensions. |
| MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); |
| // Lock every time to prevent a dcheck failure when we suspend with the lock held. |
| SubtypeCheck<mirror::Class*>::ForceUninitialize(copy); |
| } |
| |
| // Remove the clinitThreadId. This is required for image determinism. |
| copy->SetClinitThreadId(static_cast<pid_t>(0)); |
| // We never emit kRetryVerificationAtRuntime, instead we mark the class as |
| // resolved and the class will therefore be re-verified at runtime. |
| if (orig->ShouldVerifyAtRuntime()) { |
| copy->SetStatusInternal(ClassStatus::kResolved); |
| } |
| } |
| |
| void ImageWriter::FixupObject(Object* orig, Object* copy) { |
| DCHECK(orig != nullptr); |
| DCHECK(copy != nullptr); |
| if (kUseBakerReadBarrier) { |
| orig->AssertReadBarrierState(); |
| } |
| ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| if (klass->IsClassClass()) { |
| FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy)); |
| } else { |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = |
| Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>(); |
| if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) { |
| // Make sure all image strings have the hash code calculated, even if they are not interned. |
| down_cast<mirror::String*>(copy)->GetHashCode(); |
| } else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) || |
| klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) { |
| // Need to update the ArtMethod. |
| auto* dest = down_cast<mirror::Executable*>(copy); |
| auto* src = down_cast<mirror::Executable*>(orig); |
| ArtMethod* src_method = src->GetArtMethod(); |
| CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method); |
| } else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) || |
| klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) { |
| // Need to update the ArtField. |
| auto* dest = down_cast<mirror::FieldVarHandle*>(copy); |
| auto* src = down_cast<mirror::FieldVarHandle*>(orig); |
| ArtField* src_field = src->GetArtField(); |
| CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field); |
| } else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) { |
| down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr); |
| down_cast<mirror::DexCache*>(copy)->ResetNativeArrays(); |
| } else if (klass->IsClassLoaderClass()) { |
| mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy); |
| // If src is a ClassLoader, set the class table to null so that it gets recreated by the |
| // ClassLinker. |
| copy_loader->SetClassTable(nullptr); |
| // Also set allocator to null to be safe. The allocator is created when we create the class |
| // table. We also never expect to unload things in the image since they are held live as |
| // roots. |
| copy_loader->SetAllocator(nullptr); |
| } |
| FixupVisitor visitor(this, copy); |
| orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>( |
| visitor, visitor); |
| } |
| } |
| |
| const uint8_t* ImageWriter::GetOatAddress(StubType type) const { |
| DCHECK_LE(type, StubType::kLast); |
| // If we are compiling a boot image extension or app image, |
| // we need to use the stubs of the primary boot image. |
| if (!compiler_options_.IsBootImage()) { |
| // Use the current image pointers. |
| const std::vector<gc::space::ImageSpace*>& image_spaces = |
| Runtime::Current()->GetHeap()->GetBootImageSpaces(); |
| DCHECK(!image_spaces.empty()); |
| const OatFile* oat_file = image_spaces[0]->GetOatFile(); |
| CHECK(oat_file != nullptr); |
| const OatHeader& header = oat_file->GetOatHeader(); |
| return header.GetOatAddress(type); |
| } |
| const ImageInfo& primary_image_info = GetImageInfo(0); |
| return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info); |
| } |
| |
| const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) { |
| DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod(); |
| DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod(); |
| DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod(); |
| DCHECK(method->IsInvokable()) << method->PrettyMethod(); |
| DCHECK(!IsInBootImage(method)) << method->PrettyMethod(); |
| |
| // Use original code if it exists. Otherwise, set the code pointer to the resolution |
| // trampoline. |
| |
| // Quick entrypoint: |
| const void* quick_oat_entry_point = |
| method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_); |
| const uint8_t* quick_code; |
| |
| if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) { |
| DCHECK(method->IsCopied()); |
| // If the code is not in the oat file corresponding to this image (e.g. default methods) |
| quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point); |
| } else { |
| uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point); |
| quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info); |
| } |
| |
| bool still_needs_clinit_check = method->StillNeedsClinitCheck<kWithoutReadBarrier>(); |
| |
| if (quick_code == nullptr) { |
| // If we don't have code, use generic jni / interpreter. |
| if (method->IsNative()) { |
| // The generic JNI trampolines performs class initialization check if needed. |
| quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline); |
| } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) { |
| // The nterp trampoline doesn't do initialization checks, so install the |
| // resolution stub if needed. |
| if (still_needs_clinit_check) { |
| quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline); |
| } else { |
| quick_code = GetOatAddress(StubType::kNterpTrampoline); |
| } |
| } else { |
| // The interpreter brige performs class initialization check if needed. |
| quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge); |
| } |
| } else if (still_needs_clinit_check && !compiler_options_.ShouldCompileWithClinitCheck(method)) { |
| // If we do have code but the method needs a class initialization check before calling |
| // that code, install the resolution stub that will perform the check. |
| quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline); |
| } |
| return quick_code; |
| } |
| |
| void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, |
| ArtMethod* copy, |
| size_t oat_index) { |
| if (orig->IsAbstract()) { |
| // Ignore the single-implementation info for abstract method. |
| // Do this on orig instead of copy, otherwise there is a crash due to methods |
| // are copied before classes. |
| // TODO: handle fixup of single-implementation method for abstract method. |
| orig->SetHasSingleImplementation(false); |
| orig->SetSingleImplementation( |
| nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); |
| } |
| |
| if (!orig->IsRuntimeMethod()) { |
| // If we're compiling a boot image and we have a profile, set methods as |
| // being shared memory (to avoid dirtying them with hotness counter). We |
| // expect important methods to be AOT, and non-important methods to be run |
| // in the interpreter. |
| if (CompilerFilter::DependsOnProfile(compiler_options_.GetCompilerFilter()) && |
| (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())) { |
| orig->SetMemorySharedMethod(); |
| } |
| } |
| |
| memcpy(copy, orig, ArtMethod::Size(target_ptr_size_)); |
| |
| CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(), |
| orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>()); |
| ResetNterpFastPathFlags(copy, orig); |
| |
| // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to |
| // oat_begin_ |
| |
| // The resolution method has a special trampoline to call. |
| Runtime* runtime = Runtime::Current(); |
| const void* quick_code; |
| if (orig->IsRuntimeMethod()) { |
| ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_); |
| if (orig_table != nullptr) { |
| // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method. |
| quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline); |
| CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table); |
| } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) { |
| quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline); |
| // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code . |
| const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline); |
| copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_); |
| } else { |
| bool found_one = false; |
| for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) { |
| auto idx = static_cast<CalleeSaveType>(i); |
| if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) { |
| found_one = true; |
| break; |
| } |
| } |
| CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod(); |
| CHECK(copy->IsRuntimeMethod()); |
| CHECK(copy->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_) == nullptr); |
| quick_code = nullptr; |
| } |
| } else { |
| // We assume all methods have code. If they don't currently then we set them to the use the |
| // resolution trampoline. Abstract methods never have code and so we need to make sure their |
| // use results in an AbstractMethodError. We use the interpreter to achieve this. |
| if (UNLIKELY(!orig->IsInvokable())) { |
| quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge); |
| } else { |
| const ImageInfo& image_info = image_infos_[oat_index]; |
| quick_code = GetQuickCode(orig, image_info); |
| |
| // JNI entrypoint: |
| if (orig->IsNative()) { |
| // The native method's pointer is set to a stub to lookup via dlsym. |
| // Note this is not the code_ pointer, that is handled above. |
| StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline |
| : StubType::kJNIDlsymLookupTrampoline; |
| copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_); |
| } else if (!orig->HasCodeItem()) { |
| CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr); |
| } else { |
| CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr); |
| } |
| } |
| } |
| if (quick_code != nullptr) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); |
| } |
| } |
| |
| size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const { |
| DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins); |
| return std::accumulate(&bin_slot_sizes_[0], |
| &bin_slot_sizes_[0] + static_cast<size_t>(up_to), |
| /*init*/ static_cast<size_t>(0)); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { |
| // These values may need to get updated if more bins are added to the enum Bin |
| static_assert(kBinBits == 3, "wrong number of bin bits"); |
| static_assert(kBinShift == 27, "wrong number of shift"); |
| static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); |
| |
| DCHECK_LT(GetBin(), Bin::kMirrorCount); |
| DCHECK_ALIGNED(GetOffset(), kObjectAlignment); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) |
| : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { |
| DCHECK_EQ(index, GetOffset()); |
| } |
| |
| ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { |
| return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); |
| } |
| |
| uint32_t ImageWriter::BinSlot::GetOffset() const { |
| return lockword_ & ~kBinMask; |
| } |
| |
| ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) { |
| switch (type) { |
| case NativeObjectRelocationType::kArtFieldArray: |
| return Bin::kArtField; |
| case NativeObjectRelocationType::kArtMethodClean: |
| case NativeObjectRelocationType::kArtMethodArrayClean: |
| return Bin::kArtMethodClean; |
| case NativeObjectRelocationType::kArtMethodDirty: |
| case NativeObjectRelocationType::kArtMethodArrayDirty: |
| return Bin::kArtMethodDirty; |
| case NativeObjectRelocationType::kRuntimeMethod: |
| return Bin::kRuntimeMethod; |
| case NativeObjectRelocationType::kIMTable: |
| return Bin::kImTable; |
| case NativeObjectRelocationType::kIMTConflictTable: |
| return Bin::kIMTConflictTable; |
| case NativeObjectRelocationType::kGcRootPointer: |
| return Bin::kMetadata; |
| } |
| UNREACHABLE(); |
| } |
| |
| size_t ImageWriter::GetOatIndex(mirror::Object* obj) const { |
| if (!IsMultiImage()) { |
| DCHECK(oat_index_map_.empty()); |
| return GetDefaultOatIndex(); |
| } |
| auto it = oat_index_map_.find(obj); |
| DCHECK(it != oat_index_map_.end()) << obj; |
| return it->second; |
| } |
| |
| size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const { |
| if (!IsMultiImage()) { |
| return GetDefaultOatIndex(); |
| } |
| auto it = dex_file_oat_index_map_.find(dex_file); |
| DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); |
| return it->second; |
| } |
| |
| size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const { |
| while (klass->IsArrayClass()) { |
| klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>(); |
| } |
| if (UNLIKELY(klass->IsPrimitive())) { |
| DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr); |
| return GetDefaultOatIndex(); |
| } else { |
| DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr); |
| return GetOatIndexForDexFile(&klass->GetDexFile()); |
| } |
| } |
| |
| void ImageWriter::UpdateOatFileLayout(size_t oat_index, |
| size_t oat_loaded_size, |
| size_t oat_data_offset, |
| size_t oat_data_size) { |
| DCHECK_GE(oat_loaded_size, oat_data_offset); |
| DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size); |
| |
| const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_; |
| DCHECK(images_end != nullptr); // Image space must be ready. |
| for (const ImageInfo& info : image_infos_) { |
| DCHECK_LE(info.image_begin_ + info.image_size_, images_end); |
| } |
| |
| ImageInfo& cur_image_info = GetImageInfo(oat_index); |
| cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_; |
| cur_image_info.oat_loaded_size_ = oat_loaded_size; |
| cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset; |
| cur_image_info.oat_size_ = oat_data_size; |
| |
| if (compiler_options_.IsAppImage()) { |
| CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image."; |
| return; |
| } |
| |
| // Update the oat_offset of the next image info. |
| if (oat_index + 1u != oat_filenames_.size()) { |
| // There is a following one. |
| ImageInfo& next_image_info = GetImageInfo(oat_index + 1u); |
| next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size; |
| } |
| } |
| |
| void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) { |
| ImageInfo& cur_image_info = GetImageInfo(oat_index); |
| cur_image_info.oat_checksum_ = oat_header.GetChecksum(); |
| |
| if (oat_index == GetDefaultOatIndex()) { |
| // Primary oat file, read the trampolines. |
| cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline, |
| oat_header.GetJniDlsymLookupTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline, |
| oat_header.GetJniDlsymLookupCriticalTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline, |
| oat_header.GetQuickGenericJniTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline, |
| oat_header.GetQuickImtConflictTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline, |
| oat_header.GetQuickResolutionTrampolineOffset()); |
| cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge, |
| oat_header.GetQuickToInterpreterBridgeOffset()); |
| cur_image_info.SetStubOffset(StubType::kNterpTrampoline, |
| oat_header.GetNterpTrampolineOffset()); |
| } |
| } |
| |
| ImageWriter::ImageWriter(const CompilerOptions& compiler_options, |
| uintptr_t image_begin, |
| ImageHeader::StorageMode image_storage_mode, |
| const std::vector<std::string>& oat_filenames, |
| const HashMap<const DexFile*, size_t>& dex_file_oat_index_map, |
| jobject class_loader, |
| const std::vector<std::string>* dirty_image_objects) |
| : compiler_options_(compiler_options), |
| boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()), |
| boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()), |
| global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)), |
| image_objects_offset_begin_(0), |
| target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())), |
| image_infos_(oat_filenames.size()), |
| dirty_methods_(0u), |
| clean_methods_(0u), |
| app_class_loader_(class_loader), |
| boot_image_live_objects_(nullptr), |
| image_roots_(), |
| image_storage_mode_(image_storage_mode), |
| oat_filenames_(oat_filenames), |
| dex_file_oat_index_map_(dex_file_oat_index_map), |
| dirty_image_objects_(dirty_image_objects) { |
| DCHECK(compiler_options.IsBootImage() || |
| compiler_options.IsBootImageExtension() || |
| compiler_options.IsAppImage()); |
| DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u); |
| DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u); |
| CHECK_NE(image_begin, 0U); |
| std::fill_n(image_methods_, arraysize(image_methods_), nullptr); |
| CHECK_EQ(compiler_options.IsBootImage(), |
| Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) |
| << "Compiling a boot image should occur iff there are no boot image spaces loaded"; |
| if (compiler_options_.IsAppImage()) { |
| // Make sure objects are not crossing region boundaries for app images. |
| region_size_ = gc::space::RegionSpace::kRegionSize; |
| } |
| } |
| |
| ImageWriter::~ImageWriter() { |
| if (!image_roots_.empty()) { |
| Thread* self = Thread::Current(); |
| JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm(); |
| for (jobject image_roots : image_roots_) { |
| vm->DeleteGlobalRef(self, image_roots); |
| } |
| } |
| } |
| |
| ImageWriter::ImageInfo::ImageInfo() |
| : intern_table_(), |
| class_table_() {} |
| |
| template <typename DestType> |
| void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) { |
| static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value || |
| std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value, |
| "DestType must be a Compressed-/HeapReference<Object>."); |
| dest->Assign(GetImageAddress(src.Ptr())); |
| } |
| |
| template <typename ValueType> |
| void ImageWriter::CopyAndFixupPointer( |
| void** target, ValueType src_value, PointerSize pointer_size) { |
| DCHECK(src_value != nullptr); |
| void* new_value = NativeLocationInImage(src_value); |
| DCHECK(new_value != nullptr); |
| if (pointer_size == PointerSize::k32) { |
| *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value); |
| } else { |
| *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value); |
| } |
| } |
| |
| template <typename ValueType> |
| void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CopyAndFixupPointer(target, src_value, target_ptr_size_); |
| } |
| |
| template <typename ValueType> |
| void ImageWriter::CopyAndFixupPointer( |
| void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) { |
| void** target = |
| reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value()); |
| return CopyAndFixupPointer(target, src_value, pointer_size); |
| } |
| |
| template <typename ValueType> |
| void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) { |
| return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_); |
| } |
| |
| void ImageWriter::ResetNterpFastPathFlags(ArtMethod* copy, ArtMethod* orig) { |
| DCHECK(copy != nullptr); |
| DCHECK(orig != nullptr); |
| if (orig->IsRuntimeMethod() || orig->IsProxyMethod()) { |
| return; // !IsRuntimeMethod() and !IsProxyMethod() for GetShortyView() |
| } |
| |
| // Clear old nterp fast path flags. |
| if (copy->HasNterpEntryPointFastPathFlag()) { |
| copy->ClearNterpEntryPointFastPathFlag(); // Flag has other uses, clear it conditionally. |
| } |
| copy->ClearNterpInvokeFastPathFlag(); |
| |
| // Check if nterp fast paths available on target ISA. |
| std::string_view shorty = orig->GetShortyView(); // Use orig, copy's class not yet ready. |
| uint32_t new_nterp_flags = |
| GetNterpFastPathFlags(shorty, copy->GetAccessFlags(), compiler_options_.GetInstructionSet()); |
| |
| // Set new nterp fast path flags, if approporiate. |
| if ((new_nterp_flags & kAccNterpEntryPointFastPathFlag) != 0) { |
| copy->SetNterpEntryPointFastPathFlag(); |
| } |
| if ((new_nterp_flags & kAccNterpInvokeFastPathFlag) != 0) { |
| copy->SetNterpInvokeFastPathFlag(); |
| } |
| } |
| |
| } // namespace linker |
| } // namespace art |