blob: 08b8a3fb78ad2b430fc030379f81b198e6197823 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "scheduler_arm64.h"
#include "code_generator_utils.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
namespace art HIDDEN {
namespace arm64 {
static constexpr uint32_t kArm64MemoryLoadLatency = 5;
static constexpr uint32_t kArm64MemoryStoreLatency = 3;
static constexpr uint32_t kArm64CallInternalLatency = 10;
static constexpr uint32_t kArm64CallLatency = 5;
// AArch64 instruction latency.
// We currently assume that all arm64 CPUs share the same instruction latency list.
static constexpr uint32_t kArm64IntegerOpLatency = 2;
static constexpr uint32_t kArm64FloatingPointOpLatency = 5;
static constexpr uint32_t kArm64DataProcWithShifterOpLatency = 3;
static constexpr uint32_t kArm64DivDoubleLatency = 30;
static constexpr uint32_t kArm64DivFloatLatency = 15;
static constexpr uint32_t kArm64DivIntegerLatency = 5;
static constexpr uint32_t kArm64LoadStringInternalLatency = 7;
static constexpr uint32_t kArm64MulFloatingPointLatency = 6;
static constexpr uint32_t kArm64MulIntegerLatency = 6;
static constexpr uint32_t kArm64TypeConversionFloatingPointIntegerLatency = 5;
static constexpr uint32_t kArm64BranchLatency = kArm64IntegerOpLatency;
static constexpr uint32_t kArm64SIMDFloatingPointOpLatency = 10;
static constexpr uint32_t kArm64SIMDIntegerOpLatency = 6;
static constexpr uint32_t kArm64SIMDMemoryLoadLatency = 10;
static constexpr uint32_t kArm64SIMDMemoryStoreLatency = 6;
static constexpr uint32_t kArm64SIMDMulFloatingPointLatency = 12;
static constexpr uint32_t kArm64SIMDMulIntegerLatency = 12;
static constexpr uint32_t kArm64SIMDReplicateOpLatency = 16;
static constexpr uint32_t kArm64SIMDDivDoubleLatency = 60;
static constexpr uint32_t kArm64SIMDDivFloatLatency = 30;
static constexpr uint32_t kArm64SIMDTypeConversionInt2FPLatency = 10;
class SchedulingLatencyVisitorARM64 final : public SchedulingLatencyVisitor {
public:
// Default visitor for instructions not handled specifically below.
void VisitInstruction([[maybe_unused]] HInstruction*) override {
last_visited_latency_ = kArm64IntegerOpLatency;
}
// We add a second unused parameter to be able to use this macro like the others
// defined in `nodes.h`.
#define FOR_EACH_SCHEDULED_COMMON_INSTRUCTION(M) \
M(ArrayGet , unused) \
M(ArrayLength , unused) \
M(ArraySet , unused) \
M(BoundsCheck , unused) \
M(Div , unused) \
M(InstanceFieldGet , unused) \
M(InstanceOf , unused) \
M(LoadString , unused) \
M(Mul , unused) \
M(NewArray , unused) \
M(NewInstance , unused) \
M(Rem , unused) \
M(StaticFieldGet , unused) \
M(SuspendCheck , unused) \
M(TypeConversion , unused) \
M(VecReplicateScalar , unused) \
M(VecExtractScalar , unused) \
M(VecReduce , unused) \
M(VecCnv , unused) \
M(VecNeg , unused) \
M(VecAbs , unused) \
M(VecNot , unused) \
M(VecAdd , unused) \
M(VecHalvingAdd , unused) \
M(VecSub , unused) \
M(VecMul , unused) \
M(VecDiv , unused) \
M(VecMin , unused) \
M(VecMax , unused) \
M(VecAnd , unused) \
M(VecAndNot , unused) \
M(VecOr , unused) \
M(VecXor , unused) \
M(VecShl , unused) \
M(VecShr , unused) \
M(VecUShr , unused) \
M(VecSetScalars , unused) \
M(VecMultiplyAccumulate, unused) \
M(VecLoad , unused) \
M(VecStore , unused)
#define FOR_EACH_SCHEDULED_ABSTRACT_INSTRUCTION(M) \
M(BinaryOperation , unused) \
M(Invoke , unused)
#define FOR_EACH_SCHEDULED_SHARED_INSTRUCTION(M) \
M(BitwiseNegatedRight, unused) \
M(MultiplyAccumulate, unused) \
M(IntermediateAddress, unused) \
M(IntermediateAddressIndex, unused) \
M(DataProcWithShifterOp, unused)
#define DECLARE_VISIT_INSTRUCTION(type, unused) \
void Visit##type(H##type* instruction) override;
FOR_EACH_SCHEDULED_COMMON_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_SCHEDULED_ABSTRACT_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_SCHEDULED_SHARED_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_ARM64(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
void HandleSimpleArithmeticSIMD(HVecOperation *instr);
void HandleVecAddress(HVecMemoryOperation* instruction, size_t size);
};
void SchedulingLatencyVisitorARM64::VisitBinaryOperation(HBinaryOperation* instr) {
last_visited_latency_ = DataType::IsFloatingPointType(instr->GetResultType())
? kArm64FloatingPointOpLatency
: kArm64IntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitBitwiseNegatedRight(
[[maybe_unused]] HBitwiseNegatedRight*) {
last_visited_latency_ = kArm64IntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitDataProcWithShifterOp(
[[maybe_unused]] HDataProcWithShifterOp*) {
last_visited_latency_ = kArm64DataProcWithShifterOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitIntermediateAddress(
[[maybe_unused]] HIntermediateAddress*) {
// Although the code generated is a simple `add` instruction, we found through empirical results
// that spacing it from its use in memory accesses was beneficial.
last_visited_latency_ = kArm64IntegerOpLatency + 2;
}
void SchedulingLatencyVisitorARM64::VisitIntermediateAddressIndex(
[[maybe_unused]] HIntermediateAddressIndex* instr) {
// Although the code generated is a simple `add` instruction, we found through empirical results
// that spacing it from its use in memory accesses was beneficial.
last_visited_latency_ = kArm64DataProcWithShifterOpLatency + 2;
}
void SchedulingLatencyVisitorARM64::VisitMultiplyAccumulate([[maybe_unused]] HMultiplyAccumulate*) {
last_visited_latency_ = kArm64MulIntegerLatency;
}
void SchedulingLatencyVisitorARM64::VisitArrayGet(HArrayGet* instruction) {
if (!instruction->GetArray()->IsIntermediateAddress()) {
// Take the intermediate address computation into account.
last_visited_internal_latency_ = kArm64IntegerOpLatency;
}
last_visited_latency_ = kArm64MemoryLoadLatency;
}
void SchedulingLatencyVisitorARM64::VisitArrayLength([[maybe_unused]] HArrayLength*) {
last_visited_latency_ = kArm64MemoryLoadLatency;
}
void SchedulingLatencyVisitorARM64::VisitArraySet([[maybe_unused]] HArraySet*) {
last_visited_latency_ = kArm64MemoryStoreLatency;
}
void SchedulingLatencyVisitorARM64::VisitBoundsCheck([[maybe_unused]] HBoundsCheck*) {
last_visited_internal_latency_ = kArm64IntegerOpLatency;
// Users do not use any data results.
last_visited_latency_ = 0;
}
void SchedulingLatencyVisitorARM64::VisitDiv(HDiv* instr) {
DataType::Type type = instr->GetResultType();
switch (type) {
case DataType::Type::kFloat32:
last_visited_latency_ = kArm64DivFloatLatency;
break;
case DataType::Type::kFloat64:
last_visited_latency_ = kArm64DivDoubleLatency;
break;
default:
// Follow the code path used by code generation.
if (instr->GetRight()->IsConstant()) {
int64_t imm = Int64FromConstant(instr->GetRight()->AsConstant());
if (imm == 0) {
last_visited_internal_latency_ = 0;
last_visited_latency_ = 0;
} else if (imm == 1 || imm == -1) {
last_visited_internal_latency_ = 0;
last_visited_latency_ = kArm64IntegerOpLatency;
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency;
last_visited_latency_ = kArm64IntegerOpLatency;
} else {
DCHECK(imm <= -2 || imm >= 2);
last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency;
last_visited_latency_ = kArm64MulIntegerLatency;
}
} else {
last_visited_latency_ = kArm64DivIntegerLatency;
}
break;
}
}
void SchedulingLatencyVisitorARM64::VisitInstanceFieldGet([[maybe_unused]] HInstanceFieldGet*) {
last_visited_latency_ = kArm64MemoryLoadLatency;
}
void SchedulingLatencyVisitorARM64::VisitInstanceOf([[maybe_unused]] HInstanceOf*) {
last_visited_internal_latency_ = kArm64CallInternalLatency;
last_visited_latency_ = kArm64IntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitInvoke([[maybe_unused]] HInvoke*) {
last_visited_internal_latency_ = kArm64CallInternalLatency;
last_visited_latency_ = kArm64CallLatency;
}
void SchedulingLatencyVisitorARM64::VisitLoadString([[maybe_unused]] HLoadString*) {
last_visited_internal_latency_ = kArm64LoadStringInternalLatency;
last_visited_latency_ = kArm64MemoryLoadLatency;
}
void SchedulingLatencyVisitorARM64::VisitMul(HMul* instr) {
last_visited_latency_ = DataType::IsFloatingPointType(instr->GetResultType())
? kArm64MulFloatingPointLatency
: kArm64MulIntegerLatency;
}
void SchedulingLatencyVisitorARM64::VisitNewArray([[maybe_unused]] HNewArray*) {
last_visited_internal_latency_ = kArm64IntegerOpLatency + kArm64CallInternalLatency;
last_visited_latency_ = kArm64CallLatency;
}
void SchedulingLatencyVisitorARM64::VisitNewInstance(HNewInstance* instruction) {
if (instruction->IsStringAlloc()) {
last_visited_internal_latency_ = 2 + kArm64MemoryLoadLatency + kArm64CallInternalLatency;
} else {
last_visited_internal_latency_ = kArm64CallInternalLatency;
}
last_visited_latency_ = kArm64CallLatency;
}
void SchedulingLatencyVisitorARM64::VisitRem(HRem* instruction) {
if (DataType::IsFloatingPointType(instruction->GetResultType())) {
last_visited_internal_latency_ = kArm64CallInternalLatency;
last_visited_latency_ = kArm64CallLatency;
} else {
// Follow the code path used by code generation.
if (instruction->GetRight()->IsConstant()) {
int64_t imm = Int64FromConstant(instruction->GetRight()->AsConstant());
if (imm == 0) {
last_visited_internal_latency_ = 0;
last_visited_latency_ = 0;
} else if (imm == 1 || imm == -1) {
last_visited_internal_latency_ = 0;
last_visited_latency_ = kArm64IntegerOpLatency;
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency;
last_visited_latency_ = kArm64IntegerOpLatency;
} else {
DCHECK(imm <= -2 || imm >= 2);
last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency;
last_visited_latency_ = kArm64MulIntegerLatency;
}
} else {
last_visited_internal_latency_ = kArm64DivIntegerLatency;
last_visited_latency_ = kArm64MulIntegerLatency;
}
}
}
void SchedulingLatencyVisitorARM64::VisitStaticFieldGet([[maybe_unused]] HStaticFieldGet*) {
last_visited_latency_ = kArm64MemoryLoadLatency;
}
void SchedulingLatencyVisitorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
DCHECK_IMPLIES(block->GetLoopInformation() == nullptr,
block->IsEntryBlock() && instruction->GetNext()->IsGoto());
// Users do not use any data results.
last_visited_latency_ = 0;
}
void SchedulingLatencyVisitorARM64::VisitTypeConversion(HTypeConversion* instr) {
if (DataType::IsFloatingPointType(instr->GetResultType()) ||
DataType::IsFloatingPointType(instr->GetInputType())) {
last_visited_latency_ = kArm64TypeConversionFloatingPointIntegerLatency;
} else {
last_visited_latency_ = kArm64IntegerOpLatency;
}
}
void SchedulingLatencyVisitorARM64::HandleSimpleArithmeticSIMD(HVecOperation *instr) {
if (DataType::IsFloatingPointType(instr->GetPackedType())) {
last_visited_latency_ = kArm64SIMDFloatingPointOpLatency;
} else {
last_visited_latency_ = kArm64SIMDIntegerOpLatency;
}
}
void SchedulingLatencyVisitorARM64::VisitVecReplicateScalar(
[[maybe_unused]] HVecReplicateScalar* instr) {
last_visited_latency_ = kArm64SIMDReplicateOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecExtractScalar(HVecExtractScalar* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecReduce(HVecReduce* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecCnv([[maybe_unused]] HVecCnv* instr) {
last_visited_latency_ = kArm64SIMDTypeConversionInt2FPLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecNeg(HVecNeg* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecAbs(HVecAbs* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecNot(HVecNot* instr) {
if (instr->GetPackedType() == DataType::Type::kBool) {
last_visited_internal_latency_ = kArm64SIMDIntegerOpLatency;
}
last_visited_latency_ = kArm64SIMDIntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecAdd(HVecAdd* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecHalvingAdd(HVecHalvingAdd* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecSub(HVecSub* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecMul(HVecMul* instr) {
if (DataType::IsFloatingPointType(instr->GetPackedType())) {
last_visited_latency_ = kArm64SIMDMulFloatingPointLatency;
} else {
last_visited_latency_ = kArm64SIMDMulIntegerLatency;
}
}
void SchedulingLatencyVisitorARM64::VisitVecDiv(HVecDiv* instr) {
if (instr->GetPackedType() == DataType::Type::kFloat32) {
last_visited_latency_ = kArm64SIMDDivFloatLatency;
} else {
DCHECK(instr->GetPackedType() == DataType::Type::kFloat64);
last_visited_latency_ = kArm64SIMDDivDoubleLatency;
}
}
void SchedulingLatencyVisitorARM64::VisitVecMin(HVecMin* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecMax(HVecMax* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecAnd([[maybe_unused]] HVecAnd* instr) {
last_visited_latency_ = kArm64SIMDIntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecAndNot([[maybe_unused]] HVecAndNot* instr) {
last_visited_latency_ = kArm64SIMDIntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecOr([[maybe_unused]] HVecOr* instr) {
last_visited_latency_ = kArm64SIMDIntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecXor([[maybe_unused]] HVecXor* instr) {
last_visited_latency_ = kArm64SIMDIntegerOpLatency;
}
void SchedulingLatencyVisitorARM64::VisitVecShl(HVecShl* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecShr(HVecShr* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecUShr(HVecUShr* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecSetScalars(HVecSetScalars* instr) {
HandleSimpleArithmeticSIMD(instr);
}
void SchedulingLatencyVisitorARM64::VisitVecMultiplyAccumulate(
[[maybe_unused]] HVecMultiplyAccumulate* instr) {
last_visited_latency_ = kArm64SIMDMulIntegerLatency;
}
void SchedulingLatencyVisitorARM64::HandleVecAddress(HVecMemoryOperation* instruction,
[[maybe_unused]] size_t size) {
HInstruction* index = instruction->InputAt(1);
if (!index->IsConstant()) {
last_visited_internal_latency_ += kArm64DataProcWithShifterOpLatency;
}
}
void SchedulingLatencyVisitorARM64::VisitVecLoad(HVecLoad* instr) {
last_visited_internal_latency_ = 0;
size_t size = DataType::Size(instr->GetPackedType());
if (instr->GetPackedType() == DataType::Type::kUint16
&& mirror::kUseStringCompression
&& instr->IsStringCharAt()) {
// Set latencies for the uncompressed case.
last_visited_internal_latency_ += kArm64MemoryLoadLatency + kArm64BranchLatency;
HandleVecAddress(instr, size);
last_visited_latency_ = kArm64SIMDMemoryLoadLatency;
} else {
HandleVecAddress(instr, size);
last_visited_latency_ = kArm64SIMDMemoryLoadLatency;
}
}
void SchedulingLatencyVisitorARM64::VisitVecStore(HVecStore* instr) {
last_visited_internal_latency_ = 0;
size_t size = DataType::Size(instr->GetPackedType());
HandleVecAddress(instr, size);
last_visited_latency_ = kArm64SIMDMemoryStoreLatency;
}
bool HSchedulerARM64::IsSchedulable(const HInstruction* instruction) const {
switch (instruction->GetKind()) {
#define SCHEDULABLE_CASE(type, unused) \
case HInstruction::InstructionKind::k##type: \
return true;
FOR_EACH_SCHEDULED_SHARED_INSTRUCTION(SCHEDULABLE_CASE)
FOR_EACH_CONCRETE_INSTRUCTION_ARM64(SCHEDULABLE_CASE)
FOR_EACH_SCHEDULED_COMMON_INSTRUCTION(SCHEDULABLE_CASE)
#undef SCHEDULABLE_CASE
default:
return HScheduler::IsSchedulable(instruction);
}
}
std::pair<SchedulingGraph, ScopedArenaVector<SchedulingNode*>>
HSchedulerARM64::BuildSchedulingGraph(
HBasicBlock* block,
ScopedArenaAllocator* allocator,
const HeapLocationCollector* heap_location_collector) {
SchedulingLatencyVisitorARM64 latency_visitor;
return HScheduler::BuildSchedulingGraph(
block, allocator, heap_location_collector, &latency_visitor);
}
} // namespace arm64
} // namespace art