blob: 7fdb015e56f675433c894bce3da4ebc07771e66c [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_riscv64.h"
#include "code_generator_riscv64.h"
#include "intrinsic_objects.h"
#include "intrinsics_utils.h"
#include "well_known_classes.h"
namespace art HIDDEN {
namespace riscv64 {
using IntrinsicSlowPathRISCV64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorRISCV64,
SlowPathCodeRISCV64,
Riscv64Assembler>;
#define __ assembler->
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
class ReadBarrierSystemArrayCopySlowPathRISCV64 : public SlowPathCodeRISCV64 {
public:
ReadBarrierSystemArrayCopySlowPathRISCV64(HInstruction* instruction, Location tmp)
: SlowPathCodeRISCV64(instruction), tmp_(tmp) {}
void EmitNativeCode(CodeGenerator* codegen_in) override {
DCHECK(codegen_in->EmitBakerReadBarrier());
CodeGeneratorRISCV64* codegen = down_cast<CodeGeneratorRISCV64*>(codegen_in);
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
DCHECK(instruction_->IsInvokeStaticOrDirect())
<< "Unexpected instruction in read barrier arraycopy slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
const int32_t element_size = DataType::Size(DataType::Type::kReference);
XRegister src_curr_addr = locations->GetTemp(0).AsRegister<XRegister>();
XRegister dst_curr_addr = locations->GetTemp(1).AsRegister<XRegister>();
XRegister src_stop_addr = locations->GetTemp(2).AsRegister<XRegister>();
XRegister tmp_reg = tmp_.AsRegister<XRegister>();
__ Bind(GetEntryLabel());
// The source range and destination pointer were initialized before entering the slow-path.
Riscv64Label slow_copy_loop;
__ Bind(&slow_copy_loop);
__ Loadwu(tmp_reg, src_curr_addr, 0);
codegen->MaybeUnpoisonHeapReference(tmp_reg);
// TODO: Inline the mark bit check before calling the runtime?
// tmp_reg = ReadBarrier::Mark(tmp_reg);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
// (See ReadBarrierMarkSlowPathRISCV64::EmitNativeCode for more
// explanations.)
int32_t entry_point_offset = ReadBarrierMarkEntrypointOffset(tmp_);
// This runtime call does not require a stack map.
codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
codegen->MaybePoisonHeapReference(tmp_reg);
__ Storew(tmp_reg, dst_curr_addr, 0);
__ Addi(src_curr_addr, src_curr_addr, element_size);
__ Addi(dst_curr_addr, dst_curr_addr, element_size);
__ Bne(src_curr_addr, src_stop_addr, &slow_copy_loop);
__ J(GetExitLabel());
}
const char* GetDescription() const override {
return "ReadBarrierSystemArrayCopySlowPathRISCV64";
}
private:
Location tmp_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathRISCV64);
};
bool IntrinsicLocationsBuilderRISCV64::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
return res->Intrinsified();
}
Riscv64Assembler* IntrinsicCodeGeneratorRISCV64::GetAssembler() {
return codegen_->GetAssembler();
}
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->GetType()));
LocationSummary* const locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType()));
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(1)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->GetType()));
LocationSummary* const locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType()));
}
static void CreateFpFpFpToFpNoOverlapLocations(ArenaAllocator* allocator, HInvoke* invoke) {
DCHECK_EQ(invoke->GetNumberOfArguments(), 3U);
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(1)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->InputAt(2)->GetType()));
DCHECK(DataType::IsFloatingPointType(invoke->GetType()));
LocationSummary* const locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetInAt(2, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
void IntrinsicLocationsBuilderRISCV64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
__ FMvXD(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsFpuRegister<FRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
__ FMvDX(locations->Out().AsFpuRegister<FRegister>(), locations->InAt(0).AsRegister<XRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
__ FMvXW(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsFpuRegister<FRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
__ FMvWX(locations->Out().AsFpuRegister<FRegister>(), locations->InAt(0).AsRegister<XRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitDoubleIsInfinite(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
XRegister out = locations->Out().AsRegister<XRegister>();
__ FClassD(out, locations->InAt(0).AsFpuRegister<FRegister>());
__ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
__ Snez(out, out);
}
void IntrinsicLocationsBuilderRISCV64::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitFloatIsInfinite(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
XRegister out = locations->Out().AsRegister<XRegister>();
__ FClassS(out, locations->InAt(0).AsFpuRegister<FRegister>());
__ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
__ Snez(out, out);
}
static void CreateIntToIntNoOverlapLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
template <typename EmitOp>
void EmitMemoryPeek(HInvoke* invoke, EmitOp&& emit_op) {
LocationSummary* locations = invoke->GetLocations();
emit_op(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPeekByte(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPeek(invoke, [&](XRegister rd, XRegister rs1) { __ Lb(rd, rs1, 0); });
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPeekIntNative(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPeek(invoke, [&](XRegister rd, XRegister rs1) { __ Lw(rd, rs1, 0); });
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPeekLongNative(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPeek(invoke, [&](XRegister rd, XRegister rs1) { __ Ld(rd, rs1, 0); });
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPeekShortNative(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPeek(invoke, [&](XRegister rd, XRegister rs1) { __ Lh(rd, rs1, 0); });
}
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
static void CreateIntIntToIntSlowPathCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Force kOutputOverlap; see comments in IntrinsicSlowPath::EmitNativeCode.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
template <typename EmitOp>
void EmitMemoryPoke(HInvoke* invoke, EmitOp&& emit_op) {
LocationSummary* locations = invoke->GetLocations();
emit_op(locations->InAt(1).AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPokeByte(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPoke(invoke, [&](XRegister rs2, XRegister rs1) { __ Sb(rs2, rs1, 0); });
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPokeIntNative(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPoke(invoke, [&](XRegister rs2, XRegister rs1) { __ Sw(rs2, rs1, 0); });
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPokeLongNative(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPoke(invoke, [&](XRegister rs2, XRegister rs1) { __ Sd(rs2, rs1, 0); });
}
void IntrinsicLocationsBuilderRISCV64::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMemoryPokeShortNative(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitMemoryPoke(invoke, [&](XRegister rs2, XRegister rs1) { __ Sh(rs2, rs1, 0); });
}
static void GenerateReverseBytes(CodeGeneratorRISCV64* codegen,
Location rd,
XRegister rs1,
DataType::Type type) {
Riscv64Assembler* assembler = codegen->GetAssembler();
switch (type) {
case DataType::Type::kUint16:
// There is no 16-bit reverse bytes instruction.
__ Rev8(rd.AsRegister<XRegister>(), rs1);
__ Srli(rd.AsRegister<XRegister>(), rd.AsRegister<XRegister>(), 48);
break;
case DataType::Type::kInt16:
// There is no 16-bit reverse bytes instruction.
__ Rev8(rd.AsRegister<XRegister>(), rs1);
__ Srai(rd.AsRegister<XRegister>(), rd.AsRegister<XRegister>(), 48);
break;
case DataType::Type::kInt32:
// There is no 32-bit reverse bytes instruction.
__ Rev8(rd.AsRegister<XRegister>(), rs1);
__ Srai(rd.AsRegister<XRegister>(), rd.AsRegister<XRegister>(), 32);
break;
case DataType::Type::kInt64:
__ Rev8(rd.AsRegister<XRegister>(), rs1);
break;
case DataType::Type::kFloat32:
// There is no 32-bit reverse bytes instruction.
__ Rev8(rs1, rs1); // Note: Clobbers `rs1`.
__ Srai(rs1, rs1, 32);
__ FMvWX(rd.AsFpuRegister<FRegister>(), rs1);
break;
case DataType::Type::kFloat64:
__ Rev8(rs1, rs1); // Note: Clobbers `rs1`.
__ FMvDX(rd.AsFpuRegister<FRegister>(), rs1);
break;
default:
LOG(FATAL) << "Unexpected type: " << type;
UNREACHABLE();
}
}
static void GenerateReverseBytes(CodeGeneratorRISCV64* codegen,
HInvoke* invoke,
DataType::Type type) {
DCHECK_EQ(type, invoke->GetType());
LocationSummary* locations = invoke->GetLocations();
GenerateReverseBytes(codegen, locations->Out(), locations->InAt(0).AsRegister<XRegister>(), type);
}
static void GenerateReverse(CodeGeneratorRISCV64* codegen, HInvoke* invoke, DataType::Type type) {
DCHECK_EQ(type, invoke->GetType());
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister in = locations->InAt(0).AsRegister<XRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
ScratchRegisterScope srs(assembler);
XRegister temp1 = srs.AllocateXRegister();
XRegister temp2 = srs.AllocateXRegister();
auto maybe_extend_mask = [type, assembler](XRegister mask, XRegister temp) {
if (type == DataType::Type::kInt64) {
__ Slli(temp, mask, 32);
__ Add(mask, mask, temp);
}
};
// Swap bits in bit pairs.
__ Li(temp1, 0x55555555);
maybe_extend_mask(temp1, temp2);
__ Srli(temp2, in, 1);
__ And(out, in, temp1);
__ And(temp2, temp2, temp1);
__ Sh1Add(out, out, temp2);
// Swap bit pairs in 4-bit groups.
__ Li(temp1, 0x33333333);
maybe_extend_mask(temp1, temp2);
__ Srli(temp2, out, 2);
__ And(out, out, temp1);
__ And(temp2, temp2, temp1);
__ Sh2Add(out, out, temp2);
// Swap 4-bit groups in 8-bit groups.
__ Li(temp1, 0x0f0f0f0f);
maybe_extend_mask(temp1, temp2);
__ Srli(temp2, out, 4);
__ And(out, out, temp1);
__ And(temp2, temp2, temp1);
__ Slli(out, out, 4);
__ Add(out, out, temp2);
GenerateReverseBytes(codegen, Location::RegisterLocation(out), out, type);
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerReverse(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerReverse(HInvoke* invoke) {
GenerateReverse(codegen_, invoke, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitLongReverse(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongReverse(HInvoke* invoke) {
GenerateReverse(codegen_, invoke, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerReverseBytes(HInvoke* invoke) {
GenerateReverseBytes(codegen_, invoke, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongReverseBytes(HInvoke* invoke) {
GenerateReverseBytes(codegen_, invoke, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitShortReverseBytes(HInvoke* invoke) {
GenerateReverseBytes(codegen_, invoke, DataType::Type::kInt16);
}
template <typename EmitOp>
void EmitIntegralUnOp(HInvoke* invoke, EmitOp&& emit_op) {
LocationSummary* locations = invoke->GetLocations();
emit_op(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>());
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerBitCount(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerBitCount(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) { __ Cpopw(rd, rs1); });
}
void IntrinsicLocationsBuilderRISCV64::VisitLongBitCount(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongBitCount(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) { __ Cpop(rd, rs1); });
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerHighestOneBit(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) {
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
XRegister tmp2 = srs.AllocateXRegister();
__ Clzw(tmp, rs1);
__ Li(tmp2, INT64_C(-0x80000000));
__ Srlw(tmp2, tmp2, tmp);
__ And(rd, rs1, tmp2); // Make sure the result is zero if the input is zero.
});
}
void IntrinsicLocationsBuilderRISCV64::VisitLongHighestOneBit(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongHighestOneBit(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) {
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
XRegister tmp2 = srs.AllocateXRegister();
__ Clz(tmp, rs1);
__ Li(tmp2, INT64_C(-0x8000000000000000));
__ Srl(tmp2, tmp2, tmp);
__ And(rd, rs1, tmp2); // Make sure the result is zero if the input is zero.
});
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerLowestOneBit(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) {
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
__ NegW(tmp, rs1);
__ And(rd, rs1, tmp);
});
}
void IntrinsicLocationsBuilderRISCV64::VisitLongLowestOneBit(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongLowestOneBit(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) {
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
__ Neg(tmp, rs1);
__ And(rd, rs1, tmp);
});
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) { __ Clzw(rd, rs1); });
}
void IntrinsicLocationsBuilderRISCV64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) { __ Clz(rd, rs1); });
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) { __ Ctzw(rd, rs1); });
}
void IntrinsicLocationsBuilderRISCV64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
EmitIntegralUnOp(invoke, [&](XRegister rd, XRegister rs1) { __ Ctz(rd, rs1); });
}
static void GenerateDivideUnsigned(HInvoke* invoke, CodeGeneratorRISCV64* codegen) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = codegen->GetAssembler();
DataType::Type type = invoke->GetType();
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
XRegister dividend = locations->InAt(0).AsRegister<XRegister>();
XRegister divisor = locations->InAt(1).AsRegister<XRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
// Check if divisor is zero, bail to managed implementation to handle.
SlowPathCodeRISCV64* slow_path =
new (codegen->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen->AddSlowPath(slow_path);
__ Beqz(divisor, slow_path->GetEntryLabel());
if (type == DataType::Type::kInt32) {
__ Divuw(out, dividend, divisor);
} else {
__ Divu(out, dividend, divisor);
}
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderRISCV64::VisitIntegerDivideUnsigned(HInvoke* invoke) {
CreateIntIntToIntSlowPathCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitIntegerDivideUnsigned(HInvoke* invoke) {
GenerateDivideUnsigned(invoke, codegen_);
}
void IntrinsicLocationsBuilderRISCV64::VisitLongDivideUnsigned(HInvoke* invoke) {
CreateIntIntToIntSlowPathCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitLongDivideUnsigned(HInvoke* invoke) {
GenerateDivideUnsigned(invoke, codegen_);
}
#define VISIT_INTRINSIC(name, low, high, type, start_index) \
void IntrinsicLocationsBuilderRISCV64::Visit ##name ##ValueOf(HInvoke* invoke) { \
InvokeRuntimeCallingConvention calling_convention; \
IntrinsicVisitor::ComputeValueOfLocations( \
invoke, \
codegen_, \
low, \
high - low + 1, \
calling_convention.GetReturnLocation(DataType::Type::kReference), \
Location::RegisterLocation(calling_convention.GetRegisterAt(0))); \
} \
void IntrinsicCodeGeneratorRISCV64::Visit ##name ##ValueOf(HInvoke* invoke) { \
IntrinsicVisitor::ValueOfInfo info = \
IntrinsicVisitor::ComputeValueOfInfo( \
invoke, \
codegen_->GetCompilerOptions(), \
WellKnownClasses::java_lang_ ##name ##_value, \
low, \
high - low + 1, \
start_index); \
HandleValueOf(invoke, info, type); \
}
BOXED_TYPES(VISIT_INTRINSIC)
#undef VISIT_INTRINSIC
void IntrinsicCodeGeneratorRISCV64::HandleValueOf(HInvoke* invoke,
const IntrinsicVisitor::ValueOfInfo& info,
DataType::Type type) {
Riscv64Assembler* assembler = codegen_->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister out = locations->Out().AsRegister<XRegister>();
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
auto allocate_instance = [&]() {
DCHECK_EQ(out, InvokeRuntimeCallingConvention().GetRegisterAt(0));
codegen_->LoadIntrinsicDeclaringClass(out, invoke);
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
};
if (invoke->InputAt(0)->IsIntConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (static_cast<uint32_t>(value - info.low) < info.length) {
// Just embed the object in the code.
DCHECK_NE(info.value_boot_image_reference, ValueOfInfo::kInvalidReference);
codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
} else {
DCHECK(locations->CanCall());
// Allocate and initialize a new object.
// TODO: If we JIT, we could allocate the object now, and store it in the
// JIT object table.
allocate_instance();
__ Li(temp, value);
codegen_->GetInstructionVisitor()->Store(
Location::RegisterLocation(temp), out, info.value_offset, type);
// Class pointer and `value` final field stores require a barrier before publication.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
} else {
DCHECK(locations->CanCall());
XRegister in = locations->InAt(0).AsRegister<XRegister>();
Riscv64Label allocate, done;
// Check bounds of our cache.
__ AddConst32(out, in, -info.low);
__ Li(temp, info.length);
__ Bgeu(out, temp, &allocate);
// If the value is within the bounds, load the object directly from the array.
codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference);
__ Sh2Add(temp, out, temp);
__ Loadwu(out, temp, 0);
codegen_->MaybeUnpoisonHeapReference(out);
__ J(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new object.
allocate_instance();
codegen_->GetInstructionVisitor()->Store(
Location::RegisterLocation(in), out, info.value_offset, type);
// Class pointer and `value` final field stores require a barrier before publication.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
__ Bind(&done);
}
}
void IntrinsicLocationsBuilderRISCV64::VisitReferenceGetReferent(HInvoke* invoke) {
IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_);
if (codegen_->EmitBakerReadBarrier() && invoke->GetLocations() != nullptr) {
invoke->GetLocations()->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicCodeGeneratorRISCV64::VisitReferenceGetReferent(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location obj = locations->InAt(0);
Location out = locations->Out();
SlowPathCodeRISCV64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen_->AddSlowPath(slow_path);
if (codegen_->EmitReadBarrier()) {
// Check self->GetWeakRefAccessEnabled().
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
__ Loadwu(temp, TR, Thread::WeakRefAccessEnabledOffset<kRiscv64PointerSize>().Int32Value());
static_assert(enum_cast<int32_t>(WeakRefAccessState::kVisiblyEnabled) == 0);
__ Bnez(temp, slow_path->GetEntryLabel());
}
{
// Load the java.lang.ref.Reference class.
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
codegen_->LoadIntrinsicDeclaringClass(temp, invoke);
// Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together.
MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset();
DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u);
DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u,
IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value());
__ Loadhu(temp, temp, disable_intrinsic_offset.Int32Value());
__ Bnez(temp, slow_path->GetEntryLabel());
}
// Load the value from the field.
uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value();
if (codegen_->EmitBakerReadBarrier()) {
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
out,
obj.AsRegister<XRegister>(),
referent_offset,
/*maybe_temp=*/ locations->GetTemp(0),
/*needs_null_check=*/ false);
} else {
codegen_->GetInstructionVisitor()->Load(
out, obj.AsRegister<XRegister>(), referent_offset, DataType::Type::kReference);
codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset);
}
// Emit memory barrier for load-acquire.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderRISCV64::VisitReferenceRefersTo(HInvoke* invoke) {
IntrinsicVisitor::CreateReferenceRefersToLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitReferenceRefersTo(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister obj = locations->InAt(0).AsRegister<XRegister>();
XRegister other = locations->InAt(1).AsRegister<XRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
codegen_->GetInstructionVisitor()->Load(
Location::RegisterLocation(out), obj, referent_offset, DataType::Type::kReference);
codegen_->MaybeRecordImplicitNullCheck(invoke);
codegen_->MaybeUnpoisonHeapReference(out);
// Emit memory barrier for load-acquire.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
if (codegen_->EmitReadBarrier()) {
DCHECK(kUseBakerReadBarrier);
Riscv64Label calculate_result;
// If equal to `other`, the loaded reference is final (it cannot be a from-space reference).
__ Beq(out, other, &calculate_result);
// If the GC is not marking, the loaded reference is final.
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
__ Loadwu(tmp, TR, Thread::IsGcMarkingOffset<kRiscv64PointerSize>().Int32Value());
__ Beqz(tmp, &calculate_result);
// Check if the loaded reference is null.
__ Beqz(out, &calculate_result);
// For correct memory visibility, we need a barrier before loading the lock word to
// synchronize with the publishing of `other` by the CC GC. However, as long as the
// load-acquire above is implemented as a plain load followed by a barrier (rather
// than an atomic load-acquire instruction which synchronizes only with other
// instructions on the same memory location), that barrier is sufficient.
// Load the lockword and check if it is a forwarding address.
static_assert(LockWord::kStateShift == 30u);
static_assert(LockWord::kStateForwardingAddress == 3u);
// Load the lock word sign-extended. Comparing it to the sign-extended forwarding
// address bits as unsigned is the same as comparing both zero-extended.
__ Loadw(tmp, out, monitor_offset);
// Materialize sign-extended forwarding address bits. This is a single LUI instruction.
XRegister tmp2 = srs.AllocateXRegister();
__ Li(tmp2, INT64_C(-1) & ~static_cast<int64_t>((1 << LockWord::kStateShift) - 1));
// If we do not have a forwarding address, the loaded reference cannot be the same as `other`,
// so we proceed to calculate the result with `out != other`.
__ Bltu(tmp, tmp2, &calculate_result);
// Extract the forwarding address for comparison with `other`.
// Note that the high 32 bits shall not be used for the result calculation.
__ Slliw(out, tmp, LockWord::kForwardingAddressShift);
__ Bind(&calculate_result);
}
// Calculate the result `out == other`.
__ Subw(out, out, other);
__ Seqz(out, out);
}
static void GenerateVisitStringIndexOf(HInvoke* invoke,
Riscv64Assembler* assembler,
CodeGeneratorRISCV64* codegen,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCodeRISCV64* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > 0xFFFFU) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen->AddSlowPath(slow_path);
__ J(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen->AddSlowPath(slow_path);
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
__ Srliw(tmp, locations->InAt(1).AsRegister<XRegister>(), 16);
__ Bnez(tmp, slow_path->GetEntryLabel());
}
if (start_at_zero) {
// Start-index = 0.
XRegister tmp_reg = locations->GetTemp(0).AsRegister<XRegister>();
__ Li(tmp_reg, 0);
}
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderRISCV64::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32));
// Need to send start_index=0.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorRISCV64::VisitStringIndexOf(HInvoke* invoke) {
GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
}
void IntrinsicLocationsBuilderRISCV64::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32));
}
void IntrinsicCodeGeneratorRISCV64::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
}
void IntrinsicLocationsBuilderRISCV64::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void IntrinsicCodeGeneratorRISCV64::VisitStringNewStringFromBytes(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister byte_array = locations->InAt(0).AsRegister<XRegister>();
SlowPathCodeRISCV64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(byte_array, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderRISCV64::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void IntrinsicCodeGeneratorRISCV64::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
void IntrinsicLocationsBuilderRISCV64::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void IntrinsicCodeGeneratorRISCV64::VisitStringNewStringFromString(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister string_to_copy = locations->InAt(0).AsRegister<XRegister>();
SlowPathCodeRISCV64* slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(string_to_copy, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
static void GenerateSet(CodeGeneratorRISCV64* codegen,
std::memory_order order,
Location value,
XRegister rs1,
int32_t offset,
DataType::Type type) {
if (order == std::memory_order_seq_cst) {
codegen->GetInstructionVisitor()->StoreSeqCst(value, rs1, offset, type);
} else {
if (order == std::memory_order_release) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
} else {
DCHECK(order == std::memory_order_relaxed);
}
codegen->GetInstructionVisitor()->Store(value, rs1, offset, type);
}
}
std::pair<AqRl, AqRl> GetLrScAqRl(std::memory_order order) {
AqRl load_aqrl = AqRl::kNone;
AqRl store_aqrl = AqRl::kNone;
if (order == std::memory_order_acquire) {
load_aqrl = AqRl::kAcquire;
} else if (order == std::memory_order_release) {
store_aqrl = AqRl::kRelease;
} else if (order == std::memory_order_seq_cst) {
load_aqrl = AqRl::kAqRl;
store_aqrl = AqRl::kRelease;
} else {
DCHECK(order == std::memory_order_relaxed);
}
return {load_aqrl, store_aqrl};
}
AqRl GetAmoAqRl(std::memory_order order) {
AqRl amo_aqrl = AqRl::kNone;
if (order == std::memory_order_acquire) {
amo_aqrl = AqRl::kAcquire;
} else if (order == std::memory_order_release) {
amo_aqrl = AqRl::kRelease;
} else {
DCHECK(order == std::memory_order_seq_cst);
amo_aqrl = AqRl::kAqRl;
}
return amo_aqrl;
}
static void EmitLoadReserved(Riscv64Assembler* assembler,
DataType::Type type,
XRegister ptr,
XRegister old_value,
AqRl aqrl) {
switch (type) {
case DataType::Type::kInt32:
__ LrW(old_value, ptr, aqrl);
break;
case DataType::Type::kReference:
__ LrW(old_value, ptr, aqrl);
// TODO(riscv64): The `ZextW()` macro currently emits `SLLI+SRLI` which are from the
// base "I" instruction set. When the assembler is updated to use a single-instruction
// `ZextW()` macro, either the ADD.UW, or the C.ZEXT.W (16-bit encoding), we need to
// rewrite this to avoid these non-"I" instructions. We could, for example, sign-extend
// the reference and do the CAS as `Int32`.
__ ZextW(old_value, old_value);
break;
case DataType::Type::kInt64:
__ LrD(old_value, ptr, aqrl);
break;
default:
LOG(FATAL) << "Unexpected type: " << type;
UNREACHABLE();
}
}
static void EmitStoreConditional(Riscv64Assembler* assembler,
DataType::Type type,
XRegister ptr,
XRegister store_result,
XRegister to_store,
AqRl aqrl) {
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kReference:
__ ScW(store_result, to_store, ptr, aqrl);
break;
case DataType::Type::kInt64:
__ ScD(store_result, to_store, ptr, aqrl);
break;
default:
LOG(FATAL) << "Unexpected type: " << type;
UNREACHABLE();
}
}
static void GenerateCompareAndSet(Riscv64Assembler* assembler,
DataType::Type type,
std::memory_order order,
bool strong,
Riscv64Label* cmp_failure,
XRegister ptr,
XRegister new_value,
XRegister old_value,
XRegister mask,
XRegister masked,
XRegister store_result,
XRegister expected,
XRegister expected2 = kNoXRegister) {
DCHECK(!DataType::IsFloatingPointType(type));
DCHECK_GE(DataType::Size(type), 4u);
// The `expected2` is valid only for reference slow path and represents the unmarked old value
// from the main path attempt to emit CAS when the marked old value matched `expected`.
DCHECK_IMPLIES(expected2 != kNoXRegister, type == DataType::Type::kReference);
auto [load_aqrl, store_aqrl] = GetLrScAqRl(order);
// repeat: {
// old_value = [ptr]; // Load exclusive.
// cmp_value = old_value & mask; // Extract relevant bits if applicable.
// if (cmp_value != expected && cmp_value != expected2) goto cmp_failure;
// store_result = failed([ptr] <- new_value); // Store exclusive.
// }
// if (strong) {
// if (store_result) goto repeat; // Repeat until compare fails or store exclusive succeeds.
// } else {
// store_result = store_result ^ 1; // Report success as 1, failure as 0.
// }
//
// (If `mask` is not valid, `expected` is compared with `old_value` instead of `cmp_value`.)
// (If `expected2` is not valid, the `cmp_value == expected2` part is not emitted.)
// Note: We're using "bare" local branches to enforce that they shall not be expanded
// and the scrach register `TMP` shall not be clobbered if taken. Taking the branch to
// `cmp_failure` can theoretically clobber `TMP` (if outside the 1 MiB range).
Riscv64Label loop;
if (strong) {
__ Bind(&loop);
}
EmitLoadReserved(assembler, type, ptr, old_value, load_aqrl);
XRegister to_store = new_value;
{
ScopedLrScExtensionsRestriction slser(assembler);
if (mask != kNoXRegister) {
DCHECK_EQ(expected2, kNoXRegister);
DCHECK_NE(masked, kNoXRegister);
__ And(masked, old_value, mask);
__ Bne(masked, expected, cmp_failure);
// The `old_value` does not need to be preserved as the caller shall use `masked`
// to return the old value if needed.
to_store = old_value;
// TODO(riscv64): We could XOR the old and new value before the loop and use a single XOR here
// instead of the XOR+OR. (The `new_value` is either Zero or a temporary we can clobber.)
__ Xor(to_store, old_value, masked);
__ Or(to_store, to_store, new_value);
} else if (expected2 != kNoXRegister) {
Riscv64Label match2;
__ Beq(old_value, expected2, &match2, /*is_bare=*/ true);
__ Bne(old_value, expected, cmp_failure);
__ Bind(&match2);
} else {
__ Bne(old_value, expected, cmp_failure);
}
}
EmitStoreConditional(assembler, type, ptr, store_result, to_store, store_aqrl);
if (strong) {
__ Bnez(store_result, &loop, /*is_bare=*/ true);
} else {
// Flip the `store_result` register to indicate success by 1 and failure by 0.
__ Xori(store_result, store_result, 1);
}
}
class ReadBarrierCasSlowPathRISCV64 : public SlowPathCodeRISCV64 {
public:
ReadBarrierCasSlowPathRISCV64(HInvoke* invoke,
std::memory_order order,
bool strong,
XRegister base,
XRegister offset,
XRegister expected,
XRegister new_value,
XRegister old_value,
XRegister old_value_temp,
XRegister store_result,
bool update_old_value,
CodeGeneratorRISCV64* riscv64_codegen)
: SlowPathCodeRISCV64(invoke),
order_(order),
strong_(strong),
base_(base),
offset_(offset),
expected_(expected),
new_value_(new_value),
old_value_(old_value),
old_value_temp_(old_value_temp),
store_result_(store_result),
update_old_value_(update_old_value),
mark_old_value_slow_path_(nullptr),
update_old_value_slow_path_(nullptr) {
// We need to add slow paths now, it is too late when emitting slow path code.
Location old_value_loc = Location::RegisterLocation(old_value);
Location old_value_temp_loc = Location::RegisterLocation(old_value_temp);
if (kUseBakerReadBarrier) {
mark_old_value_slow_path_ = riscv64_codegen->AddGcRootBakerBarrierBarrierSlowPath(
invoke, old_value_temp_loc, kBakerReadBarrierTemp);
if (update_old_value_) {
update_old_value_slow_path_ = riscv64_codegen->AddGcRootBakerBarrierBarrierSlowPath(
invoke, old_value_loc, kBakerReadBarrierTemp);
}
} else {
Location base_loc = Location::RegisterLocation(base);
Location index = Location::RegisterLocation(offset);
mark_old_value_slow_path_ = riscv64_codegen->AddReadBarrierSlowPath(
invoke, old_value_temp_loc, old_value_loc, base_loc, /*offset=*/ 0u, index);
if (update_old_value_) {
update_old_value_slow_path_ = riscv64_codegen->AddReadBarrierSlowPath(
invoke, old_value_loc, old_value_temp_loc, base_loc, /*offset=*/ 0u, index);
}
}
}
const char* GetDescription() const override { return "ReadBarrierCasSlowPathRISCV64"; }
// We return to a different label on success for a strong CAS that does not return old value.
Riscv64Label* GetSuccessExitLabel() {
return &success_exit_label_;
}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
Riscv64Assembler* assembler = riscv64_codegen->GetAssembler();
__ Bind(GetEntryLabel());
// Mark the `old_value_` from the main path and compare with `expected_`.
DCHECK(mark_old_value_slow_path_ != nullptr);
if (kUseBakerReadBarrier) {
__ Mv(old_value_temp_, old_value_);
riscv64_codegen->EmitBakerReadBarierMarkingCheck(mark_old_value_slow_path_,
Location::RegisterLocation(old_value_temp_),
kBakerReadBarrierTemp);
} else {
__ J(mark_old_value_slow_path_->GetEntryLabel());
__ Bind(mark_old_value_slow_path_->GetExitLabel());
}
Riscv64Label move_marked_old_value;
__ Bne(old_value_temp_, expected_, update_old_value_ ? &move_marked_old_value : GetExitLabel());
// The `old_value` we have read did not match `expected` (which is always a to-space
// reference) but after the read barrier the marked to-space value matched, so the
// `old_value` must be a from-space reference to the same object. Do the same CAS loop
// as the main path but check for both `expected` and the unmarked old value
// representing the to-space and from-space references for the same object.
ScratchRegisterScope srs(assembler);
XRegister tmp_ptr = srs.AllocateXRegister();
XRegister store_result =
store_result_ != kNoXRegister ? store_result_ : srs.AllocateXRegister();
// Recalculate the `tmp_ptr` from main path potentially clobbered by the read barrier above
// or by an expanded conditional branch (clobbers `TMP` if beyond 1MiB).
__ Add(tmp_ptr, base_, offset_);
Riscv64Label mark_old_value;
GenerateCompareAndSet(riscv64_codegen->GetAssembler(),
DataType::Type::kReference,
order_,
strong_,
/*cmp_failure=*/ update_old_value_ ? &mark_old_value : GetExitLabel(),
tmp_ptr,
new_value_,
/*old_value=*/ old_value_temp_,
/*mask=*/ kNoXRegister,
/*masked=*/ kNoXRegister,
store_result,
expected_,
/*expected2=*/ old_value_);
if (update_old_value_) {
// To reach this point, the `old_value_temp_` must be either a from-space or a to-space
// reference of the `expected_` object. Update the `old_value_` to the to-space reference.
__ Mv(old_value_, expected_);
}
if (!update_old_value_ && strong_) {
// Load success value to the result register.
// We must jump to the instruction that loads the success value in the main path.
// Note that a SC failure in the CAS loop sets the `store_result` to 1, so the main
// path must not use the `store_result` as an indication of success.
__ J(GetSuccessExitLabel());
} else {
__ J(GetExitLabel());
}
if (update_old_value_) {
// TODO(riscv64): If we initially saw a from-space reference and then saw
// a different reference, can the latter be also a from-space reference?
// (Shouldn't every reference write store a to-space reference?)
DCHECK(update_old_value_slow_path_ != nullptr);
__ Bind(&mark_old_value);
if (kUseBakerReadBarrier) {
DCHECK(update_old_value_slow_path_ == nullptr);
__ Mv(old_value_, old_value_temp_);
riscv64_codegen->EmitBakerReadBarierMarkingCheck(update_old_value_slow_path_,
Location::RegisterLocation(old_value_),
kBakerReadBarrierTemp);
} else {
// Note: We could redirect the `failure` above directly to the entry label and bind
// the exit label in the main path, but the main path would need to access the
// `update_old_value_slow_path_`. To keep the code simple, keep the extra jumps.
__ J(update_old_value_slow_path_->GetEntryLabel());
__ Bind(update_old_value_slow_path_->GetExitLabel());
}
__ J(GetExitLabel());
__ Bind(&move_marked_old_value);
__ Mv(old_value_, old_value_temp_);
__ J(GetExitLabel());
}
}
private:
// Use RA as temp. It is clobbered in the slow path anyway.
static constexpr Location kBakerReadBarrierTemp = Location::RegisterLocation(RA);
std::memory_order order_;
bool strong_;
XRegister base_;
XRegister offset_;
XRegister expected_;
XRegister new_value_;
XRegister old_value_;
XRegister old_value_temp_;
XRegister store_result_;
bool update_old_value_;
SlowPathCodeRISCV64* mark_old_value_slow_path_;
SlowPathCodeRISCV64* update_old_value_slow_path_;
Riscv64Label success_exit_label_;
};
static void EmitBlt32(Riscv64Assembler* assembler,
XRegister rs1,
Location rs2,
Riscv64Label* label,
XRegister temp) {
if (rs2.IsConstant()) {
__ Li(temp, rs2.GetConstant()->AsIntConstant()->GetValue());
__ Blt(rs1, temp, label);
} else {
__ Blt(rs1, rs2.AsRegister<XRegister>(), label);
}
}
static void CheckSystemArrayCopyPosition(Riscv64Assembler* assembler,
XRegister array,
Location pos,
Location length,
SlowPathCodeRISCV64* slow_path,
XRegister temp1,
XRegister temp2,
bool length_is_array_length,
bool position_sign_checked) {
const int32_t length_offset = mirror::Array::LengthOffset().Int32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
DCHECK_GE(pos_const, 0); // Checked in location builder.
if (pos_const == 0) {
if (!length_is_array_length) {
// Check that length(array) >= length.
__ Loadw(temp1, array, length_offset);
EmitBlt32(assembler, temp1, length, slow_path->GetEntryLabel(), temp2);
}
} else {
// Calculate length(array) - pos.
// Both operands are known to be non-negative `int32_t`, so the difference cannot underflow
// as `int32_t`. If the result is negative, the BLT below shall go to the slow path.
__ Loadw(temp1, array, length_offset);
__ AddConst32(temp1, temp1, -pos_const);
// Check that (length(array) - pos) >= length.
EmitBlt32(assembler, temp1, length, slow_path->GetEntryLabel(), temp2);
}
} else if (length_is_array_length) {
// The only way the copy can succeed is if pos is zero.
__ Bnez(pos.AsRegister<XRegister>(), slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
XRegister pos_reg = pos.AsRegister<XRegister>();
if (!position_sign_checked) {
__ Bltz(pos_reg, slow_path->GetEntryLabel());
}
// Calculate length(array) - pos.
// Both operands are known to be non-negative `int32_t`, so the difference cannot underflow
// as `int32_t`. If the result is negative, the BLT below shall go to the slow path.
__ Loadw(temp1, array, length_offset);
__ Sub(temp1, temp1, pos_reg);
// Check that (length(array) - pos) >= length.
EmitBlt32(assembler, temp1, length, slow_path->GetEntryLabel(), temp2);
}
}
static void GenArrayAddress(CodeGeneratorRISCV64* codegen,
XRegister dest,
XRegister base,
Location pos,
DataType::Type type,
int32_t data_offset) {
Riscv64Assembler* assembler = codegen->GetAssembler();
if (pos.IsConstant()) {
int32_t constant = pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConst64(dest, base, DataType::Size(type) * constant + data_offset);
} else {
codegen->GetInstructionVisitor()->ShNAdd(dest, pos.AsRegister<XRegister>(), base, type);
if (data_offset != 0) {
__ AddConst64(dest, dest, data_offset);
}
}
}
// Compute base source address, base destination address, and end
// source address for System.arraycopy* intrinsics in `src_base`,
// `dst_base` and `src_end` respectively.
static void GenSystemArrayCopyAddresses(CodeGeneratorRISCV64* codegen,
DataType::Type type,
XRegister src,
Location src_pos,
XRegister dst,
Location dst_pos,
Location copy_length,
XRegister src_base,
XRegister dst_base,
XRegister src_end) {
// This routine is used by the SystemArrayCopy and the SystemArrayCopyChar intrinsics.
DCHECK(type == DataType::Type::kReference || type == DataType::Type::kUint16)
<< "Unexpected element type: " << type;
const int32_t element_size = DataType::Size(type);
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
GenArrayAddress(codegen, src_base, src, src_pos, type, data_offset);
GenArrayAddress(codegen, dst_base, dst, dst_pos, type, data_offset);
GenArrayAddress(codegen, src_end, src_base, copy_length, type, /*data_offset=*/ 0);
}
static Location LocationForSystemArrayCopyInput(HInstruction* input) {
HIntConstant* const_input = input->AsIntConstantOrNull();
if (const_input != nullptr && IsInt<12>(const_input->GetValue())) {
return Location::ConstantLocation(const_input);
} else {
return Location::RequiresRegister();
}
}
// We can choose to use the native implementation there for longer copy lengths.
static constexpr int32_t kSystemArrayCopyThreshold = 128;
void IntrinsicLocationsBuilderRISCV64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
if (codegen_->EmitNonBakerReadBarrier()) {
return;
}
size_t num_temps = codegen_->EmitBakerReadBarrier() ? 4u : 2u;
LocationSummary* locations = CodeGenerator::CreateSystemArrayCopyLocationSummary(
invoke, kSystemArrayCopyThreshold, num_temps);
if (locations != nullptr) {
// We request position and length as constants only for small integral values.
locations->SetInAt(1, LocationForSystemArrayCopyInput(invoke->InputAt(1)));
locations->SetInAt(3, LocationForSystemArrayCopyInput(invoke->InputAt(3)));
locations->SetInAt(4, LocationForSystemArrayCopyInput(invoke->InputAt(4)));
}
}
void IntrinsicCodeGeneratorRISCV64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
DCHECK_IMPLIES(codegen_->EmitReadBarrier(), kUseBakerReadBarrier);
Riscv64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
XRegister src = locations->InAt(0).AsRegister<XRegister>();
Location src_pos = locations->InAt(1);
XRegister dest = locations->InAt(2).AsRegister<XRegister>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
XRegister temp1 = locations->GetTemp(0).AsRegister<XRegister>();
XRegister temp2 = locations->GetTemp(1).AsRegister<XRegister>();
SlowPathCodeRISCV64* intrinsic_slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathRISCV64(invoke);
codegen_->AddSlowPath(intrinsic_slow_path);
Riscv64Label conditions_on_positions_validated;
SystemArrayCopyOptimizations optimizations(invoke);
// If source and destination are the same, we go to slow path if we need to do forward copying.
// We do not need to do this check if the source and destination positions are the same.
if (!optimizations.GetSourcePositionIsDestinationPosition()) {
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
if (optimizations.GetDestinationIsSource()) {
// Checked when building locations.
DCHECK_GE(src_pos_constant, dest_pos_constant);
} else if (src_pos_constant < dest_pos_constant) {
__ Beq(src, dest, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ Bne(src, dest, &conditions_on_positions_validated);
}
__ Li(temp1, src_pos_constant);
__ Bgt(dest_pos.AsRegister<XRegister>(), temp1, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ Bne(src, dest, &conditions_on_positions_validated);
}
XRegister src_pos_reg = src_pos.AsRegister<XRegister>();
EmitBlt32(assembler, src_pos_reg, dest_pos, intrinsic_slow_path->GetEntryLabel(), temp2);
}
}
__ Bind(&conditions_on_positions_validated);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ Beqz(src, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ Beqz(dest, intrinsic_slow_path->GetEntryLabel());
}
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant()) {
// Merge the following two comparisons into one:
// If the length is negative, bail out (delegate to libcore's native implementation).
// If the length >= 128 then (currently) prefer native implementation.
__ Li(temp1, kSystemArrayCopyThreshold);
__ Bgeu(length.AsRegister<XRegister>(), temp1, intrinsic_slow_path->GetEntryLabel());
}
// Validity checks: source.
CheckSystemArrayCopyPosition(assembler,
src,
src_pos,
length,
intrinsic_slow_path,
temp1,
temp2,
optimizations.GetCountIsSourceLength(),
/*position_sign_checked=*/ false);
// Validity checks: dest.
bool dest_position_sign_checked = optimizations.GetSourcePositionIsDestinationPosition();
CheckSystemArrayCopyPosition(assembler,
dest,
dest_pos,
length,
intrinsic_slow_path,
temp1,
temp2,
optimizations.GetCountIsDestinationLength(),
dest_position_sign_checked);
auto check_non_primitive_array_class = [&](XRegister klass, XRegister temp) {
// No read barrier is needed for reading a chain of constant references for comparing
// with null, or for reading a constant primitive value, see `ReadBarrierOption`.
// /* HeapReference<Class> */ temp = klass->component_type_
__ Loadwu(temp, klass, component_offset);
codegen_->MaybeUnpoisonHeapReference(temp);
// Check that the component type is not null.
__ Beqz(temp, intrinsic_slow_path->GetEntryLabel());
// Check that the component type is not a primitive.
// /* uint16_t */ temp = static_cast<uint16>(klass->primitive_type_);
__ Loadhu(temp, temp, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Bnez(temp, intrinsic_slow_path->GetEntryLabel());
};
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
if (codegen_->EmitBakerReadBarrier()) {
XRegister temp3 = locations->GetTemp(2).AsRegister<XRegister>();
// /* HeapReference<Class> */ temp1 = dest->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
Location::RegisterLocation(temp1),
dest,
class_offset,
Location::RegisterLocation(temp3),
/* needs_null_check= */ false);
// /* HeapReference<Class> */ temp2 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
Location::RegisterLocation(temp2),
src,
class_offset,
Location::RegisterLocation(temp3),
/* needs_null_check= */ false);
} else {
// /* HeapReference<Class> */ temp1 = dest->klass_
__ Loadwu(temp1, dest, class_offset);
codegen_->MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp2 = src->klass_
__ Loadwu(temp2, src, class_offset);
codegen_->MaybeUnpoisonHeapReference(temp2);
}
if (optimizations.GetDestinationIsTypedObjectArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
Riscv64Label do_copy;
// For class match, we can skip the source type check regardless of the optimization flag.
__ Beq(temp1, temp2, &do_copy);
// No read barrier is needed for reading a chain of constant references
// for comparing with null, see `ReadBarrierOption`.
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ Loadwu(temp1, temp1, component_offset);
codegen_->MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
__ Loadwu(temp1, temp1, super_offset);
// No need to unpoison the result, we're comparing against null.
__ Bnez(temp1, intrinsic_slow_path->GetEntryLabel());
// Bail out if the source is not a non primitive array.
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
check_non_primitive_array_class(temp2, temp2);
}
__ Bind(&do_copy);
} else {
DCHECK(!optimizations.GetDestinationIsTypedObjectArray());
// For class match, we can skip the array type check completely if at least one of source
// and destination is known to be a non primitive array, otherwise one check is enough.
__ Bne(temp1, temp2, intrinsic_slow_path->GetEntryLabel());
if (!optimizations.GetDestinationIsNonPrimitiveArray() &&
!optimizations.GetSourceIsNonPrimitiveArray()) {
check_non_primitive_array_class(temp2, temp2);
}
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
// No read barrier is needed for reading a chain of constant references for comparing
// with null, or for reading a constant primitive value, see `ReadBarrierOption`.
// /* HeapReference<Class> */ temp2 = src->klass_
__ Loadwu(temp2, src, class_offset);
codegen_->MaybeUnpoisonHeapReference(temp2);
check_non_primitive_array_class(temp2, temp2);
}
if (length.IsConstant() && length.GetConstant()->AsIntConstant()->GetValue() == 0) {
// Null constant length: not need to emit the loop code at all.
} else {
Riscv64Label skip_copy_and_write_barrier;
if (length.IsRegister()) {
// Don't enter the copy loop if the length is null.
__ Beqz(length.AsRegister<XRegister>(), &skip_copy_and_write_barrier);
}
{
// We use a block to end the scratch scope before the write barrier, thus
// freeing the scratch registers so they can be used in `MarkGCCard`.
ScratchRegisterScope srs(assembler);
bool emit_rb = codegen_->EmitBakerReadBarrier();
XRegister temp3 =
emit_rb ? locations->GetTemp(2).AsRegister<XRegister>() : srs.AllocateXRegister();
XRegister src_curr_addr = temp1;
XRegister dst_curr_addr = temp2;
XRegister src_stop_addr = temp3;
const DataType::Type type = DataType::Type::kReference;
const int32_t element_size = DataType::Size(type);
XRegister tmp = kNoXRegister;
SlowPathCodeRISCV64* read_barrier_slow_path = nullptr;
if (emit_rb) {
// TODO: Also convert this intrinsic to the IsGcMarking strategy?
// SystemArrayCopy implementation for Baker read barriers (see
// also CodeGeneratorRISCV64::GenerateReferenceLoadWithBakerReadBarrier):
//
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
// } while (src_ptr != end_ptr)
// } else {
// // Fast-path copy.
// do {
// *dest_ptr++ = *src_ptr++;
// } while (src_ptr != end_ptr)
// }
// /* uint32_t */ monitor = src->monitor_
tmp = locations->GetTemp(3).AsRegister<XRegister>();
__ Loadwu(tmp, src, monitor_offset);
// /* LockWord */ lock_word = LockWord(monitor)
static_assert(sizeof(LockWord) == sizeof(int32_t),
"art::LockWord and int32_t have different sizes.");
// Shift the RB state bit to the sign bit while also clearing the low 32 bits
// for the fake dependency below.
static_assert(LockWord::kReadBarrierStateShift < 31);
__ Slli(tmp, tmp, 63 - LockWord::kReadBarrierStateShift);
// Introduce a dependency on the lock_word including rb_state, to prevent load-load
// reordering, and without using a memory barrier (which would be more expensive).
// `src` is unchanged by this operation (since Adduw adds low 32 bits
// which are zero after left shift), but its value now depends on `tmp`.
__ AddUw(src, tmp, src);
// Slow path used to copy array when `src` is gray.
read_barrier_slow_path = new (codegen_->GetScopedAllocator())
ReadBarrierSystemArrayCopySlowPathRISCV64(invoke, Location::RegisterLocation(tmp));
codegen_->AddSlowPath(read_barrier_slow_path);
}
// Compute base source address, base destination address, and end source address for
// System.arraycopy* intrinsics in `src_base`, `dst_base` and `src_end` respectively.
// Note that `src_curr_addr` is computed from from `src` (and `src_pos`) here, and
// thus honors the artificial dependency of `src` on `tmp` for read barriers.
GenSystemArrayCopyAddresses(codegen_,
type,
src,
src_pos,
dest,
dest_pos,
length,
src_curr_addr,
dst_curr_addr,
src_stop_addr);
if (emit_rb) {
// Given the numeric representation, it's enough to check the low bit of the RB state.
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
DCHECK_NE(tmp, kNoXRegister);
__ Bltz(tmp, read_barrier_slow_path->GetEntryLabel());
} else {
// After allocating the last scrach register, we cannot use macro load/store instructions
// such as `Loadwu()` and need to use raw instructions. However, all offsets below are 0.
DCHECK_EQ(tmp, kNoXRegister);
tmp = srs.AllocateXRegister();
}
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
Riscv64Label loop;
__ Bind(&loop);
__ Lwu(tmp, src_curr_addr, 0);
__ Sw(tmp, dst_curr_addr, 0);
__ Addi(src_curr_addr, src_curr_addr, element_size);
__ Addi(dst_curr_addr, dst_curr_addr, element_size);
// Bare: `TMP` shall not be clobbered.
__ Bne(src_curr_addr, src_stop_addr, &loop, /*is_bare=*/ true);
if (emit_rb) {
DCHECK(read_barrier_slow_path != nullptr);
__ Bind(read_barrier_slow_path->GetExitLabel());
}
}
// We only need one card marking on the destination array.
codegen_->MarkGCCard(dest);
__ Bind(&skip_copy_and_write_barrier);
}
__ Bind(intrinsic_slow_path->GetExitLabel());
}
enum class GetAndUpdateOp {
kSet,
kAdd,
kAnd,
kOr,
kXor
};
// Generate a GetAndUpdate operation.
//
// Only 32-bit and 64-bit atomics are currently supported, therefore smaller types need
// special handling. The caller emits code to prepare aligned `ptr` and adjusted `arg`
// and extract the needed bits from `old_value`. For bitwise operations, no extra
// handling is needed here. For `GetAndUpdateOp::kSet` and `GetAndUpdateOp::kAdd` we
// also use a special LR/SC sequence that uses a `mask` to update only the desired bits.
// Note: The `mask` must contain the bits to keep for `GetAndUpdateOp::kSet` and
// the bits to replace for `GetAndUpdateOp::kAdd`.
static void GenerateGetAndUpdate(CodeGeneratorRISCV64* codegen,
GetAndUpdateOp get_and_update_op,
DataType::Type type,
std::memory_order order,
XRegister ptr,
XRegister arg,
XRegister old_value,
XRegister mask,
XRegister temp) {
DCHECK_EQ(mask != kNoXRegister, temp != kNoXRegister);
DCHECK_IMPLIES(mask != kNoXRegister, type == DataType::Type::kInt32);
DCHECK_IMPLIES(
mask != kNoXRegister,
(get_and_update_op == GetAndUpdateOp::kSet) || (get_and_update_op == GetAndUpdateOp::kAdd));
Riscv64Assembler* assembler = codegen->GetAssembler();
AqRl amo_aqrl = GetAmoAqRl(order);
switch (get_and_update_op) {
case GetAndUpdateOp::kSet:
if (type == DataType::Type::kInt64) {
__ AmoSwapD(old_value, arg, ptr, amo_aqrl);
} else if (mask == kNoXRegister) {
DCHECK_EQ(type, DataType::Type::kInt32);
__ AmoSwapW(old_value, arg, ptr, amo_aqrl);
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
DCHECK_NE(temp, kNoXRegister);
auto [load_aqrl, store_aqrl] = GetLrScAqRl(order);
Riscv64Label retry;
__ Bind(&retry);
__ LrW(old_value, ptr, load_aqrl);
{
ScopedLrScExtensionsRestriction slser(assembler);
__ And(temp, old_value, mask);
__ Or(temp, temp, arg);
}
__ ScW(temp, temp, ptr, store_aqrl);
__ Bnez(temp, &retry, /*is_bare=*/ true); // Bare: `TMP` shall not be clobbered.
}
break;
case GetAndUpdateOp::kAdd:
if (type == DataType::Type::kInt64) {
__ AmoAddD(old_value, arg, ptr, amo_aqrl);
} else if (mask == kNoXRegister) {
DCHECK_EQ(type, DataType::Type::kInt32);
__ AmoAddW(old_value, arg, ptr, amo_aqrl);
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
DCHECK_NE(temp, kNoXRegister);
auto [load_aqrl, store_aqrl] = GetLrScAqRl(order);
Riscv64Label retry;
__ Bind(&retry);
__ LrW(old_value, ptr, load_aqrl);
{
ScopedLrScExtensionsRestriction slser(assembler);
__ Add(temp, old_value, arg);
// We use `(A ^ B) ^ A == B` and with the masking `((A ^ B) & mask) ^ A`, the result
// contains bits from `B` for bits specified in `mask` and bits from `A` elsewhere.
// Note: These instructions directly depend on each other, so it's not necessarily the
// fastest approach but for `(A ^ ~mask) | (B & mask)` we would need an extra register
// for `~mask` because ANDN is not in the "I" instruction set as required for a LR/SC
// sequence.
__ Xor(temp, temp, old_value);
__ And(temp, temp, mask);
__ Xor(temp, temp, old_value);
}
__ ScW(temp, temp, ptr, store_aqrl);
__ Bnez(temp, &retry, /*is_bare=*/ true); // Bare: `TMP` shall not be clobbered.
}
break;
case GetAndUpdateOp::kAnd:
if (type == DataType::Type::kInt64) {
__ AmoAndD(old_value, arg, ptr, amo_aqrl);
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
__ AmoAndW(old_value, arg, ptr, amo_aqrl);
}
break;
case GetAndUpdateOp::kOr:
if (type == DataType::Type::kInt64) {
__ AmoOrD(old_value, arg, ptr, amo_aqrl);
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
__ AmoOrW(old_value, arg, ptr, amo_aqrl);
}
break;
case GetAndUpdateOp::kXor:
if (type == DataType::Type::kInt64) {
__ AmoXorD(old_value, arg, ptr, amo_aqrl);
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
__ AmoXorW(old_value, arg, ptr, amo_aqrl);
}
break;
}
}
static void CreateUnsafeGetLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorRISCV64* codegen) {
bool can_call = codegen->EmitReadBarrier() && IsUnsafeGetReference(invoke);
LocationSummary* locations = new (allocator) LocationSummary(
invoke,
can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
}
static void GenUnsafeGet(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
std::memory_order order,
DataType::Type type) {
DCHECK((type == DataType::Type::kInt8) ||
(type == DataType::Type::kInt32) ||
(type == DataType::Type::kInt64) ||
(type == DataType::Type::kReference));
LocationSummary* locations = invoke->GetLocations();
Location object_loc = locations->InAt(1);
XRegister object = object_loc.AsRegister<XRegister>(); // Object pointer.
Location offset_loc = locations->InAt(2);
XRegister offset = offset_loc.AsRegister<XRegister>(); // Long offset.
Location out_loc = locations->Out();
XRegister out = out_loc.AsRegister<XRegister>();
bool seq_cst_barrier = (order == std::memory_order_seq_cst);
bool acquire_barrier = seq_cst_barrier || (order == std::memory_order_acquire);
DCHECK(acquire_barrier || order == std::memory_order_relaxed);
if (seq_cst_barrier) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
if (type == DataType::Type::kReference && codegen->EmitBakerReadBarrier()) {
// JdkUnsafeGetReference/JdkUnsafeGetReferenceVolatile with Baker's read barrier case.
// TODO(riscv64): Revisit when we add checking if the holder is black.
Location temp = Location::NoLocation();
codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
out_loc,
object,
/*offset=*/ 0,
/*index=*/ offset_loc,
temp,
/*needs_null_check=*/ false);
} else {
// Other cases.
Riscv64Assembler* assembler = codegen->GetAssembler();
__ Add(out, object, offset);
codegen->GetInstructionVisitor()->Load(out_loc, out, /*offset=*/ 0, type);
if (type == DataType::Type::kReference) {
codegen->MaybeGenerateReadBarrierSlow(
invoke, out_loc, out_loc, object_loc, /*offset=*/ 0u, /*index=*/ offset_loc);
}
}
if (acquire_barrier) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGet(HInvoke* invoke) {
VisitJdkUnsafeGet(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGet(HInvoke* invoke) {
VisitJdkUnsafeGet(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetVolatile(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetVolatile(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetObject(HInvoke* invoke) {
VisitJdkUnsafeGetReference(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetObject(HInvoke* invoke) {
VisitJdkUnsafeGetReference(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetReferenceVolatile(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetReferenceVolatile(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetLong(HInvoke* invoke) {
VisitJdkUnsafeGetLong(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetLong(HInvoke* invoke) {
VisitJdkUnsafeGetLong(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetLongVolatile(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetLongVolatile(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetByte(HInvoke* invoke) {
VisitJdkUnsafeGetByte(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetByte(HInvoke* invoke) {
VisitJdkUnsafeGetByte(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGet(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_acquire, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_seq_cst, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetReference(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetReference(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetReferenceAcquire(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetReferenceAcquire(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_acquire, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetReferenceVolatile(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetReferenceVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_seq_cst, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetLong(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_acquire, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_seq_cst, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetByte(HInvoke* invoke) {
CreateUnsafeGetLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetByte(HInvoke* invoke) {
GenUnsafeGet(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kInt8);
}
static void CreateUnsafePutLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (kPoisonHeapReferences && invoke->InputAt(3)->GetType() == DataType::Type::kReference) {
locations->AddTemp(Location::RequiresRegister());
}
}
static void GenUnsafePut(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
std::memory_order order,
DataType::Type type) {
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister base = locations->InAt(1).AsRegister<XRegister>(); // Object pointer.
XRegister offset = locations->InAt(2).AsRegister<XRegister>(); // Long offset.
Location value = locations->InAt(3);
{
// We use a block to end the scratch scope before the write barrier, thus
// freeing the temporary registers so they can be used in `MarkGCCard()`.
ScratchRegisterScope srs(assembler);
// Heap poisoning needs two scratch registers in `Store()`.
XRegister address = (kPoisonHeapReferences && type == DataType::Type::kReference)
? locations->GetTemp(0).AsRegister<XRegister>()
: srs.AllocateXRegister();
__ Add(address, base, offset);
GenerateSet(codegen, order, value, address, /*offset=*/ 0, type);
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MaybeMarkGCCard(base, value.AsRegister<XRegister>(), value_can_be_null);
}
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePut(HInvoke* invoke) {
VisitJdkUnsafePut(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePut(HInvoke* invoke) {
VisitJdkUnsafePut(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutOrdered(HInvoke* invoke) {
VisitJdkUnsafePutOrdered(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutOrdered(HInvoke* invoke) {
VisitJdkUnsafePutOrdered(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutVolatile(HInvoke* invoke) {
VisitJdkUnsafePutVolatile(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutVolatile(HInvoke* invoke) {
VisitJdkUnsafePutVolatile(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutObject(HInvoke* invoke) {
VisitJdkUnsafePutReference(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutObject(HInvoke* invoke) {
VisitJdkUnsafePutReference(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
VisitJdkUnsafePutObjectOrdered(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
VisitJdkUnsafePutObjectOrdered(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafePutReferenceVolatile(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafePutReferenceVolatile(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutLong(HInvoke* invoke) {
VisitJdkUnsafePutLong(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutLong(HInvoke* invoke) {
VisitJdkUnsafePutLong(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
VisitJdkUnsafePutLongOrdered(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
VisitJdkUnsafePutLongOrdered(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
VisitJdkUnsafePutLongVolatile(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
VisitJdkUnsafePutLongVolatile(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafePutByte(HInvoke* invoke) {
VisitJdkUnsafePutByte(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafePutByte(HInvoke* invoke) {
VisitJdkUnsafePutByte(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePut(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutOrdered(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_release, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutRelease(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutRelease(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_release, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutVolatile(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_seq_cst, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutReference(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutReference(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_release, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutReferenceRelease(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutReferenceRelease(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_release, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutReferenceVolatile(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutReferenceVolatile(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_seq_cst, DataType::Type::kReference);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutLong(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_release, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_release, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_seq_cst, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafePutByte(HInvoke* invoke) {
CreateUnsafePutLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafePutByte(HInvoke* invoke) {
GenUnsafePut(invoke, codegen_, std::memory_order_relaxed, DataType::Type::kInt8);
}
static void CreateUnsafeCASLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorRISCV64* codegen) {
const bool can_call = codegen->EmitReadBarrier() && IsUnsafeCASReference(invoke);
LocationSummary* locations = new (allocator) LocationSummary(
invoke,
can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
static void GenUnsafeCas(HInvoke* invoke, CodeGeneratorRISCV64* codegen, DataType::Type type) {
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister out = locations->Out().AsRegister<XRegister>(); // Boolean result.
XRegister object = locations->InAt(1).AsRegister<XRegister>(); // Object pointer.
XRegister offset = locations->InAt(2).AsRegister<XRegister>(); // Long offset.
XRegister expected = locations->InAt(3).AsRegister<XRegister>(); // Expected.
XRegister new_value = locations->InAt(4).AsRegister<XRegister>(); // New value.
// This needs to be before the temp registers, as MarkGCCard also uses scratch registers.
if (type == DataType::Type::kReference) {
// Mark card for object assuming new value is stored.
bool new_value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MaybeMarkGCCard(object, new_value, new_value_can_be_null);
}
ScratchRegisterScope srs(assembler);
XRegister tmp_ptr = srs.AllocateXRegister(); // Pointer to actual memory.
XRegister old_value; // Value in memory.
Riscv64Label exit_loop_label;
Riscv64Label* exit_loop = &exit_loop_label;
Riscv64Label* cmp_failure = &exit_loop_label;
ReadBarrierCasSlowPathRISCV64* slow_path = nullptr;
if (type == DataType::Type::kReference && codegen->EmitReadBarrier()) {
// We need to store the `old_value` in a non-scratch register to make sure
// the read barrier in the slow path does not clobber it.
old_value = locations->GetTemp(0).AsRegister<XRegister>(); // The old value from main path.
// The `old_value_temp` is used first for marking the `old_value` and then for the unmarked
// reloaded old value for subsequent CAS in the slow path. We make this a scratch register
// as we do have marking entrypoints on riscv64 even for scratch registers.
XRegister old_value_temp = srs.AllocateXRegister();
slow_path = new (codegen->GetScopedAllocator()) ReadBarrierCasSlowPathRISCV64(
invoke,
std::memory_order_seq_cst,
/*strong=*/ true,
object,
offset,
expected,
new_value,
old_value,
old_value_temp,
/*store_result=*/ old_value_temp, // Let the SC result clobber the reloaded old_value.
/*update_old_value=*/ false,
codegen);
codegen->AddSlowPath(slow_path);
exit_loop = slow_path->GetExitLabel();
cmp_failure = slow_path->GetEntryLabel();
} else {
old_value = srs.AllocateXRegister();
}
__ Add(tmp_ptr, object, offset);
// Pre-populate the result register with failure.
__ Li(out, 0);
GenerateCompareAndSet(assembler,
type,
std::memory_order_seq_cst,
/*strong=*/ true,
cmp_failure,
tmp_ptr,
new_value,
old_value,
/*mask=*/ kNoXRegister,
/*masked=*/ kNoXRegister,
/*store_result=*/ old_value, // Let the SC result clobber the `old_value`.
expected);
DCHECK_EQ(slow_path != nullptr, type == DataType::Type::kReference && codegen->EmitReadBarrier());
if (slow_path != nullptr) {
__ Bind(slow_path->GetSuccessExitLabel());
}
// Indicate success if we successfully execute the SC.
__ Li(out, 1);
__ Bind(exit_loop);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeCASInt(HInvoke* invoke) {
VisitJdkUnsafeCASInt(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeCASInt(HInvoke* invoke) {
VisitJdkUnsafeCASInt(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeCASLong(HInvoke* invoke) {
VisitJdkUnsafeCASLong(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeCASLong(HInvoke* invoke) {
VisitJdkUnsafeCASLong(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeCASObject(HInvoke* invoke) {
VisitJdkUnsafeCASObject(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeCASObject(HInvoke* invoke) {
VisitJdkUnsafeCASObject(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeCASInt(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetInt(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeCASInt(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetInt(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeCASLong(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetLong(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeCASLong(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetLong(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeCASObject(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetReference(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeCASObject(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetReference(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) {
CreateUnsafeCASLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) {
GenUnsafeCas(invoke, codegen_, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) {
CreateUnsafeCASLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) {
GenUnsafeCas(invoke, codegen_, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeCompareAndSetReference(HInvoke* invoke) {
// The only supported read barrier implementation is the Baker-style read barriers.
if (codegen_->EmitNonBakerReadBarrier()) {
return;
}
// TODO(riscv64): Fix this intrinsic for heap poisoning configuration.
if (kPoisonHeapReferences) {
return;
}
CreateUnsafeCASLocations(allocator_, invoke, codegen_);
if (codegen_->EmitReadBarrier()) {
DCHECK(kUseBakerReadBarrier);
// We need one non-scratch temporary register for read barrier.
LocationSummary* locations = invoke->GetLocations();
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeCompareAndSetReference(HInvoke* invoke) {
GenUnsafeCas(invoke, codegen_, DataType::Type::kReference);
}
static void CreateUnsafeGetAndUpdateLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorRISCV64* codegen) {
const bool can_call = codegen->EmitReadBarrier() && IsUnsafeGetAndSetReference(invoke);
LocationSummary* locations = new (allocator) LocationSummary(
invoke,
can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
static void GenUnsafeGetAndUpdate(HInvoke* invoke,
DataType::Type type,
CodeGeneratorRISCV64* codegen,
GetAndUpdateOp get_and_update_op) {
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location out_loc = locations->Out();
XRegister out = out_loc.AsRegister<XRegister>(); // Result.
XRegister base = locations->InAt(1).AsRegister<XRegister>(); // Object pointer.
XRegister offset = locations->InAt(2).AsRegister<XRegister>(); // Long offset.
XRegister arg = locations->InAt(3).AsRegister<XRegister>(); // New value or addend.
// This needs to be before the temp registers, as MarkGCCard also uses scratch registers.
if (type == DataType::Type::kReference) {
DCHECK(get_and_update_op == GetAndUpdateOp::kSet);
// Mark card for object as a new value shall be stored.
bool new_value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MaybeMarkGCCard(base, /*value=*/arg, new_value_can_be_null);
}
ScratchRegisterScope srs(assembler);
XRegister tmp_ptr = srs.AllocateXRegister(); // Pointer to actual memory.
__ Add(tmp_ptr, base, offset);
GenerateGetAndUpdate(codegen,
get_and_update_op,
(type == DataType::Type::kReference) ? DataType::Type::kInt32 : type,
std::memory_order_seq_cst,
tmp_ptr,
arg,
/*old_value=*/ out,
/*mask=*/ kNoXRegister,
/*temp=*/ kNoXRegister);
if (type == DataType::Type::kReference) {
__ ZextW(out, out);
if (codegen->EmitReadBarrier()) {
DCHECK(get_and_update_op == GetAndUpdateOp::kSet);
if (kUseBakerReadBarrier) {
// Use RA as temp. It is clobbered in the slow path anyway.
static constexpr Location kBakerReadBarrierTemp = Location::RegisterLocation(RA);
SlowPathCodeRISCV64* rb_slow_path =
codegen->AddGcRootBakerBarrierBarrierSlowPath(invoke, out_loc, kBakerReadBarrierTemp);
codegen->EmitBakerReadBarierMarkingCheck(rb_slow_path, out_loc, kBakerReadBarrierTemp);
} else {
codegen->GenerateReadBarrierSlow(
invoke,
out_loc,
out_loc,
Location::RegisterLocation(base),
/*offset=*/ 0u,
/*index=*/ Location::RegisterLocation(offset));
}
}
}
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetAndAddInt(HInvoke* invoke) {
VisitJdkUnsafeGetAndAddInt(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetAndAddInt(HInvoke* invoke) {
VisitJdkUnsafeGetAndAddInt(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetAndAddLong(HInvoke* invoke) {
VisitJdkUnsafeGetAndAddLong(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetAndAddLong(HInvoke* invoke) {
VisitJdkUnsafeGetAndAddLong(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetAndSetInt(HInvoke* invoke) {
VisitJdkUnsafeGetAndSetInt(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetAndSetInt(HInvoke* invoke) {
VisitJdkUnsafeGetAndSetInt(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetAndSetLong(HInvoke* invoke) {
VisitJdkUnsafeGetAndSetLong(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetAndSetLong(HInvoke* invoke) {
VisitJdkUnsafeGetAndSetLong(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitUnsafeGetAndSetObject(HInvoke* invoke) {
VisitJdkUnsafeGetAndSetReference(invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitUnsafeGetAndSetObject(HInvoke* invoke) {
VisitJdkUnsafeGetAndSetReference(invoke);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetAndAddInt(HInvoke* invoke) {
CreateUnsafeGetAndUpdateLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetAndAddInt(HInvoke* invoke) {
GenUnsafeGetAndUpdate(invoke, DataType::Type::kInt32, codegen_, GetAndUpdateOp::kAdd);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetAndAddLong(HInvoke* invoke) {
CreateUnsafeGetAndUpdateLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetAndAddLong(HInvoke* invoke) {
GenUnsafeGetAndUpdate(invoke, DataType::Type::kInt64, codegen_, GetAndUpdateOp::kAdd);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetAndSetInt(HInvoke* invoke) {
CreateUnsafeGetAndUpdateLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetAndSetInt(HInvoke* invoke) {
GenUnsafeGetAndUpdate(invoke, DataType::Type::kInt32, codegen_, GetAndUpdateOp::kSet);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetAndSetLong(HInvoke* invoke) {
CreateUnsafeGetAndUpdateLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetAndSetLong(HInvoke* invoke) {
GenUnsafeGetAndUpdate(invoke, DataType::Type::kInt64, codegen_, GetAndUpdateOp::kSet);
}
void IntrinsicLocationsBuilderRISCV64::VisitJdkUnsafeGetAndSetReference(HInvoke* invoke) {
// TODO(riscv64): Fix this intrinsic for heap poisoning configuration.
if (kPoisonHeapReferences) {
return;
}
CreateUnsafeGetAndUpdateLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitJdkUnsafeGetAndSetReference(HInvoke* invoke) {
GenUnsafeGetAndUpdate(invoke, DataType::Type::kReference, codegen_, GetAndUpdateOp::kSet);
}
class VarHandleSlowPathRISCV64 : public IntrinsicSlowPathRISCV64 {
public:
VarHandleSlowPathRISCV64(HInvoke* invoke, std::memory_order order)
: IntrinsicSlowPathRISCV64(invoke),
order_(order),
return_success_(false),
strong_(false),
get_and_update_op_(GetAndUpdateOp::kAdd) {
}
Riscv64Label* GetByteArrayViewCheckLabel() {
return &byte_array_view_check_label_;
}
Riscv64Label* GetNativeByteOrderLabel() {
return &native_byte_order_label_;
}
void SetCompareAndSetOrExchangeArgs(bool return_success, bool strong) {
if (return_success) {
DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kCompareAndSet);
} else {
DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange);
}
return_success_ = return_success;
strong_ = strong;
}
void SetGetAndUpdateOp(GetAndUpdateOp get_and_update_op) {
DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kGetAndUpdate);
get_and_update_op_ = get_and_update_op;
}
void EmitNativeCode(CodeGenerator* codegen_in) override {
if (GetByteArrayViewCheckLabel()->IsLinked()) {
EmitByteArrayViewCode(codegen_in);
}
IntrinsicSlowPathRISCV64::EmitNativeCode(codegen_in);
}
private:
HInvoke* GetInvoke() const {
return GetInstruction()->AsInvoke();
}
mirror::VarHandle::AccessModeTemplate GetAccessModeTemplate() const {
return mirror::VarHandle::GetAccessModeTemplateByIntrinsic(GetInvoke()->GetIntrinsic());
}
void EmitByteArrayViewCode(CodeGenerator* codegen_in);
Riscv64Label byte_array_view_check_label_;
Riscv64Label native_byte_order_label_;
// Shared parameter for all VarHandle intrinsics.
std::memory_order order_;
// Extra arguments for GenerateVarHandleCompareAndSetOrExchange().
bool return_success_;
bool strong_;
// Extra argument for GenerateVarHandleGetAndUpdate().
GetAndUpdateOp get_and_update_op_;
};
// Generate subtype check without read barriers.
static void GenerateSubTypeObjectCheckNoReadBarrier(CodeGeneratorRISCV64* codegen,
SlowPathCodeRISCV64* slow_path,
XRegister object,
XRegister type,
bool object_can_be_null = true) {
Riscv64Assembler* assembler = codegen->GetAssembler();
const MemberOffset class_offset = mirror::Object::ClassOffset();
const MemberOffset super_class_offset = mirror::Class::SuperClassOffset();
Riscv64Label success;
if (object_can_be_null) {
__ Beqz(object, &success);
}
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
// Note: The `type` can be `TMP`. We're using "bare" local branches to enforce that they shall
// not be expanded and the scrach register `TMP` shall not be clobbered if taken. Taking the
// branch to the slow path can theoretically clobber `TMP` (if outside the 1 MiB range).
__ Loadwu(temp, object, class_offset.Int32Value());
codegen->MaybeUnpoisonHeapReference(temp);
Riscv64Label loop;
__ Bind(&loop);
__ Beq(type, temp, &success, /*is_bare=*/ true);
// We may not have another scratch register for `Loadwu()`. Use `Lwu()` directly.
DCHECK(IsInt<12>(super_class_offset.Int32Value()));
__ Lwu(temp, temp, super_class_offset.Int32Value());
codegen->MaybeUnpoisonHeapReference(temp);
__ Beqz(temp, slow_path->GetEntryLabel());
__ J(&loop, /*is_bare=*/ true);
__ Bind(&success);
}
// Check access mode and the primitive type from VarHandle.varType.
// Check reference arguments against the VarHandle.varType; for references this is a subclass
// check without read barrier, so it can have false negatives which we handle in the slow path.
static void GenerateVarHandleAccessModeAndVarTypeChecks(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
SlowPathCodeRISCV64* slow_path,
DataType::Type type) {
mirror::VarHandle::AccessMode access_mode =
mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic());
Primitive::Type primitive_type = DataTypeToPrimitive(type);
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister varhandle = locations->InAt(0).AsRegister<XRegister>();
const MemberOffset var_type_offset = mirror::VarHandle::VarTypeOffset();
const MemberOffset access_mode_bit_mask_offset = mirror::VarHandle::AccessModesBitMaskOffset();
const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset();
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
XRegister temp2 = srs.AllocateXRegister();
// Check that the operation is permitted.
__ Loadw(temp, varhandle, access_mode_bit_mask_offset.Int32Value());
DCHECK_LT(enum_cast<uint32_t>(access_mode), 31u); // We cannot avoid the shift below.
__ Slliw(temp, temp, 31 - enum_cast<uint32_t>(access_mode)); // Shift tested bit to sign bit.
__ Bgez(temp, slow_path->GetEntryLabel()); // If not permitted, go to slow path.
// For primitive types, we do not need a read barrier when loading a reference only for loading
// constant field through the reference. For reference types, we deliberately avoid the read
// barrier, letting the slow path handle the false negatives.
__ Loadwu(temp, varhandle, var_type_offset.Int32Value());
codegen->MaybeUnpoisonHeapReference(temp);
// Check the varType.primitiveType field against the type we're trying to use.
__ Loadhu(temp2, temp, primitive_type_offset.Int32Value());
if (primitive_type == Primitive::kPrimNot) {
static_assert(Primitive::kPrimNot == 0);
__ Bnez(temp2, slow_path->GetEntryLabel());
} else {
__ Li(temp, enum_cast<int32_t>(primitive_type)); // `temp` can be clobbered.
__ Bne(temp2, temp, slow_path->GetEntryLabel());
}
srs.FreeXRegister(temp2);
if (type == DataType::Type::kReference) {
// Check reference arguments against the varType.
// False negatives due to varType being an interface or array type
// or due to the missing read barrier are handled by the slow path.
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count;
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) {
HInstruction* arg = invoke->InputAt(arg_index);
DCHECK_EQ(arg->GetType(), DataType::Type::kReference);
if (!arg->IsNullConstant()) {
XRegister arg_reg = locations->InAt(arg_index).AsRegister<XRegister>();
GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, arg_reg, temp);
}
}
}
}
static void GenerateVarHandleStaticFieldCheck(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
SlowPathCodeRISCV64* slow_path) {
Riscv64Assembler* assembler = codegen->GetAssembler();
XRegister varhandle = invoke->GetLocations()->InAt(0).AsRegister<XRegister>();
const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset();
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
// Check that the VarHandle references a static field by checking that coordinateType0 == null.
// Do not emit read barrier (or unpoison the reference) for comparing to null.
__ Loadwu(temp, varhandle, coordinate_type0_offset.Int32Value());
__ Bnez(temp, slow_path->GetEntryLabel());
}
static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
SlowPathCodeRISCV64* slow_path) {
VarHandleOptimizations optimizations(invoke);
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister varhandle = locations->InAt(0).AsRegister<XRegister>();
XRegister object = locations->InAt(1).AsRegister<XRegister>();
const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset();
const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset();
// Null-check the object.
if (!optimizations.GetSkipObjectNullCheck()) {
__ Beqz(object, slow_path->GetEntryLabel());
}
if (!optimizations.GetUseKnownBootImageVarHandle()) {
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
// Check that the VarHandle references an instance field by checking that
// coordinateType1 == null. coordinateType0 should not be null, but this is handled by the
// type compatibility check with the source object's type, which will fail for null.
__ Loadwu(temp, varhandle, coordinate_type1_offset.Int32Value());
// No need for read barrier or unpoisoning of coordinateType1 for comparison with null.
__ Bnez(temp, slow_path->GetEntryLabel());
// Check that the object has the correct type.
// We deliberately avoid the read barrier, letting the slow path handle the false negatives.
__ Loadwu(temp, varhandle, coordinate_type0_offset.Int32Value());
codegen->MaybeUnpoisonHeapReference(temp);
GenerateSubTypeObjectCheckNoReadBarrier(
codegen, slow_path, object, temp, /*object_can_be_null=*/ false);
}
}
static void GenerateVarHandleArrayChecks(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
VarHandleSlowPathRISCV64* slow_path) {
VarHandleOptimizations optimizations(invoke);
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister varhandle = locations->InAt(0).AsRegister<XRegister>();
XRegister object = locations->InAt(1).AsRegister<XRegister>();
XRegister index = locations->InAt(2).AsRegister<XRegister>();
DataType::Type value_type =
GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u);
Primitive::Type primitive_type = DataTypeToPrimitive(value_type);
const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset();
const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset();
const MemberOffset component_type_offset = mirror::Class::ComponentTypeOffset();
const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset();
const MemberOffset class_offset = mirror::Object::ClassOffset();
const MemberOffset array_length_offset = mirror::Array::LengthOffset();
// Null-check the object.
if (!optimizations.GetSkipObjectNullCheck()) {
__ Beqz(object, slow_path->GetEntryLabel());
}
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
XRegister temp2 = srs.AllocateXRegister();
// Check that the VarHandle references an array, byte array view or ByteBuffer by checking
// that coordinateType1 != null. If that's true, coordinateType1 shall be int.class and
// coordinateType0 shall not be null but we do not explicitly verify that.
__ Loadwu(temp, varhandle, coordinate_type1_offset.Int32Value());
// No need for read barrier or unpoisoning of coordinateType1 for comparison with null.
__ Beqz(temp, slow_path->GetEntryLabel());
// Check object class against componentType0.
//
// This is an exact check and we defer other cases to the runtime. This includes
// conversion to array of superclass references, which is valid but subsequently
// requires all update operations to check that the value can indeed be stored.
// We do not want to perform such extra checks in the intrinsified code.
//
// We do this check without read barrier, so there can be false negatives which we
// defer to the slow path. There shall be no false negatives for array classes in the
// boot image (including Object[] and primitive arrays) because they are non-movable.
__ Loadwu(temp, varhandle, coordinate_type0_offset.Int32Value());
__ Loadwu(temp2, object, class_offset.Int32Value());
__ Bne(temp, temp2, slow_path->GetEntryLabel());
// Check that the coordinateType0 is an array type. We do not need a read barrier
// for loading constant reference fields (or chains of them) for comparison with null,
// nor for finally loading a constant primitive field (primitive type) below.
codegen->MaybeUnpoisonHeapReference(temp);
__ Loadwu(temp2, temp, component_type_offset.Int32Value());
codegen->MaybeUnpoisonHeapReference(temp2);
__ Beqz(temp2, slow_path->GetEntryLabel());
// Check that the array component type matches the primitive type.
__ Loadhu(temp, temp2, primitive_type_offset.Int32Value());
if (primitive_type == Primitive::kPrimNot) {
static_assert(Primitive::kPrimNot == 0);
__ Bnez(temp, slow_path->GetEntryLabel());
} else {
// With the exception of `kPrimNot` (handled above), `kPrimByte` and `kPrimBoolean`,
// we shall check for a byte array view in the slow path.
// The check requires the ByteArrayViewVarHandle.class to be in the boot image,
// so we cannot emit that if we're JITting without boot image.
bool boot_image_available =
codegen->GetCompilerOptions().IsBootImage() ||
!Runtime::Current()->GetHeap()->GetBootImageSpaces().empty();
bool can_be_view = (DataType::Size(value_type) != 1u) && boot_image_available;
Riscv64Label* slow_path_label =
can_be_view ? slow_path->GetByteArrayViewCheckLabel() : slow_path->GetEntryLabel();
__ Li(temp2, enum_cast<int32_t>(primitive_type));
__ Bne(temp, temp2, slow_path_label);
}
// Check for array index out of bounds.
__ Loadw(temp, object, array_length_offset.Int32Value());
__ Bgeu(index, temp, slow_path->GetEntryLabel());
}
static void GenerateVarHandleCoordinateChecks(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
VarHandleSlowPathRISCV64* slow_path) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
if (expected_coordinates_count == 0u) {
GenerateVarHandleStaticFieldCheck(invoke, codegen, slow_path);
} else if (expected_coordinates_count == 1u) {
GenerateVarHandleInstanceFieldChecks(invoke, codegen, slow_path);
} else {
DCHECK_EQ(expected_coordinates_count, 2u);
GenerateVarHandleArrayChecks(invoke, codegen, slow_path);
}
}
static VarHandleSlowPathRISCV64* GenerateVarHandleChecks(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
std::memory_order order,
DataType::Type type) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetUseKnownBootImageVarHandle()) {
DCHECK_NE(expected_coordinates_count, 2u);
if (expected_coordinates_count == 0u || optimizations.GetSkipObjectNullCheck()) {
return nullptr;
}
}
VarHandleSlowPathRISCV64* slow_path =
new (codegen->GetScopedAllocator()) VarHandleSlowPathRISCV64(invoke, order);
codegen->AddSlowPath(slow_path);
if (!optimizations.GetUseKnownBootImageVarHandle()) {
GenerateVarHandleAccessModeAndVarTypeChecks(invoke, codegen, slow_path, type);
}
GenerateVarHandleCoordinateChecks(invoke, codegen, slow_path);
return slow_path;
}
struct VarHandleTarget {
XRegister object; // The object holding the value to operate on.
XRegister offset; // The offset of the value to operate on.
};
static VarHandleTarget GetVarHandleTarget(HInvoke* invoke) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
LocationSummary* locations = invoke->GetLocations();
VarHandleTarget target;
// The temporary allocated for loading the offset.
target.offset = locations->GetTemp(0u).AsRegister<XRegister>();
// The reference to the object that holds the value to operate on.
target.object = (expected_coordinates_count == 0u)
? locations->GetTemp(1u).AsRegister<XRegister>()
: locations->InAt(1).AsRegister<XRegister>();
return target;
}
static void GenerateVarHandleTarget(HInvoke* invoke,
const VarHandleTarget& target,
CodeGeneratorRISCV64* codegen) {
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
XRegister varhandle = locations->InAt(0).AsRegister<XRegister>();
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
if (expected_coordinates_count <= 1u) {
if (VarHandleOptimizations(invoke).GetUseKnownBootImageVarHandle()) {
ScopedObjectAccess soa(Thread::Current());
ArtField* target_field = GetBootImageVarHandleField(invoke);
if (expected_coordinates_count == 0u) {
ObjPtr<mirror::Class> declaring_class = target_field->GetDeclaringClass();
if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(declaring_class)) {
uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(declaring_class);
codegen->LoadBootImageRelRoEntry(target.object, boot_image_offset);
} else {
codegen->LoadTypeForBootImageIntrinsic(
target.object,
TypeReference(&declaring_class->GetDexFile(), declaring_class->GetDexTypeIndex()));
}
}
__ Li(target.offset, target_field->GetOffset().Uint32Value());
} else {
// For static fields, we need to fill the `target.object` with the declaring class,
// so we can use `target.object` as temporary for the `ArtField*`. For instance fields,
// we do not need the declaring class, so we can forget the `ArtField*` when
// we load the `target.offset`, so use the `target.offset` to hold the `ArtField*`.
XRegister field = (expected_coordinates_count == 0) ? target.object : target.offset;
const MemberOffset art_field_offset = mirror::FieldVarHandle::ArtFieldOffset();
const MemberOffset offset_offset = ArtField::OffsetOffset();
// Load the ArtField*, the offset and, if needed, declaring class.
__ Loadd(field, varhandle, art_field_offset.Int32Value());
__ Loadwu(target.offset, field, offset_offset.Int32Value());
if (expected_coordinates_count == 0u) {
codegen->GenerateGcRootFieldLoad(
invoke,
Location::RegisterLocation(target.object),
field,
ArtField::DeclaringClassOffset().Int32Value(),
codegen->GetCompilerReadBarrierOption());
}
}
} else {
DCHECK_EQ(expected_coordinates_count, 2u);
DataType::Type value_type =
GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u);
MemberOffset data_offset = mirror::Array::DataOffset(DataType::Size(value_type));
XRegister index = locations->InAt(2).AsRegister<XRegister>();
__ Li(target.offset, data_offset.Int32Value());
codegen->GetInstructionVisitor()->ShNAdd(target.offset, index, target.offset, value_type);
}
}
static LocationSummary* CreateVarHandleCommonLocations(HInvoke* invoke,
CodeGeneratorRISCV64* codegen) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
DataType::Type return_type = invoke->GetType();
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
// Require coordinates in registers. These are the object holding the value
// to operate on (except for static fields) and index (for arrays and views).
for (size_t i = 0; i != expected_coordinates_count; ++i) {
locations->SetInAt(/* VarHandle object */ 1u + i, Location::RequiresRegister());
}
if (return_type != DataType::Type::kVoid) {
if (DataType::IsFloatingPointType(return_type)) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetOut(Location::RequiresRegister());
}
}
uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count;
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) {
HInstruction* arg = invoke->InputAt(arg_index);
if (IsZeroBitPattern(arg)) {
locations->SetInAt(arg_index, Location::ConstantLocation(arg));
} else if (DataType::IsFloatingPointType(arg->GetType())) {
locations->SetInAt(arg_index, Location::RequiresFpuRegister());
} else {
locations->SetInAt(arg_index, Location::RequiresRegister());
}
}
// Add a temporary for offset.
if (codegen->EmitNonBakerReadBarrier() &&
GetExpectedVarHandleCoordinatesCount(invoke) == 0u) { // For static fields.
// To preserve the offset value across the non-Baker read barrier slow path
// for loading the declaring class, use a fixed callee-save register.
constexpr int first_callee_save = CTZ(kRiscv64CalleeSaveRefSpills);
locations->AddTemp(Location::RegisterLocation(first_callee_save));
} else {
locations->AddTemp(Location::RequiresRegister());
}
if (expected_coordinates_count == 0u) {
// Add a temporary to hold the declaring class.
locations->AddTemp(Location::RequiresRegister());
}
return locations;
}
static void CreateVarHandleGetLocations(HInvoke* invoke, CodeGeneratorRISCV64* codegen) {
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetDoNotIntrinsify()) {
return;
}
if (codegen->EmitNonBakerReadBarrier() &&
invoke->GetType() == DataType::Type::kReference &&
invoke->GetIntrinsic() != Intrinsics::kVarHandleGet &&
invoke->GetIntrinsic() != Intrinsics::kVarHandleGetOpaque) {
// Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores
// the passed reference and reloads it from the field. This gets the memory visibility
// wrong for Acquire/Volatile operations. b/173104084
return;
}
CreateVarHandleCommonLocations(invoke, codegen);
}
DataType::Type IntTypeForFloatingPointType(DataType::Type fp_type) {
DCHECK(DataType::IsFloatingPointType(fp_type));
return (fp_type == DataType::Type::kFloat32) ? DataType::Type::kInt32 : DataType::Type::kInt64;
}
static void GenerateVarHandleGet(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
std::memory_order order,
bool byte_swap = false) {
DataType::Type type = invoke->GetType();
DCHECK_NE(type, DataType::Type::kVoid);
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = codegen->GetAssembler();
Location out = locations->Out();
VarHandleTarget target = GetVarHandleTarget(invoke);
VarHandleSlowPathRISCV64* slow_path = nullptr;
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, order, type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
bool seq_cst_barrier = (order == std::memory_order_seq_cst);
bool acquire_barrier = seq_cst_barrier || (order == std::memory_order_acquire);
DCHECK(acquire_barrier || order == std::memory_order_relaxed);
if (seq_cst_barrier) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
// Load the value from the target location.
if (type == DataType::Type::kReference && codegen->EmitBakerReadBarrier()) {
Location index = Location::RegisterLocation(target.offset);
// TODO(riscv64): Revisit when we add checking if the holder is black.
Location temp = Location::NoLocation();
codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
out,
target.object,
/*offset=*/ 0,
index,
temp,
/*needs_null_check=*/ false);
DCHECK(!byte_swap);
} else {
ScratchRegisterScope srs(assembler);
XRegister address = srs.AllocateXRegister();
__ Add(address, target.object, target.offset);
Location load_loc = out;
DataType::Type load_type = type;
if (byte_swap && DataType::IsFloatingPointType(type)) {
load_loc = Location::RegisterLocation(target.offset); // Load to the offset temporary.
load_type = IntTypeForFloatingPointType(type);
}
codegen->GetInstructionVisitor()->Load(load_loc, address, /*offset=*/ 0, load_type);
if (type == DataType::Type::kReference) {
DCHECK(!byte_swap);
Location object_loc = Location::RegisterLocation(target.object);
Location offset_loc = Location::RegisterLocation(target.offset);
codegen->MaybeGenerateReadBarrierSlow(
invoke, out, out, object_loc, /*offset=*/ 0u, /*index=*/ offset_loc);
} else if (byte_swap) {
GenerateReverseBytes(codegen, out, load_loc.AsRegister<XRegister>(), type);
}
}
if (acquire_barrier) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGet(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGet(HInvoke* invoke) {
GenerateVarHandleGet(invoke, codegen_, std::memory_order_relaxed);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetOpaque(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetOpaque(HInvoke* invoke) {
GenerateVarHandleGet(invoke, codegen_, std::memory_order_relaxed);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAcquire(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAcquire(HInvoke* invoke) {
GenerateVarHandleGet(invoke, codegen_, std::memory_order_acquire);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetVolatile(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetVolatile(HInvoke* invoke) {
GenerateVarHandleGet(invoke, codegen_, std::memory_order_seq_cst);
}
static void CreateVarHandleSetLocations(HInvoke* invoke, CodeGeneratorRISCV64* codegen) {
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetDoNotIntrinsify()) {
return;
}
CreateVarHandleCommonLocations(invoke, codegen);
if (kPoisonHeapReferences && invoke->GetLocations() != nullptr) {
LocationSummary* locations = invoke->GetLocations();
uint32_t value_index = invoke->GetNumberOfArguments() - 1;
DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index);
if (value_type == DataType::Type::kReference && !locations->InAt(value_index).IsConstant()) {
locations->AddTemp(Location::RequiresRegister());
}
}
}
static void GenerateVarHandleSet(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
std::memory_order order,
bool byte_swap = false) {
uint32_t value_index = invoke->GetNumberOfArguments() - 1;
DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index);
Riscv64Assembler* assembler = codegen->GetAssembler();
Location value = invoke->GetLocations()->InAt(value_index);
VarHandleTarget target = GetVarHandleTarget(invoke);
VarHandleSlowPathRISCV64* slow_path = nullptr;
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
{
ScratchRegisterScope srs(assembler);
// Heap poisoning needs two scratch registers in `Store()`, except for null constants.
XRegister address =
(kPoisonHeapReferences && value_type == DataType::Type::kReference && !value.IsConstant())
? invoke->GetLocations()->GetTemp(0).AsRegister<XRegister>()
: srs.AllocateXRegister();
__ Add(address, target.object, target.offset);
if (byte_swap) {
DCHECK(!value.IsConstant()); // Zero uses the main path as it does not need a byte swap.
// The offset is no longer needed, so reuse the offset temporary for the byte-swapped value.
Location new_value = Location::RegisterLocation(target.offset);
if (DataType::IsFloatingPointType(value_type)) {
value_type = IntTypeForFloatingPointType(value_type);
codegen->MoveLocation(new_value, value, value_type);
value = new_value;
}
GenerateReverseBytes(codegen, new_value, value.AsRegister<XRegister>(), value_type);
value = new_value;
}
GenerateSet(codegen, order, value, address, /*offset=*/ 0, value_type);
}
if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(value_index))) {
codegen->MaybeMarkGCCard(
target.object, value.AsRegister<XRegister>(), /* emit_null_check= */ true);
}
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleSet(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleSet(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, std::memory_order_relaxed);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleSetOpaque(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleSetOpaque(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, std::memory_order_relaxed);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleSetRelease(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleSetRelease(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, std::memory_order_release);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleSetVolatile(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleSetVolatile(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, std::memory_order_seq_cst);
}
static bool ScratchXRegisterNeeded(Location loc, DataType::Type type, bool byte_swap) {
if (loc.IsConstant()) {
DCHECK(loc.GetConstant()->IsZeroBitPattern());
return false;
}
return DataType::IsFloatingPointType(type) || DataType::Size(type) < 4u || byte_swap;
}
static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
bool return_success) {
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetDoNotIntrinsify()) {
return;
}
uint32_t expected_index = invoke->GetNumberOfArguments() - 2;
uint32_t new_value_index = invoke->GetNumberOfArguments() - 1;
DataType::Type value_type = GetDataTypeFromShorty(invoke, new_value_index);
DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, expected_index));
bool is_reference = (value_type == DataType::Type::kReference);
if (is_reference && codegen->EmitNonBakerReadBarrier()) {
// Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores
// the passed reference and reloads it from the field. This breaks the read barriers
// in slow path in different ways. The marked old value may not actually be a to-space
// reference to the same object as `old_value`, breaking slow path assumptions. And
// for CompareAndExchange, marking the old value after comparison failure may actually
// return the reference to `expected`, erroneously indicating success even though we
// did not set the new value. (And it also gets the memory visibility wrong.) b/173104084
return;
}
// TODO(riscv64): Fix this intrinsic for heap poisoning configuration.
if (kPoisonHeapReferences && value_type == DataType::Type::kReference) {
return;
}
LocationSummary* locations = CreateVarHandleCommonLocations(invoke, codegen);
DCHECK_EQ(expected_index, 1u + GetExpectedVarHandleCoordinatesCount(invoke));
if (codegen->EmitNonBakerReadBarrier()) {
// We need callee-save registers for both the class object and offset instead of
// the temporaries reserved in CreateVarHandleCommonLocations().
static_assert(POPCOUNT(kRiscv64CalleeSaveRefSpills) >= 2u);
uint32_t first_callee_save = CTZ(kRiscv64CalleeSaveRefSpills);
uint32_t second_callee_save = CTZ(kRiscv64CalleeSaveRefSpills ^ (1u << first_callee_save));
if (expected_index == 1u) { // For static fields.
DCHECK_EQ(locations->GetTempCount(), 2u);
DCHECK(locations->GetTemp(0u).Equals(Location::RequiresRegister()));
DCHECK(locations->GetTemp(1u).Equals(Location::RegisterLocation(first_callee_save)));
locations->SetTempAt(0u, Location::RegisterLocation(second_callee_save));
} else {
DCHECK_EQ(locations->GetTempCount(), 1u);
DCHECK(locations->GetTemp(0u).Equals(Location::RequiresRegister()));
locations->SetTempAt(0u, Location::RegisterLocation(first_callee_save));
}
}
size_t old_temp_count = locations->GetTempCount();
DCHECK_EQ(old_temp_count, (expected_index == 1u) ? 2u : 1u);
Location expected = locations->InAt(expected_index);
Location new_value = locations->InAt(new_value_index);
size_t data_size = DataType::Size(value_type);
bool is_small = (data_size < 4u);
bool can_byte_swap =
(expected_index == 3u) && (value_type != DataType::Type::kReference && data_size != 1u);
bool is_fp = DataType::IsFloatingPointType(value_type);
size_t temps_needed =
// The offset temp is used for the `tmp_ptr`, except for the read barrier case. For read
// barrier we must preserve the offset and class pointer (if any) for the slow path and
// use a separate temp for `tmp_ptr` and we also need another temp for `old_value_temp`.
((is_reference && codegen->EmitReadBarrier()) ? old_temp_count + 2u : 1u) +
// For small values, we need a temp for the `mask`, `masked` and maybe also for the `shift`.
(is_small ? (return_success ? 2u : 3u) : 0u) +
// Some cases need modified copies of `new_value` and `expected`.
(ScratchXRegisterNeeded(expected, value_type, can_byte_swap) ? 1u : 0u) +
(ScratchXRegisterNeeded(new_value, value_type, can_byte_swap) ? 1u : 0u) +
// We need a scratch register either for the old value or for the result of SC.
// If we need to return a floating point old value, we need a temp for each.
((!return_success && is_fp) ? 2u : 1u);
size_t scratch_registers_available = 2u;
DCHECK_EQ(scratch_registers_available,
ScratchRegisterScope(codegen->GetAssembler()).AvailableXRegisters());
if (temps_needed > old_temp_count + scratch_registers_available) {
locations->AddRegisterTemps(temps_needed - (old_temp_count + scratch_registers_available));
}
}
static XRegister PrepareXRegister(CodeGeneratorRISCV64* codegen,
Location loc,
DataType::Type type,
XRegister shift,
XRegister mask,
bool byte_swap,
ScratchRegisterScope* srs) {
DCHECK_IMPLIES(mask != kNoXRegister, shift != kNoXRegister);
DCHECK_EQ(shift == kNoXRegister, DataType::Size(type) >= 4u);
if (loc.IsConstant()) {
// The `shift`/`mask` and `byte_swap` are irrelevant for zero input.
DCHECK(loc.GetConstant()->IsZeroBitPattern());
return Zero;
}
Location result = loc;
if (DataType::IsFloatingPointType(type)) {
type = IntTypeForFloatingPointType(type);
result = Location::RegisterLocation(srs->AllocateXRegister());
codegen->MoveLocation(result, loc, type);
loc = result;
} else if (byte_swap || shift != kNoXRegister) {
result = Location::RegisterLocation(srs->AllocateXRegister());
}
if (byte_swap) {
if (type == DataType::Type::kInt16) {
type = DataType::Type::kUint16; // Do the masking as part of the byte swap.
}
GenerateReverseBytes(codegen, result, loc.AsRegister<XRegister>(), type);
loc = result;
}
if (shift != kNoXRegister) {
Riscv64Assembler* assembler = codegen->GetAssembler();
__ Sllw(result.AsRegister<XRegister>(), loc.AsRegister<XRegister>(), shift);
DCHECK_NE(type, DataType::Type::kUint8);
if (mask != kNoXRegister && type != DataType::Type::kUint16 && type != DataType::Type::kBool) {
__ And(result.AsRegister<XRegister>(), result.AsRegister<XRegister>(), mask);
}
}
return result.AsRegister<XRegister>();
}
static void GenerateByteSwapAndExtract(CodeGeneratorRISCV64* codegen,
Location rd,
XRegister rs1,
XRegister shift,
DataType::Type type) {
// Apply shift before `GenerateReverseBytes()` for small types.
DCHECK_EQ(shift != kNoXRegister, DataType::Size(type) < 4u);
if (shift != kNoXRegister) {
Riscv64Assembler* assembler = codegen->GetAssembler();
__ Srlw(rd.AsRegister<XRegister>(), rs1, shift);
rs1 = rd.AsRegister<XRegister>();
}
// Also handles moving to FP registers.
GenerateReverseBytes(codegen, rd, rs1, type);
}
static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
std::memory_order order,
bool return_success,
bool strong,
bool byte_swap = false) {
DCHECK(return_success || strong);
uint32_t expected_index = invoke->GetNumberOfArguments() - 2;
uint32_t new_value_index = invoke->GetNumberOfArguments() - 1;
DataType::Type value_type = GetDataTypeFromShorty(invoke, new_value_index);
DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, expected_index));
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location expected = locations->InAt(expected_index);
Location new_value = locations->InAt(new_value_index);
Location out = locations->Out();
VarHandleTarget target = GetVarHandleTarget(invoke);
VarHandleSlowPathRISCV64* slow_path = nullptr;
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
slow_path->SetCompareAndSetOrExchangeArgs(return_success, strong);
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
// This needs to be before we allocate the scratch registers, as MarkGCCard also uses them.
if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(new_value_index))) {
// Mark card for object assuming new value is stored.
bool new_value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MaybeMarkGCCard(
target.object, new_value.AsRegister<XRegister>(), new_value_can_be_null);
}
// Scratch registers may be needed for `new_value` and `expected`.
ScratchRegisterScope srs(assembler);
DCHECK_EQ(srs.AvailableXRegisters(), 2u);
size_t available_scratch_registers =
(ScratchXRegisterNeeded(expected, value_type, byte_swap) ? 0u : 1u) +
(ScratchXRegisterNeeded(new_value, value_type, byte_swap) ? 0u : 1u);
// Reuse the `offset` temporary for the pointer to the target location,
// except for references that need the offset for the read barrier.
DCHECK_EQ(target.offset, locations->GetTemp(0u).AsRegister<XRegister>());
size_t next_temp = 1u;
XRegister tmp_ptr = target.offset;
bool is_reference = (value_type == DataType::Type::kReference);
if (is_reference && codegen->EmitReadBarrier()) {
// Reserve scratch registers for `tmp_ptr` and `old_value_temp`.
DCHECK_EQ(available_scratch_registers, 2u);
available_scratch_registers = 0u;
DCHECK_EQ(expected_index, 1u + GetExpectedVarHandleCoordinatesCount(invoke));
next_temp = expected_index == 1u ? 2u : 1u; // Preserve the class register for static field.
tmp_ptr = srs.AllocateXRegister();
}
__ Add(tmp_ptr, target.object, target.offset);
auto get_temp = [&]() {
if (available_scratch_registers != 0u) {
available_scratch_registers -= 1u;
return srs.AllocateXRegister();
} else {
XRegister temp = locations->GetTemp(next_temp).AsRegister<XRegister>();
next_temp += 1u;
return temp;
}
};
XRegister shift = kNoXRegister;
XRegister mask = kNoXRegister;
XRegister masked = kNoXRegister;
size_t data_size = DataType::Size(value_type);
bool is_small = (data_size < 4u);
if (is_small) {
// When returning "success" and not the old value, we shall not need the `shift` after
// the raw CAS operation, so use the output register as a temporary here.
shift = return_success ? locations->Out().AsRegister<XRegister>() : get_temp();
mask = get_temp();
masked = get_temp();
// Upper bits of the shift are not used, so we do not need to clear them.
__ Slli(shift, tmp_ptr, WhichPowerOf2(kBitsPerByte));
__ Andi(tmp_ptr, tmp_ptr, -4);
__ Li(mask, (1 << (data_size * kBitsPerByte)) - 1);
__ Sllw(mask, mask, shift);
}
// Move floating point values to scratch registers and apply shift, mask and byte swap if needed.
// Note that float/double CAS uses bitwise comparison, rather than the operator==.
XRegister expected_reg =
PrepareXRegister(codegen, expected, value_type, shift, mask, byte_swap, &srs);
XRegister new_value_reg =
PrepareXRegister(codegen, new_value, value_type, shift, mask, byte_swap, &srs);
bool is_fp = DataType::IsFloatingPointType(value_type);
DataType::Type cas_type = is_fp
? IntTypeForFloatingPointType(value_type)
: (is_small ? DataType::Type::kInt32 : value_type);
// Prepare registers for old value and the result of the store conditional.
XRegister old_value;
XRegister store_result;
if (return_success) {
// Use a temp for the old value.
old_value = get_temp();
// For strong CAS, use the `old_value` temp also for the SC result.
// For weak CAS, put the SC result directly to `out`.
store_result = strong ? old_value : out.AsRegister<XRegister>();
} else if (is_fp) {
// We need two temporary registers.
old_value = get_temp();
store_result = get_temp();
} else {
// Use the output register for the old value and a temp for the store conditional result.
old_value = out.AsRegister<XRegister>();
store_result = get_temp();
}
Riscv64Label exit_loop_label;
Riscv64Label* exit_loop = &exit_loop_label;
Riscv64Label* cmp_failure = &exit_loop_label;
ReadBarrierCasSlowPathRISCV64* rb_slow_path = nullptr;
if (is_reference && codegen->EmitReadBarrier()) {
// The `old_value_temp` is used first for marking the `old_value` and then for the unmarked
// reloaded old value for subsequent CAS in the slow path. We make this a scratch register
// as we do have marking entrypoints on riscv64 even for scratch registers.
XRegister old_value_temp = srs.AllocateXRegister();
// For strong CAS, use the `old_value_temp` also for the SC result as the reloaded old value
// is no longer needed after the comparison. For weak CAS, store the SC result in the same
// result register as the main path.
// Note that for a strong CAS, a SC failure in the slow path can set the register to 1, so
// we cannot use that register to indicate success without resetting it to 0 at the start of
// the retry loop. Instead, we return to the success indicating instruction in the main path.
XRegister slow_path_store_result = strong ? old_value_temp : store_result;
rb_slow_path = new (codegen->GetScopedAllocator()) ReadBarrierCasSlowPathRISCV64(
invoke,
order,
strong,
target.object,
target.offset,
expected_reg,
new_value_reg,
old_value,
old_value_temp,
slow_path_store_result,
/*update_old_value=*/ !return_success,
codegen);
codegen->AddSlowPath(rb_slow_path);
exit_loop = rb_slow_path->GetExitLabel();
cmp_failure = rb_slow_path->GetEntryLabel();
}
if (return_success) {
// Pre-populate the output register with failure for the case when the old value
// differs and we do not execute the store conditional.
__ Li(out.AsRegister<XRegister>(), 0);
}
GenerateCompareAndSet(codegen->GetAssembler(),
cas_type,
order,
strong,
cmp_failure,
tmp_ptr,
new_value_reg,
old_value,
mask,
masked,
store_result,
expected_reg);
if (return_success && strong) {
if (rb_slow_path != nullptr) {
// Slow path returns here on success.
__ Bind(rb_slow_path->GetSuccessExitLabel());
}
// Load success value to the output register.
// `GenerateCompareAndSet()` does not emit code to indicate success for a strong CAS.
__ Li(out.AsRegister<XRegister>(), 1);
} else if (rb_slow_path != nullptr) {
DCHECK(!rb_slow_path->GetSuccessExitLabel()->IsLinked());
}
__ Bind(exit_loop);
if (return_success) {
// Nothing to do, the result register already contains 1 on success and 0 on failure.
} else if (byte_swap) {
DCHECK_IMPLIES(is_small, out.AsRegister<XRegister>() == old_value)
<< " " << value_type << " " << out.AsRegister<XRegister>() << "!=" << old_value;
GenerateByteSwapAndExtract(codegen, out, old_value, shift, value_type);
} else if (is_fp) {
codegen->MoveLocation(out, Location::RegisterLocation(old_value), value_type);
} else if (is_small) {
__ Srlw(old_value, masked, shift);
if (value_type == DataType::Type::kInt8) {
__ SextB(old_value, old_value);
} else if (value_type == DataType::Type::kInt16) {
__ SextH(old_value, old_value);
}
}
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
// Check that we have allocated the right number of temps. We may need more registers
// for byte swapped CAS in the slow path, so skip this check for the main path in that case.
bool has_byte_swap = (expected_index == 3u) && (!is_reference && data_size != 1u);
if ((!has_byte_swap || byte_swap) && next_temp != locations->GetTempCount()) {
// We allocate a temporary register for the class object for a static field `VarHandle` but
// we do not update the `next_temp` if it's otherwise unused after the address calculation.
CHECK_EQ(expected_index, 1u);
CHECK_EQ(next_temp, 1u);
CHECK_EQ(locations->GetTempCount(), 2u);
}
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleCompareAndExchange(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ false);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleCompareAndExchange(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ false, /*strong=*/ true);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ false);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_acquire, /*return_success=*/ false, /*strong=*/ true);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ false);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_release, /*return_success=*/ false, /*strong=*/ true);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleCompareAndSet(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ true);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleCompareAndSet(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ true, /*strong=*/ true);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ true);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ true, /*strong=*/ false);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ true);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_acquire, /*return_success=*/ true, /*strong=*/ false);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ true);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_relaxed, /*return_success=*/ true, /*strong=*/ false);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke, codegen_, /*return_success=*/ true);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen_, std::memory_order_release, /*return_success=*/ true, /*strong=*/ false);
}
static void CreateVarHandleGetAndUpdateLocations(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
GetAndUpdateOp get_and_update_op) {
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetDoNotIntrinsify()) {
return;
}
if (invoke->GetType() == DataType::Type::kReference && codegen->EmitNonBakerReadBarrier()) {
// Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores
// the passed reference and reloads it from the field, thus seeing the new value
// that we have just stored. (And it also gets the memory visibility wrong.) b/173104084
return;
}
// TODO(riscv64): Fix this intrinsic for heap poisoning configuration.
if (kPoisonHeapReferences && invoke->GetType() == DataType::Type::kReference) {
return;
}
LocationSummary* locations = CreateVarHandleCommonLocations(invoke, codegen);
uint32_t arg_index = invoke->GetNumberOfArguments() - 1;
DCHECK_EQ(arg_index, 1u + GetExpectedVarHandleCoordinatesCount(invoke));
DataType::Type value_type = invoke->GetType();
DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, arg_index));
Location arg = locations->InAt(arg_index);
bool is_fp = DataType::IsFloatingPointType(value_type);
if (is_fp) {
if (get_and_update_op == GetAndUpdateOp::kAdd) {
// For ADD, do not use ZR for zero bit pattern (+0.0f or +0.0).
locations->SetInAt(invoke->GetNumberOfArguments() - 1u, Location::RequiresFpuRegister());
} else {
DCHECK(get_and_update_op == GetAndUpdateOp::kSet);
}
}
size_t data_size = DataType::Size(value_type);
bool can_byte_swap =
(arg_index == 3u) && (value_type != DataType::Type::kReference && data_size != 1u);
bool can_use_cas = (get_and_update_op == GetAndUpdateOp::kAdd) && (can_byte_swap || is_fp);
bool is_small = (data_size < 4u);
bool is_small_and = is_small && (get_and_update_op == GetAndUpdateOp::kAnd);
bool is_bitwise =
(get_and_update_op != GetAndUpdateOp::kSet && get_and_update_op != GetAndUpdateOp::kAdd);
size_t temps_needed =
// The offset temp is used for the `tmp_ptr`.
1u +
// For small values, we need temps for `shift` and maybe also `mask` and `temp`.
(is_small ? (is_bitwise ? 1u : 3u) : 0u) +
// Some cases need modified copies of `arg`.
(is_small_and || ScratchXRegisterNeeded(arg, value_type, can_byte_swap) ? 1u : 0u) +
// For FP types, we need a temp for `old_value` which cannot be loaded directly to `out`.
(is_fp ? 1u : 0u);
if (can_use_cas) {
size_t cas_temps_needed =
// The offset temp is used for the `tmp_ptr`.
1u +
// For small values, we need a temp for `shift`.
(is_small ? 1u : 0u) +
// And we always need temps for `old_value`, `new_value` and `reloaded_old_value`.
3u;
DCHECK_GE(cas_temps_needed, temps_needed);
temps_needed = cas_temps_needed;
}
size_t scratch_registers_available = 2u;
DCHECK_EQ(scratch_registers_available,
ScratchRegisterScope(codegen->GetAssembler()).AvailableXRegisters());
size_t old_temp_count = locations->GetTempCount();
DCHECK_EQ(old_temp_count, (arg_index == 1u) ? 2u : 1u);
if (temps_needed > old_temp_count + scratch_registers_available) {
locations->AddRegisterTemps(temps_needed - (old_temp_count + scratch_registers_available));
}
}
static void GenerateVarHandleGetAndUpdate(HInvoke* invoke,
CodeGeneratorRISCV64* codegen,
GetAndUpdateOp get_and_update_op,
std::memory_order order,
bool byte_swap = false) {
uint32_t arg_index = invoke->GetNumberOfArguments() - 1;
DCHECK_EQ(arg_index, 1u + GetExpectedVarHandleCoordinatesCount(invoke));
DataType::Type value_type = invoke->GetType();
DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, arg_index));
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location arg = locations->InAt(arg_index);
DCHECK_IMPLIES(arg.IsConstant(), arg.GetConstant()->IsZeroBitPattern());
Location out = locations->Out();
VarHandleTarget target = GetVarHandleTarget(invoke);
VarHandleSlowPathRISCV64* slow_path = nullptr;
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
slow_path->SetGetAndUpdateOp(get_and_update_op);
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
// This needs to be before the temp registers, as MarkGCCard also uses scratch registers.
if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(arg_index))) {
DCHECK(get_and_update_op == GetAndUpdateOp::kSet);
// Mark card for object, the new value shall be stored.
bool new_value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MaybeMarkGCCard(target.object, arg.AsRegister<XRegister>(), new_value_can_be_null);
}
size_t data_size = DataType::Size(value_type);
bool is_fp = DataType::IsFloatingPointType(value_type);
bool use_cas = (get_and_update_op == GetAndUpdateOp::kAdd) && (byte_swap || is_fp);
bool is_small = (data_size < 4u);
bool is_small_and = is_small && (get_and_update_op == GetAndUpdateOp::kAnd);
bool is_reference = (value_type == DataType::Type::kReference);
DataType::Type op_type = is_fp
? IntTypeForFloatingPointType(value_type)
: (is_small || is_reference ? DataType::Type::kInt32 : value_type);
ScratchRegisterScope srs(assembler);
DCHECK_EQ(srs.AvailableXRegisters(), 2u);
size_t available_scratch_registers = use_cas
// We use scratch registers differently for the CAS path.
? 0u
// Reserve one scratch register for `PrepareXRegister()` or similar `arg_reg` allocation.
: (is_small_and || ScratchXRegisterNeeded(arg, value_type, byte_swap) ? 1u : 2u);
// Reuse the `target.offset` temporary for the pointer to the target location,
// except for references that need the offset for the non-Baker read barrier.
DCHECK_EQ(target.offset, locations->GetTemp(0u).AsRegister<XRegister>());
size_t next_temp = 1u;
XRegister tmp_ptr = target.offset;
if (is_reference && codegen->EmitNonBakerReadBarrier()) {
DCHECK_EQ(available_scratch_registers, 2u);
available_scratch_registers -= 1u;
tmp_ptr = srs.AllocateXRegister();
}
__ Add(tmp_ptr, target.object, target.offset);
auto get_temp = [&]() {
if (available_scratch_registers != 0u) {
available_scratch_registers -= 1u;
return srs.AllocateXRegister();
} else {
XRegister temp = locations->GetTemp(next_temp).AsRegister<XRegister>();
next_temp += 1u;
return temp;
}
};
XRegister shift = kNoXRegister;
XRegister mask = kNoXRegister;
XRegister prepare_mask = kNoXRegister;
XRegister temp = kNoXRegister;
XRegister arg_reg = kNoXRegister;
if (is_small) {
shift = get_temp();
// Upper bits of the shift are not used, so we do not need to clear them.
__ Slli(shift, tmp_ptr, WhichPowerOf2(kBitsPerByte));
__ Andi(tmp_ptr, tmp_ptr, -4);
switch (get_and_update_op) {
case GetAndUpdateOp::kAdd:
if (byte_swap) {
// The mask is not needed in the CAS path.
DCHECK(use_cas);
break;
}
FALLTHROUGH_INTENDED;
case GetAndUpdateOp::kSet:
mask = get_temp();
temp = get_temp();
__ Li(mask, (1 << (data_size * kBitsPerByte)) - 1);
__ Sllw(mask, mask, shift);
// The argument does not need to be masked for `GetAndUpdateOp::kAdd`,
// the mask shall be applied after the ADD instruction.
prepare_mask = (get_and_update_op == GetAndUpdateOp::kSet) ? mask : kNoXRegister;
break;
case GetAndUpdateOp::kAnd:
// We need to set all other bits, so we always need a temp.
arg_reg = srs.AllocateXRegister();
if (data_size == 1u) {
__ Ori(arg_reg, InputXRegisterOrZero(arg), ~0xff);
DCHECK(!byte_swap);
} else {
DCHECK_EQ(data_size, 2u);
__ Li(arg_reg, ~0xffff);
__ Or(arg_reg, InputXRegisterOrZero(arg), arg_reg);
if (byte_swap) {
__ Rev8(arg_reg, arg_reg);
__ Rori(arg_reg, arg_reg, 48);
}
}
__ Rolw(arg_reg, arg_reg, shift);
break;
case GetAndUpdateOp::kOr:
case GetAndUpdateOp::kXor:
// Signed values need to be truncated but we're keeping `prepare_mask == kNoXRegister`.
if (value_type == DataType::Type::kInt8 && !arg.IsConstant()) {
DCHECK(!byte_swap);
arg_reg = srs.AllocateXRegister();
__ ZextB(arg_reg, arg.AsRegister<XRegister>());
__ Sllw(arg_reg, arg_reg, shift);
} else if (value_type == DataType::Type::kInt16 && !arg.IsConstant() && !byte_swap) {
arg_reg = srs.AllocateXRegister();
__ ZextH(arg_reg, arg.AsRegister<XRegister>());
__ Sllw(arg_reg, arg_reg, shift);
} // else handled by `PrepareXRegister()` below.
break;
}
}
if (arg_reg == kNoXRegister && !use_cas) {
arg_reg = PrepareXRegister(codegen, arg, value_type, shift, prepare_mask, byte_swap, &srs);
}
if (mask != kNoXRegister && get_and_update_op == GetAndUpdateOp::kSet) {
__ Not(mask, mask); // We need to flip the mask for `kSet`, see `GenerateGetAndUpdate()`.
}
if (use_cas) {
// Allocate scratch registers for temps that can theoretically be clobbered on retry.
// (Even though the `retry` label shall never be far enough for `TMP` to be clobbered.)
DCHECK_EQ(available_scratch_registers, 0u); // Reserved for the two uses below.
XRegister old_value = srs.AllocateXRegister();
XRegister new_value = srs.AllocateXRegister();
// Allocate other needed temporaries.
XRegister reloaded_old_value = get_temp();
XRegister store_result = reloaded_old_value; // Clobber reloaded old value by store result.
FRegister ftmp = is_fp ? srs.AllocateFRegister() : kNoFRegister;
Riscv64Label retry;
__ Bind(&retry);
codegen->GetInstructionVisitor()->Load(
Location::RegisterLocation(old_value), tmp_ptr, /*offset=*/ 0, op_type);
if (byte_swap) {
GenerateByteSwapAndExtract(codegen, out, old_value, shift, value_type);
} else {
DCHECK(is_fp);
codegen->MoveLocation(out, Location::RegisterLocation(old_value), value_type);
}
if (is_fp) {
codegen->GetInstructionVisitor()->FAdd(
ftmp, out.AsFpuRegister<FRegister>(), arg.AsFpuRegister<FRegister>(), value_type);
codegen->MoveLocation(
Location::RegisterLocation(new_value), Location::FpuRegisterLocation(ftmp), op_type);
} else if (value_type == DataType::Type::kInt64) {
__ Add(new_value, out.AsRegister<XRegister>(), arg.AsRegister<XRegister>());
} else {
DCHECK_EQ(op_type, DataType::Type::kInt32);
__ Addw(new_value, out.AsRegister<XRegister>(), arg.AsRegister<XRegister>());
}
if (byte_swap) {
DataType::Type swap_type = op_type;
if (is_small) {
DCHECK_EQ(data_size, 2u);
// We want to update only 16 bits of the 32-bit location. The 16 bits we want to replace
// are present in both `old_value` and `out` but in different bits and byte order.
// To update the 16 bits, we can XOR the new value with the `out`, byte swap as Uint16
// (extracting only the bits we want to update), shift and XOR with the old value.
swap_type = DataType::Type::kUint16;
__ Xor(new_value, new_value, out.AsRegister<XRegister>());
}
GenerateReverseBytes(codegen, Location::RegisterLocation(new_value), new_value, swap_type);
if (is_small) {
__ Sllw(new_value, new_value, shift);
__ Xor(new_value, new_value, old_value);
}
}
GenerateCompareAndSet(assembler,
op_type,
order,
/*strong=*/ true,
/*cmp_failure=*/ &retry,
tmp_ptr,
new_value,
/*old_value=*/ reloaded_old_value,
/*mask=*/ kNoXRegister,
/*masked=*/ kNoXRegister,
store_result,
/*expected=*/ old_value);
} else {
XRegister old_value = is_fp ? get_temp() : out.AsRegister<XRegister>();
GenerateGetAndUpdate(
codegen, get_and_update_op, op_type, order, tmp_ptr, arg_reg, old_value, mask, temp);
if (byte_swap) {
DCHECK_IMPLIES(is_small, out.AsRegister<XRegister>() == old_value)
<< " " << value_type << " " << out.AsRegister<XRegister>() << "!=" << old_value;
GenerateByteSwapAndExtract(codegen, out, old_value, shift, value_type);
} else if (is_fp) {
codegen->MoveLocation(out, Location::RegisterLocation(old_value), value_type);
} else if (is_small) {
__ Srlw(old_value, old_value, shift);
DCHECK_NE(value_type, DataType::Type::kUint8);
if (value_type == DataType::Type::kInt8) {
__ SextB(old_value, old_value);
} else if (value_type == DataType::Type::kBool) {
__ ZextB(old_value, old_value);
} else if (value_type == DataType::Type::kInt16) {
__ SextH(old_value, old_value);
} else {
DCHECK_EQ(value_type, DataType::Type::kUint16);
__ ZextH(old_value, old_value);
}
} else if (is_reference) {
__ ZextW(old_value, old_value);
if (codegen->EmitBakerReadBarrier()) {
// Use RA as temp. It is clobbered in the slow path anyway.
static constexpr Location kBakerReadBarrierTemp = Location::RegisterLocation(RA);
SlowPathCodeRISCV64* rb_slow_path =
codegen->AddGcRootBakerBarrierBarrierSlowPath(invoke, out, kBakerReadBarrierTemp);
codegen->EmitBakerReadBarierMarkingCheck(rb_slow_path, out, kBakerReadBarrierTemp);
} else if (codegen->EmitNonBakerReadBarrier()) {
Location base_loc = Location::RegisterLocation(target.object);
Location index = Location::RegisterLocation(target.offset);
SlowPathCodeRISCV64* rb_slow_path = codegen->AddReadBarrierSlowPath(
invoke, out, out, base_loc, /*offset=*/ 0u, index);
__ J(rb_slow_path->GetEntryLabel());
__ Bind(rb_slow_path->GetExitLabel());
}
}
}
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
// Check that we have allocated the right number of temps. We may need more registers
// for byte swapped CAS in the slow path, so skip this check for the main path in that case.
bool has_byte_swap = (arg_index == 3u) && (!is_reference && data_size != 1u);
if ((!has_byte_swap || byte_swap) && next_temp != locations->GetTempCount()) {
// We allocate a temporary register for the class object for a static field `VarHandle` but
// we do not update the `next_temp` if it's otherwise unused after the address calculation.
CHECK_EQ(arg_index, 1u);
CHECK_EQ(next_temp, 1u);
CHECK_EQ(locations->GetTempCount(), 2u);
}
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndSet(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kSet);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndSet(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_seq_cst);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kSet);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_acquire);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kSet);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_release);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndAdd(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kAdd);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndAdd(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_seq_cst);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kAdd);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_acquire);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kAdd);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_release);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kAnd);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_seq_cst);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kAnd);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_acquire);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kAnd);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_release);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kOr);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_seq_cst);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kOr);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_acquire);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kOr);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_release);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kXor);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_seq_cst);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kXor);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_acquire);
}
void IntrinsicLocationsBuilderRISCV64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) {
CreateVarHandleGetAndUpdateLocations(invoke, codegen_, GetAndUpdateOp::kXor);
}
void IntrinsicCodeGeneratorRISCV64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) {
GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_release);
}
void VarHandleSlowPathRISCV64::EmitByteArrayViewCode(CodeGenerator* codegen_in) {
DCHECK(GetByteArrayViewCheckLabel()->IsLinked());
CodeGeneratorRISCV64* codegen = down_cast<CodeGeneratorRISCV64*>(codegen_in);
Riscv64Assembler* assembler = codegen->GetAssembler();
HInvoke* invoke = GetInvoke();
mirror::VarHandle::AccessModeTemplate access_mode_template = GetAccessModeTemplate();
DataType::Type value_type =
GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u);
DCHECK_NE(value_type, DataType::Type::kReference);
size_t size = DataType::Size(value_type);
DCHECK_GT(size, 1u);
LocationSummary* locations = invoke->GetLocations();
XRegister varhandle = locations->InAt(0).AsRegister<XRegister>();
XRegister object = locations->InAt(1).AsRegister<XRegister>();
XRegister index = locations->InAt(2).AsRegister<XRegister>();
MemberOffset class_offset = mirror::Object::ClassOffset();
MemberOffset array_length_offset = mirror::Array::LengthOffset();
MemberOffset data_offset = mirror::Array::DataOffset(Primitive::kPrimByte);
MemberOffset native_byte_order_offset = mirror::ByteArrayViewVarHandle::NativeByteOrderOffset();
__ Bind(GetByteArrayViewCheckLabel());
VarHandleTarget target = GetVarHandleTarget(invoke);
{
ScratchRegisterScope srs(assembler);
XRegister temp = srs.AllocateXRegister();
XRegister temp2 = srs.AllocateXRegister();
// The main path checked that the coordinateType0 is an array class that matches
// the class of the actual coordinate argument but it does not match the value type.
// Check if the `varhandle` references a ByteArrayViewVarHandle instance.
__ Loadwu(temp, varhandle, class_offset.Int32Value());
codegen->MaybeUnpoisonHeapReference(temp);
codegen->LoadClassRootForIntrinsic(temp2, ClassRoot::kJavaLangInvokeByteArrayViewVarHandle);
__ Bne(temp, temp2, GetEntryLabel());
// Check for array index out of bounds.
__ Loadw(temp, object, array_length_offset.Int32Value());
__ Bgeu(index, temp, GetEntryLabel());
__ Addi(temp2, index, size - 1u);
__ Bgeu(temp2, temp, GetEntryLabel());
// Construct the target.
__ Addi(target.offset, index, data_offset.Int32Value());
// Alignment check. For unaligned access, go to the runtime.
DCHECK(IsPowerOfTwo(size));
__ Andi(temp, target.offset, size - 1u);
__ Bnez(temp, GetEntryLabel());
// Byte order check. For native byte order return to the main path.
if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kSet &&
IsZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) {
// There is no reason to differentiate between native byte order and byte-swap
// for setting a zero bit pattern. Just return to the main path.
__ J(GetNativeByteOrderLabel());
return;
}
__ Loadbu(temp, varhandle, native_byte_order_offset.Int32Value());
__ Bnez(temp, GetNativeByteOrderLabel());
}
switch (access_mode_template) {
case mirror::VarHandle::AccessModeTemplate::kGet:
GenerateVarHandleGet(invoke, codegen, order_, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kSet:
GenerateVarHandleSet(invoke, codegen, order_, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kCompareAndSet:
case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange:
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen, order_, return_success_, strong_, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate:
GenerateVarHandleGetAndUpdate(
invoke, codegen, get_and_update_op_, order_, /*byte_swap=*/ true);
break;
}
__ J(GetExitLabel());
}
void IntrinsicLocationsBuilderRISCV64::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorRISCV64::VisitThreadCurrentThread(HInvoke* invoke) {
Riscv64Assembler* assembler = GetAssembler();
XRegister out = invoke->GetLocations()->Out().AsRegister<XRegister>();
__ Loadwu(out, TR, Thread::PeerOffset<kRiscv64PointerSize>().Int32Value());
}
void IntrinsicLocationsBuilderRISCV64::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorRISCV64::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
XRegister out = locations->Out().AsRegister<XRegister>();
Riscv64Label done;
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
__ Loadw(out, TR, Thread::InterruptedOffset<kRiscv64PointerSize>().Int32Value());
__ Beqz(out, &done);
__ Storew(Zero, TR, Thread::InterruptedOffset<kRiscv64PointerSize>().Int32Value());
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
__ Bind(&done);
}
void IntrinsicLocationsBuilderRISCV64::VisitReachabilityFence(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
}
void IntrinsicCodeGeneratorRISCV64::VisitReachabilityFence([[maybe_unused]] HInvoke* invoke) {}
void IntrinsicLocationsBuilderRISCV64::VisitMathFmaDouble(HInvoke* invoke) {
CreateFpFpFpToFpNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathFmaDouble(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
FRegister n = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister m = locations->InAt(1).AsFpuRegister<FRegister>();
FRegister a = locations->InAt(2).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ FMAddD(out, n, m, a);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathFmaFloat(HInvoke* invoke) {
CreateFpFpFpToFpNoOverlapLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathFmaFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
FRegister n = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister m = locations->InAt(1).AsFpuRegister<FRegister>();
FRegister a = locations->InAt(2).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ FMAddS(out, n, m, a);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathCos(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickCos, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathSin(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickSin, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathAcos(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickAcos, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathAsin(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickAsin, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathAtan(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickAtan, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathAtan2(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickAtan2, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathPow(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathPow(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickPow, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathCbrt(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickCbrt, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathCosh(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickCosh, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathExp(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickExp, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathExpm1(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickExpm1, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathHypot(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickHypot, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathLog(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickLog, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathLog10(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickLog10, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathNextAfter(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickNextAfter, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathSinh(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickSinh, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathTan(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickTan, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathTanh(HInvoke* invoke) {
codegen_->InvokeRuntime(kQuickTanh, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderRISCV64::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathSqrt(HInvoke* invoke) {
DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64);
DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64);
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ FSqrtD(out, in);
}
static void GenDoubleRound(Riscv64Assembler* assembler, HInvoke* invoke, FPRoundingMode mode) {
LocationSummary* locations = invoke->GetLocations();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
ScratchRegisterScope srs(assembler);
XRegister tmp = srs.AllocateXRegister();
FRegister ftmp = srs.AllocateFRegister();
Riscv64Label done;
// Load 2^52
__ LoadConst64(tmp, 0x4330000000000000L);
__ FMvDX(ftmp, tmp);
__ FAbsD(out, in);
__ FLtD(tmp, out, ftmp);
// Set output as the input if input greater than the max
__ FMvD(out, in);
__ Beqz(tmp, &done);
// Convert with rounding mode
__ FCvtLD(tmp, in, mode);
__ FCvtDL(ftmp, tmp, mode);
// Set the signed bit
__ FSgnjD(out, ftmp, in);
__ Bind(&done);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathFloor(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathFloor(HInvoke* invoke) {
GenDoubleRound(GetAssembler(), invoke, FPRoundingMode::kRDN);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathCeil(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathCeil(HInvoke* invoke) {
GenDoubleRound(GetAssembler(), invoke, FPRoundingMode::kRUP);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathRint(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathRint(HInvoke* invoke) {
GenDoubleRound(GetAssembler(), invoke, FPRoundingMode::kRNE);
}
void GenMathRound(CodeGeneratorRISCV64* codegen, HInvoke* invoke, DataType::Type type) {
Riscv64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
ScratchRegisterScope srs(assembler);
FRegister ftmp = srs.AllocateFRegister();
Riscv64Label done;
// Check NaN
codegen->GetInstructionVisitor()->FClass(out, in, type);
__ Slti(out, out, kFClassNaNMinValue);
__ Beqz(out, &done);
if (type == DataType::Type::kFloat64) {
// Add 0.5 (0x3fe0000000000000), rounding down (towards negative infinity).
__ LoadConst64(out, 0x3fe0000000000000L);
__ FMvDX(ftmp, out);
__ FAddD(ftmp, ftmp, in, FPRoundingMode::kRDN);
// Convert to managed `long`, rounding down (towards negative infinity).
__ FCvtLD(out, ftmp, FPRoundingMode::kRDN);
} else {
// Add 0.5 (0x3f000000), rounding down (towards negative infinity).
__ LoadConst32(out, 0x3f000000);
__ FMvWX(ftmp, out);
__ FAddS(ftmp, ftmp, in, FPRoundingMode::kRDN);
// Convert to managed `int`, rounding down (towards negative infinity).
__ FCvtWS(out, ftmp, FPRoundingMode::kRDN);
}
__ Bind(&done);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathRoundDouble(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathRoundDouble(HInvoke* invoke) {
GenMathRound(codegen_, invoke, DataType::Type::kFloat64);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathRoundFloat(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorRISCV64::VisitMathRoundFloat(HInvoke* invoke) {
GenMathRound(codegen_, invoke, DataType::Type::kFloat32);
}
void IntrinsicLocationsBuilderRISCV64::VisitMathMultiplyHigh(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorRISCV64::VisitMathMultiplyHigh(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
Riscv64Assembler* assembler = GetAssembler();
DCHECK(invoke->GetType() == DataType::Type::kInt64);
XRegister x = locations->InAt(0).AsRegister<XRegister>();
XRegister y = locations->InAt(1).AsRegister<XRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
// Get high 64 of the multiply
__ Mulh(out, x, y);
}
#define MARK_UNIMPLEMENTED(Name) UNIMPLEMENTED_INTRINSIC(RISCV64, Name)
UNIMPLEMENTED_INTRINSIC_LIST_RISCV64(MARK_UNIMPLEMENTED);
#undef MARK_UNIMPLEMENTED
UNREACHABLE_INTRINSICS(RISCV64)
} // namespace riscv64
} // namespace art