blob: 007ec8114220952968a485ff970d0aac747c8b77 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_H_
#define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_H_
#include "arch/x86/instruction_set_features_x86.h"
#include "base/enums.h"
#include "base/macros.h"
#include "code_generator.h"
#include "dex/dex_file_types.h"
#include "driver/compiler_options.h"
#include "nodes.h"
#include "parallel_move_resolver.h"
#include "utils/x86/assembler_x86.h"
namespace art HIDDEN {
namespace x86 {
// Use a local definition to prevent copying mistakes.
static constexpr size_t kX86WordSize = static_cast<size_t>(kX86PointerSize);
class CodeGeneratorX86;
static constexpr Register kParameterCoreRegisters[] = { ECX, EDX, EBX };
static constexpr RegisterPair kParameterCorePairRegisters[] = { ECX_EDX, EDX_EBX };
static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters);
static constexpr XmmRegister kParameterFpuRegisters[] = { XMM0, XMM1, XMM2, XMM3 };
static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters);
static constexpr Register kRuntimeParameterCoreRegisters[] = { EAX, ECX, EDX, EBX };
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr XmmRegister kRuntimeParameterFpuRegisters[] = { XMM0, XMM1, XMM2, XMM3 };
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
#define UNIMPLEMENTED_INTRINSIC_LIST_X86(V) \
V(MathRoundDouble) \
V(FloatIsInfinite) \
V(DoubleIsInfinite) \
V(IntegerHighestOneBit) \
V(LongHighestOneBit) \
V(LongDivideUnsigned) \
V(CRC32Update) \
V(CRC32UpdateBytes) \
V(CRC32UpdateByteBuffer) \
V(FP16ToFloat) \
V(FP16ToHalf) \
V(FP16Floor) \
V(FP16Ceil) \
V(FP16Rint) \
V(FP16Greater) \
V(FP16GreaterEquals) \
V(FP16Less) \
V(FP16LessEquals) \
V(FP16Compare) \
V(FP16Min) \
V(FP16Max) \
V(MathMultiplyHigh) \
V(StringStringIndexOf) \
V(StringStringIndexOfAfter) \
V(StringBufferAppend) \
V(StringBufferLength) \
V(StringBufferToString) \
V(StringBuilderAppendObject) \
V(StringBuilderAppendString) \
V(StringBuilderAppendCharSequence) \
V(StringBuilderAppendCharArray) \
V(StringBuilderAppendBoolean) \
V(StringBuilderAppendChar) \
V(StringBuilderAppendInt) \
V(StringBuilderAppendLong) \
V(StringBuilderAppendFloat) \
V(StringBuilderAppendDouble) \
V(StringBuilderLength) \
V(StringBuilderToString) \
/* 1.8 */ \
V(MethodHandleInvokeExact) \
V(MethodHandleInvoke)
class InvokeRuntimeCallingConvention : public CallingConvention<Register, XmmRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength,
kX86PointerSize) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
class InvokeDexCallingConvention : public CallingConvention<Register, XmmRegister> {
public:
InvokeDexCallingConvention() : CallingConvention(
kParameterCoreRegisters,
kParameterCoreRegistersLength,
kParameterFpuRegisters,
kParameterFpuRegistersLength,
kX86PointerSize) {}
RegisterPair GetRegisterPairAt(size_t argument_index) {
DCHECK_LT(argument_index + 1, GetNumberOfRegisters());
return kParameterCorePairRegisters[argument_index];
}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention);
};
class InvokeDexCallingConventionVisitorX86 : public InvokeDexCallingConventionVisitor {
public:
InvokeDexCallingConventionVisitorX86() {}
virtual ~InvokeDexCallingConventionVisitorX86() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
private:
InvokeDexCallingConvention calling_convention;
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorX86);
};
class CriticalNativeCallingConventionVisitorX86 : public InvokeDexCallingConventionVisitor {
public:
explicit CriticalNativeCallingConventionVisitorX86(bool for_register_allocation)
: for_register_allocation_(for_register_allocation) {}
virtual ~CriticalNativeCallingConventionVisitorX86() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
size_t GetStackOffset() const { return stack_offset_; }
private:
// Register allocator does not support adjusting frame size, so we cannot provide final locations
// of stack arguments for register allocation. We ask the register allocator for any location and
// move these arguments to the right place after adjusting the SP when generating the call.
const bool for_register_allocation_;
size_t stack_offset_ = 0u;
DISALLOW_COPY_AND_ASSIGN(CriticalNativeCallingConventionVisitorX86);
};
class FieldAccessCallingConventionX86 : public FieldAccessCallingConvention {
public:
FieldAccessCallingConventionX86() {}
Location GetObjectLocation() const override {
return Location::RegisterLocation(ECX);
}
Location GetFieldIndexLocation() const override {
return Location::RegisterLocation(EAX);
}
Location GetReturnLocation(DataType::Type type) const override {
return DataType::Is64BitType(type)
? Location::RegisterPairLocation(EAX, EDX)
: Location::RegisterLocation(EAX);
}
Location GetSetValueLocation(DataType::Type type, bool is_instance) const override {
return DataType::Is64BitType(type)
? (is_instance
? Location::RegisterPairLocation(EDX, EBX)
: Location::RegisterPairLocation(ECX, EDX))
: (is_instance
? Location::RegisterLocation(EDX)
: Location::RegisterLocation(ECX));
}
Location GetFpuLocation([[maybe_unused]] DataType::Type type) const override {
return Location::FpuRegisterLocation(XMM0);
}
private:
DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionX86);
};
class ParallelMoveResolverX86 : public ParallelMoveResolverWithSwap {
public:
ParallelMoveResolverX86(ArenaAllocator* allocator, CodeGeneratorX86* codegen)
: ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {}
void EmitMove(size_t index) override;
void EmitSwap(size_t index) override;
void SpillScratch(int reg) override;
void RestoreScratch(int reg) override;
X86Assembler* GetAssembler() const;
private:
void Exchange(Register reg, int mem);
void Exchange32(XmmRegister reg, int mem);
void Exchange128(XmmRegister reg, int mem);
void ExchangeMemory(int mem1, int mem2, int number_of_words);
void MoveMemoryToMemory(int dst, int src, int number_of_words);
CodeGeneratorX86* const codegen_;
DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverX86);
};
class LocationsBuilderX86 : public HGraphVisitor {
public:
LocationsBuilderX86(HGraph* graph, CodeGeneratorX86* codegen)
: HGraphVisitor(graph), codegen_(codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
private:
void HandleBitwiseOperation(HBinaryOperation* instruction);
void HandleInvoke(HInvoke* invoke);
void HandleCondition(HCondition* condition);
void HandleShift(HBinaryOperation* instruction);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
WriteBarrierKind write_barrier_kind);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
bool CpuHasAvxFeatureFlag();
bool CpuHasAvx2FeatureFlag();
CodeGeneratorX86* const codegen_;
InvokeDexCallingConventionVisitorX86 parameter_visitor_;
DISALLOW_COPY_AND_ASSIGN(LocationsBuilderX86);
};
class InstructionCodeGeneratorX86 : public InstructionCodeGenerator {
public:
InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen);
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
X86Assembler* GetAssembler() const { return assembler_; }
// The compare/jump sequence will generate about (1.5 * num_entries) instructions. A jump
// table version generates 7 instructions and num_entries literals. Compare/jump sequence will
// generates less code/data with a small num_entries.
static constexpr uint32_t kPackedSwitchJumpTableThreshold = 5;
// Generate a GC root reference load:
//
// root <- *address
//
// while honoring read barriers based on read_barrier_option.
void GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
const Address& address,
Label* fixup_label,
ReadBarrierOption read_barrier_option);
void HandleFieldSet(HInstruction* instruction,
uint32_t value_index,
DataType::Type type,
Address field_addr,
Register base,
bool is_volatile,
bool value_can_be_null,
WriteBarrierKind write_barrier_kind);
private:
// Generate code for the given suspend check. If not null, `successor`
// is the block to branch to if the suspend check is not needed, and after
// the suspend call.
void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor);
void GenerateClassInitializationCheck(SlowPathCode* slow_path, Register class_reg);
void GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, Register temp);
void HandleBitwiseOperation(HBinaryOperation* instruction);
void GenerateDivRemIntegral(HBinaryOperation* instruction);
void DivRemOneOrMinusOne(HBinaryOperation* instruction);
void DivByPowerOfTwo(HDiv* instruction);
void RemByPowerOfTwo(HRem* instruction);
void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateRemFP(HRem* rem);
void HandleCondition(HCondition* condition);
void HandleShift(HBinaryOperation* instruction);
void GenerateShlLong(const Location& loc, Register shifter);
void GenerateShrLong(const Location& loc, Register shifter);
void GenerateUShrLong(const Location& loc, Register shifter);
void GenerateShlLong(const Location& loc, int shift);
void GenerateShrLong(const Location& loc, int shift);
void GenerateUShrLong(const Location& loc, int shift);
void GenerateMinMaxInt(LocationSummary* locations, bool is_min, DataType::Type type);
void GenerateMinMaxFP(LocationSummary* locations, bool is_min, DataType::Type type);
void GenerateMinMax(HBinaryOperation* minmax, bool is_min);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null,
WriteBarrierKind write_barrier_kind);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
// Generate a heap reference load using one register `out`:
//
// out <- *(out + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a read barrier and
// shall be a register in that case; it may be an invalid location
// otherwise.
void GenerateReferenceLoadOneRegister(HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a heap reference load using two different registers
// `out` and `obj`:
//
// out <- *(obj + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a Baker's (fast
// path) read barrier and shall be a register in that case; it may
// be an invalid location otherwise.
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
ReadBarrierOption read_barrier_option);
// Push value to FPU stack. `is_fp` specifies whether the value is floating point or not.
// `is_wide` specifies whether it is long/double or not.
void PushOntoFPStack(Location source, uint32_t temp_offset,
uint32_t stack_adjustment, bool is_fp, bool is_wide);
template<class LabelType>
void GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
LabelType* true_target,
LabelType* false_target);
template<class LabelType>
void GenerateCompareTestAndBranch(HCondition* condition,
LabelType* true_target,
LabelType* false_target);
template<class LabelType>
void GenerateFPJumps(HCondition* cond, LabelType* true_label, LabelType* false_label);
template<class LabelType>
void GenerateLongComparesAndJumps(HCondition* cond,
LabelType* true_label,
LabelType* false_label);
void HandleGoto(HInstruction* got, HBasicBlock* successor);
void GenPackedSwitchWithCompares(Register value_reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block);
void GenerateFPCompare(Location lhs, Location rhs, HInstruction* insn, bool is_double);
bool CpuHasAvxFeatureFlag();
bool CpuHasAvx2FeatureFlag();
void GenerateMethodEntryExitHook(HInstruction* instruction);
X86Assembler* const assembler_;
CodeGeneratorX86* const codegen_;
DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorX86);
};
class JumpTableRIPFixup;
class CodeGeneratorX86 : public CodeGenerator {
public:
CodeGeneratorX86(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats = nullptr);
virtual ~CodeGeneratorX86() {}
void GenerateFrameEntry() override;
void GenerateFrameExit() override;
void Bind(HBasicBlock* block) override;
void MoveConstant(Location destination, int32_t value) override;
void MoveLocation(Location dst, Location src, DataType::Type dst_type) override;
void AddLocationAsTemp(Location location, LocationSummary* locations) override;
size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
// Generate code to invoke a runtime entry point.
void InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path = nullptr) override;
// Generate code to invoke a runtime entry point, but do not record
// PC-related information in a stack map.
void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path);
void GenerateInvokeRuntime(int32_t entry_point_offset);
size_t GetWordSize() const override {
return kX86WordSize;
}
size_t GetSlowPathFPWidth() const override {
return GetGraph()->HasSIMD()
? GetSIMDRegisterWidth()
: 2 * kX86WordSize; // 8 bytes == 2 words for each spill
}
size_t GetCalleePreservedFPWidth() const override {
return 2 * kX86WordSize;
}
size_t GetSIMDRegisterWidth() const override {
return 4 * kX86WordSize;
}
HGraphVisitor* GetLocationBuilder() override {
return &location_builder_;
}
HGraphVisitor* GetInstructionVisitor() override {
return &instruction_visitor_;
}
X86Assembler* GetAssembler() override {
return &assembler_;
}
const X86Assembler& GetAssembler() const override {
return assembler_;
}
uintptr_t GetAddressOf(HBasicBlock* block) override {
return GetLabelOf(block)->Position();
}
void SetupBlockedRegisters() const override;
void DumpCoreRegister(std::ostream& stream, int reg) const override;
void DumpFloatingPointRegister(std::ostream& stream, int reg) const override;
ParallelMoveResolverX86* GetMoveResolver() override {
return &move_resolver_;
}
InstructionSet GetInstructionSet() const override {
return InstructionSet::kX86;
}
const X86InstructionSetFeatures& GetInstructionSetFeatures() const;
// Helper method to move a 32bits value between two locations.
void Move32(Location destination, Location source);
// Helper method to move a 64bits value between two locations.
void Move64(Location destination, Location source);
// Helper method to load a value from an address to a register.
void LoadFromMemoryNoBarrier(DataType::Type dst_type,
Location dst,
Address src,
HInstruction* instr = nullptr,
XmmRegister temp = kNoXmmRegister,
bool is_atomic_load = false);
// Helper method to move a primitive value from a location to an address.
void MoveToMemory(DataType::Type src_type,
Location src,
Register dst_base,
Register dst_index = Register::kNoRegister,
ScaleFactor dst_scale = TIMES_1,
int32_t dst_disp = 0);
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) override;
// Check if the desired_class_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadClass::LoadKind GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) override;
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
ArtMethod* method) override;
void LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke);
// Generate a call to a static or direct method.
void GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) override;
// Generate a call to a virtual method.
void GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) override;
void RecordBootImageIntrinsicPatch(HX86ComputeBaseMethodAddress* method_address,
uint32_t intrinsic_data);
void RecordBootImageRelRoPatch(HX86ComputeBaseMethodAddress* method_address,
uint32_t boot_image_offset);
void RecordBootImageMethodPatch(HInvoke* invoke);
void RecordMethodBssEntryPatch(HInvoke* invoke);
void RecordBootImageTypePatch(HLoadClass* load_class);
Label* NewTypeBssEntryPatch(HLoadClass* load_class);
void RecordBootImageStringPatch(HLoadString* load_string);
Label* NewStringBssEntryPatch(HLoadString* load_string);
void RecordBootImageJniEntrypointPatch(HInvokeStaticOrDirect* invoke);
void LoadBootImageAddress(Register reg,
uint32_t boot_image_reference,
HInvokeStaticOrDirect* invoke);
void LoadIntrinsicDeclaringClass(Register reg, HInvokeStaticOrDirect* invoke);
Label* NewJitRootStringPatch(const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle);
Label* NewJitRootClassPatch(const DexFile& dex_file,
dex::TypeIndex type_index,
Handle<mirror::Class> handle);
void MoveFromReturnRegister(Location trg, DataType::Type type) override;
// Emit linker patches.
void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) override;
void PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
const PatchInfo<Label>& info,
uint64_t index_in_table) const;
void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) override;
// Emit a write barrier if:
// A) emit_null_check is false
// B) emit_null_check is true, and value is not null.
void MaybeMarkGCCard(
Register temp, Register card, Register object, Register value, bool emit_null_check);
// Emit a write barrier unconditionally.
void MarkGCCard(Register temp, Register card, Register object);
// Crash if the card table is not valid. This check is only emitted for the CC GC. We assert
// `(!clean || !self->is_gc_marking)`, since the card table should not be set to clean when the CC
// GC is marking for eliminated write barriers.
void CheckGCCardIsValid(Register temp, Register card, Register object);
void GenerateMemoryBarrier(MemBarrierKind kind);
Label* GetLabelOf(HBasicBlock* block) const {
return CommonGetLabelOf<Label>(block_labels_, block);
}
void Initialize() override {
block_labels_ = CommonInitializeLabels<Label>();
}
bool NeedsTwoRegisters(DataType::Type type) const override {
return type == DataType::Type::kInt64;
}
bool ShouldSplitLongMoves() const override { return true; }
Label* GetFrameEntryLabel() { return &frame_entry_label_; }
void AddMethodAddressOffset(HX86ComputeBaseMethodAddress* method_base, int32_t offset) {
method_address_offset_.Put(method_base->GetId(), offset);
}
int32_t GetMethodAddressOffset(HX86ComputeBaseMethodAddress* method_base) const {
return method_address_offset_.Get(method_base->GetId());
}
int32_t ConstantAreaStart() const {
return constant_area_start_;
}
Address LiteralDoubleAddress(double v, HX86ComputeBaseMethodAddress* method_base, Register reg);
Address LiteralFloatAddress(float v, HX86ComputeBaseMethodAddress* method_base, Register reg);
Address LiteralInt32Address(int32_t v, HX86ComputeBaseMethodAddress* method_base, Register reg);
Address LiteralInt64Address(int64_t v, HX86ComputeBaseMethodAddress* method_base, Register reg);
// Load a 32-bit value into a register in the most efficient manner.
void Load32BitValue(Register dest, int32_t value);
// Compare a register with a 32-bit value in the most efficient manner.
void Compare32BitValue(Register dest, int32_t value);
// Compare int values. Supports only register locations for `lhs`.
void GenerateIntCompare(Location lhs, Location rhs);
void GenerateIntCompare(Register lhs, Location rhs);
// Construct address for array access.
static Address ArrayAddress(Register obj,
Location index,
ScaleFactor scale,
uint32_t data_offset);
Address LiteralCaseTable(HX86PackedSwitch* switch_instr, Register reg, Register value);
void Finalize() override;
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
bool needs_null_check);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference array load when Baker's read barriers are used.
void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
bool needs_null_check);
// Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier,
// GenerateArrayLoadWithBakerReadBarrier and some intrinsics.
//
// Load the object reference located at address `src`, held by
// object `obj`, into `ref`, and mark it if needed. The base of
// address `src` must be `obj`.
//
// If `always_update_field` is true, the value of the reference is
// atomically updated in the holder (`obj`). This operation
// requires a temporary register, which must be provided as a
// non-null pointer (`temp`).
void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
const Address& src,
bool needs_null_check,
bool always_update_field = false,
Register* temp = nullptr);
// Generate a read barrier for a heap reference within `instruction`
// using a slow path.
//
// A read barrier for an object reference read from the heap is
// implemented as a call to the artReadBarrierSlow runtime entry
// point, which is passed the values in locations `ref`, `obj`, and
// `offset`:
//
// mirror::Object* artReadBarrierSlow(mirror::Object* ref,
// mirror::Object* obj,
// uint32_t offset);
//
// The `out` location contains the value returned by
// artReadBarrierSlow.
//
// When `index` is provided (i.e. for array accesses), the offset
// value passed to artReadBarrierSlow is adjusted to take `index`
// into account.
void GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// If read barriers are enabled, generate a read barrier for a heap
// reference using a slow path. If heap poisoning is enabled, also
// unpoison the reference in `out`.
void MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// Generate a read barrier for a GC root within `instruction` using
// a slow path.
//
// A read barrier for an object reference GC root is implemented as
// a call to the artReadBarrierForRootSlow runtime entry point,
// which is passed the value in location `root`:
//
// mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root);
//
// The `out` location contains the value returned by
// artReadBarrierForRootSlow.
void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root);
// Ensure that prior stores complete to memory before subsequent loads.
// The locked add implementation will avoid serializing device memory, but will
// touch (but not change) the top of the stack.
// The 'non_temporal' parameter should be used to ensure ordering of non-temporal stores.
void MemoryFence(bool non_temporal = false) {
if (!non_temporal) {
assembler_.lock()->addl(Address(ESP, 0), Immediate(0));
} else {
assembler_.mfence();
}
}
void IncreaseFrame(size_t adjustment) override;
void DecreaseFrame(size_t adjustment) override;
void GenerateNop() override;
void GenerateImplicitNullCheck(HNullCheck* instruction) override;
void GenerateExplicitNullCheck(HNullCheck* instruction) override;
void MaybeGenerateInlineCacheCheck(HInstruction* instruction, Register klass);
void MaybeIncrementHotness(HSuspendCheck* suspend_check, bool is_frame_entry);
// When we don't know the proper offset for the value, we use kPlaceholder32BitOffset.
// The correct value will be inserted when processing Assembler fixups.
static constexpr int32_t kPlaceholder32BitOffset = 256;
private:
struct X86PcRelativePatchInfo : PatchInfo<Label> {
X86PcRelativePatchInfo(HX86ComputeBaseMethodAddress* address,
const DexFile* target_dex_file,
uint32_t target_index)
: PatchInfo(target_dex_file, target_index),
method_address(address) {}
HX86ComputeBaseMethodAddress* method_address;
};
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
void EmitPcRelativeLinkerPatches(const ArenaDeque<X86PcRelativePatchInfo>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches);
Register GetInvokeExtraParameter(HInvoke* invoke, Register temp);
Register GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp);
// Labels for each block that will be compiled.
Label* block_labels_; // Indexed by block id.
Label frame_entry_label_;
LocationsBuilderX86 location_builder_;
InstructionCodeGeneratorX86 instruction_visitor_;
ParallelMoveResolverX86 move_resolver_;
X86Assembler assembler_;
// PC-relative method patch info for kBootImageLinkTimePcRelative.
ArenaDeque<X86PcRelativePatchInfo> boot_image_method_patches_;
// PC-relative method patch info for kBssEntry.
ArenaDeque<X86PcRelativePatchInfo> method_bss_entry_patches_;
// PC-relative type patch info for kBootImageLinkTimePcRelative.
ArenaDeque<X86PcRelativePatchInfo> boot_image_type_patches_;
// PC-relative type patch info for kBssEntry.
ArenaDeque<X86PcRelativePatchInfo> type_bss_entry_patches_;
// PC-relative public type patch info for kBssEntryPublic.
ArenaDeque<X86PcRelativePatchInfo> public_type_bss_entry_patches_;
// PC-relative package type patch info for kBssEntryPackage.
ArenaDeque<X86PcRelativePatchInfo> package_type_bss_entry_patches_;
// PC-relative String patch info for kBootImageLinkTimePcRelative.
ArenaDeque<X86PcRelativePatchInfo> boot_image_string_patches_;
// PC-relative String patch info for kBssEntry.
ArenaDeque<X86PcRelativePatchInfo> string_bss_entry_patches_;
// PC-relative method patch info for kBootImageLinkTimePcRelative+kCallCriticalNative.
ArenaDeque<X86PcRelativePatchInfo> boot_image_jni_entrypoint_patches_;
// PC-relative patch info for IntrinsicObjects for the boot image,
// and for method/type/string patches for kBootImageRelRo otherwise.
ArenaDeque<X86PcRelativePatchInfo> boot_image_other_patches_;
// Patches for string root accesses in JIT compiled code.
ArenaDeque<PatchInfo<Label>> jit_string_patches_;
// Patches for class root accesses in JIT compiled code.
ArenaDeque<PatchInfo<Label>> jit_class_patches_;
// Offset to the start of the constant area in the assembled code.
// Used for fixups to the constant area.
int32_t constant_area_start_;
// Fixups for jump tables that need to be patched after the constant table is generated.
ArenaVector<JumpTableRIPFixup*> fixups_to_jump_tables_;
// Maps a HX86ComputeBaseMethodAddress instruction id, to its offset in the
// compiled code.
ArenaSafeMap<uint32_t, int32_t> method_address_offset_;
DISALLOW_COPY_AND_ASSIGN(CodeGeneratorX86);
};
} // namespace x86
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_H_