| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_utils.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "nodes.h" |
| |
| namespace art HIDDEN { |
| |
| void CalculateMagicAndShiftForDivRem(int64_t divisor, bool is_long, |
| int64_t* magic, int* shift) { |
| // It does not make sense to calculate magic and shift for zero divisor. |
| DCHECK_NE(divisor, 0); |
| |
| /* Implementation according to H.S.Warren's "Hacker's Delight" (Addison Wesley, 2002) |
| * Chapter 10 and T.Grablund, P.L.Montogomery's "Division by Invariant Integers Using |
| * Multiplication" (PLDI 1994). |
| * The magic number M and shift S can be calculated in the following way: |
| * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| * where divisor(d) >= 2. |
| * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| * where divisor(d) <= -2. |
| * Thus nc can be calculated like: |
| * nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long |
| * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long |
| * |
| * So the shift p is the smallest p satisfying |
| * 2^p > nc * (d - 2^p % d), where d >= 2 |
| * 2^p > nc * (d + 2^p % d), where d <= -2. |
| * |
| * The magic number M is calculated by |
| * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| * |
| * Notice that p is always bigger than or equal to 32 (resp. 64), so we just return 32 - p |
| * (resp. 64 - p) as the shift number S. |
| */ |
| |
| int64_t p = is_long ? 63 : 31; |
| const uint64_t exp = is_long ? (UINT64_C(1) << 63) : (UINT32_C(1) << 31); |
| |
| // Initialize the computations. |
| uint64_t abs_d = (divisor >= 0) ? divisor : -divisor; |
| uint64_t sign_bit = is_long ? static_cast<uint64_t>(divisor) >> 63 : |
| static_cast<uint32_t>(divisor) >> 31; |
| uint64_t tmp = exp + sign_bit; |
| uint64_t abs_nc = tmp - 1 - (tmp % abs_d); |
| uint64_t quotient1 = exp / abs_nc; |
| uint64_t remainder1 = exp % abs_nc; |
| uint64_t quotient2 = exp / abs_d; |
| uint64_t remainder2 = exp % abs_d; |
| |
| /* |
| * To avoid handling both positive and negative divisor, "Hacker's Delight" |
| * introduces a method to handle these 2 cases together to avoid duplication. |
| */ |
| uint64_t delta; |
| do { |
| p++; |
| quotient1 = 2 * quotient1; |
| remainder1 = 2 * remainder1; |
| if (remainder1 >= abs_nc) { |
| quotient1++; |
| remainder1 = remainder1 - abs_nc; |
| } |
| quotient2 = 2 * quotient2; |
| remainder2 = 2 * remainder2; |
| if (remainder2 >= abs_d) { |
| quotient2++; |
| remainder2 = remainder2 - abs_d; |
| } |
| delta = abs_d - remainder2; |
| } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| |
| *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| |
| if (!is_long) { |
| *magic = static_cast<int>(*magic); |
| } |
| |
| *shift = is_long ? p - 64 : p - 32; |
| } |
| |
| bool IsBooleanValueOrMaterializedCondition(HInstruction* cond_input) { |
| return !cond_input->IsCondition() || !cond_input->IsEmittedAtUseSite(); |
| } |
| |
| // A helper class to group functions analyzing if values are non-negative |
| // at the point of use. The class keeps some context used by the functions. |
| // The class is not supposed to be used directly or its instances to be kept. |
| // The main function using it is HasNonNegativeInputAt. |
| // If you want to use the class methods you need to become a friend of the class. |
| class UnsignedUseAnalyzer { |
| private: |
| explicit UnsignedUseAnalyzer(ArenaAllocator* allocator) |
| : seen_values_(allocator->Adapter(kArenaAllocCodeGenerator)) { |
| } |
| |
| bool IsNonNegativeUse(HInstruction* target_user, HInstruction* value); |
| bool IsComparedValueNonNegativeInBlock(HInstruction* value, |
| HCondition* cond, |
| HBasicBlock* target_block); |
| |
| ArenaSet<HInstruction*> seen_values_; |
| |
| friend bool HasNonNegativeInputAt(HInstruction* instr, size_t i); |
| }; |
| |
| // Check that the value compared with a non-negavite value is |
| // non-negative in the specified basic block. |
| bool UnsignedUseAnalyzer::IsComparedValueNonNegativeInBlock(HInstruction* value, |
| HCondition* cond, |
| HBasicBlock* target_block) { |
| DCHECK(cond->HasInput(value)); |
| |
| // To simplify analysis, we require: |
| // 1. The condition basic block and target_block to be different. |
| // 2. The condition basic block to end with HIf. |
| // 3. HIf to use the condition. |
| if (cond->GetBlock() == target_block || |
| !cond->GetBlock()->EndsWithIf() || |
| cond->GetBlock()->GetLastInstruction()->InputAt(0) != cond) { |
| return false; |
| } |
| |
| // We need to find a successor basic block of HIf for the case when instr is non-negative. |
| // If the successor dominates target_block, instructions in target_block see a non-negative value. |
| HIf* if_instr = cond->GetBlock()->GetLastInstruction()->AsIf(); |
| HBasicBlock* successor = nullptr; |
| switch (cond->GetCondition()) { |
| case kCondGT: |
| case kCondGE: { |
| if (cond->GetLeft() == value) { |
| // The expression is v > A or v >= A. |
| // If A is non-negative, we need the true successor. |
| if (IsNonNegativeUse(cond, cond->GetRight())) { |
| successor = if_instr->IfTrueSuccessor(); |
| } else { |
| return false; |
| } |
| } else { |
| DCHECK_EQ(cond->GetRight(), value); |
| // The expression is A > v or A >= v. |
| // If A is non-negative, we need the false successor. |
| if (IsNonNegativeUse(cond, cond->GetLeft())) { |
| successor = if_instr->IfFalseSuccessor(); |
| } else { |
| return false; |
| } |
| } |
| break; |
| } |
| |
| case kCondLT: |
| case kCondLE: { |
| if (cond->GetLeft() == value) { |
| // The expression is v < A or v <= A. |
| // If A is non-negative, we need the false successor. |
| if (IsNonNegativeUse(cond, cond->GetRight())) { |
| successor = if_instr->IfFalseSuccessor(); |
| } else { |
| return false; |
| } |
| } else { |
| DCHECK_EQ(cond->GetRight(), value); |
| // The expression is A < v or A <= v. |
| // If A is non-negative, we need the true successor. |
| if (IsNonNegativeUse(cond, cond->GetLeft())) { |
| successor = if_instr->IfTrueSuccessor(); |
| } else { |
| return false; |
| } |
| } |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| DCHECK_NE(successor, nullptr); |
| |
| return successor->Dominates(target_block); |
| } |
| |
| // Check the value used by target_user is non-negative. |
| bool UnsignedUseAnalyzer::IsNonNegativeUse(HInstruction* target_user, HInstruction* value) { |
| DCHECK(target_user->HasInput(value)); |
| |
| // Prevent infinitive recursion which can happen when the value is an induction variable. |
| if (!seen_values_.insert(value).second) { |
| return false; |
| } |
| |
| // Check if the value is always non-negative. |
| if (IsGEZero(value)) { |
| return true; |
| } |
| |
| for (const HUseListNode<HInstruction*>& use : value->GetUses()) { |
| HInstruction* user = use.GetUser(); |
| if (user == target_user) { |
| continue; |
| } |
| |
| // If the value is compared with some non-negative value, this can guarantee the value to be |
| // non-negative at its use. |
| // JFYI: We're not using HTypeConversion to bind the new information because it would |
| // increase the complexity of optimizations: HTypeConversion can create a dependency |
| // which does not exist in the input program, for example: |
| // between two uses, 1st - cmp, 2nd - target_user. |
| if (user->IsCondition()) { |
| // The condition must dominate target_user to guarantee that the value is always checked |
| // before it is used by target_user. |
| if (user->GetBlock()->Dominates(target_user->GetBlock()) && |
| IsComparedValueNonNegativeInBlock(value, user->AsCondition(), target_user->GetBlock())) { |
| return true; |
| } |
| } |
| |
| // TODO The value is non-negative if it is used as an array index before. |
| // TODO The value is non-negative if it is initialized by a positive number and all of its |
| // modifications keep the value non-negative, for example the division operation. |
| } |
| |
| return false; |
| } |
| |
| bool HasNonNegativeInputAt(HInstruction* instr, size_t i) { |
| UnsignedUseAnalyzer analyzer(instr->GetBlock()->GetGraph()->GetAllocator()); |
| return analyzer.IsNonNegativeUse(instr, instr->InputAt(i)); |
| } |
| |
| bool HasNonNegativeOrMinIntInputAt(HInstruction* instr, size_t i) { |
| HInstruction* input = instr->InputAt(i); |
| return input->IsAbs() || |
| IsInt64Value(input, DataType::MinValueOfIntegralType(input->GetType())) || |
| HasNonNegativeInputAt(instr, i); |
| } |
| |
| } // namespace art |