blob: 653e83dd5713acc59f6ca6aab616e342e26ebe70 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_RISCV64_H_
#define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_RISCV64_H_
#include "android-base/logging.h"
#include "arch/riscv64/registers_riscv64.h"
#include "base/macros.h"
#include "code_generator.h"
#include "driver/compiler_options.h"
#include "intrinsics_list.h"
#include "optimizing/locations.h"
#include "parallel_move_resolver.h"
#include "utils/riscv64/assembler_riscv64.h"
namespace art HIDDEN {
namespace riscv64 {
// InvokeDexCallingConvention registers
static constexpr XRegister kParameterCoreRegisters[] = {A1, A2, A3, A4, A5, A6, A7};
static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters);
static constexpr FRegister kParameterFpuRegisters[] = {FA0, FA1, FA2, FA3, FA4, FA5, FA6, FA7};
static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters);
// InvokeRuntimeCallingConvention registers
static constexpr XRegister kRuntimeParameterCoreRegisters[] = {A0, A1, A2, A3, A4, A5, A6, A7};
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr FRegister kRuntimeParameterFpuRegisters[] = {
FA0, FA1, FA2, FA3, FA4, FA5, FA6, FA7
};
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
// FCLASS returns a 10-bit classification mask with the two highest bits marking NaNs
// (signaling and quiet). To detect a NaN, we can compare (either BGE or BGEU, the sign
// bit is always clear) the result with the `kFClassNaNMinValue`.
static_assert(kSignalingNaN == 0x100);
static_assert(kQuietNaN == 0x200);
static constexpr int32_t kFClassNaNMinValue = 0x100;
#define UNIMPLEMENTED_INTRINSIC_LIST_RISCV64(V) \
V(SystemArrayCopyByte) \
V(SystemArrayCopyChar) \
V(SystemArrayCopyInt) \
V(FP16Ceil) \
V(FP16Compare) \
V(FP16Floor) \
V(FP16Rint) \
V(FP16ToFloat) \
V(FP16ToHalf) \
V(FP16Greater) \
V(FP16GreaterEquals) \
V(FP16Less) \
V(FP16LessEquals) \
V(FP16Min) \
V(FP16Max) \
V(StringCompareTo) \
V(StringEquals) \
V(StringGetCharsNoCheck) \
V(StringStringIndexOf) \
V(StringStringIndexOfAfter) \
V(StringBufferAppend) \
V(StringBufferLength) \
V(StringBufferToString) \
V(StringBuilderAppendObject) \
V(StringBuilderAppendString) \
V(StringBuilderAppendCharSequence) \
V(StringBuilderAppendCharArray) \
V(StringBuilderAppendBoolean) \
V(StringBuilderAppendChar) \
V(StringBuilderAppendInt) \
V(StringBuilderAppendLong) \
V(StringBuilderAppendFloat) \
V(StringBuilderAppendDouble) \
V(StringBuilderLength) \
V(StringBuilderToString) \
V(CRC32Update) \
V(CRC32UpdateBytes) \
V(CRC32UpdateByteBuffer) \
V(MethodHandleInvokeExact) \
V(MethodHandleInvoke)
// Method register on invoke.
static const XRegister kArtMethodRegister = A0;
// Helper functions used by codegen as well as intrinsics.
XRegister InputXRegisterOrZero(Location location);
int32_t ReadBarrierMarkEntrypointOffset(Location ref);
class CodeGeneratorRISCV64;
class InvokeRuntimeCallingConvention : public CallingConvention<XRegister, FRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength,
kRiscv64PointerSize) {}
Location GetReturnLocation(DataType::Type return_type);
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
class InvokeDexCallingConvention : public CallingConvention<XRegister, FRegister> {
public:
InvokeDexCallingConvention()
: CallingConvention(kParameterCoreRegisters,
kParameterCoreRegistersLength,
kParameterFpuRegisters,
kParameterFpuRegistersLength,
kRiscv64PointerSize) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention);
};
class InvokeDexCallingConventionVisitorRISCV64 : public InvokeDexCallingConventionVisitor {
public:
InvokeDexCallingConventionVisitorRISCV64() {}
virtual ~InvokeDexCallingConventionVisitorRISCV64() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
private:
InvokeDexCallingConvention calling_convention;
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorRISCV64);
};
class CriticalNativeCallingConventionVisitorRiscv64 : public InvokeDexCallingConventionVisitor {
public:
explicit CriticalNativeCallingConventionVisitorRiscv64(bool for_register_allocation)
: for_register_allocation_(for_register_allocation) {}
virtual ~CriticalNativeCallingConventionVisitorRiscv64() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
size_t GetStackOffset() const { return stack_offset_; }
private:
// Register allocator does not support adjusting frame size, so we cannot provide final locations
// of stack arguments for register allocation. We ask the register allocator for any location and
// move these arguments to the right place after adjusting the SP when generating the call.
const bool for_register_allocation_;
size_t gpr_index_ = 0u;
size_t fpr_index_ = 0u;
size_t stack_offset_ = 0u;
DISALLOW_COPY_AND_ASSIGN(CriticalNativeCallingConventionVisitorRiscv64);
};
class SlowPathCodeRISCV64 : public SlowPathCode {
public:
explicit SlowPathCodeRISCV64(HInstruction* instruction)
: SlowPathCode(instruction), entry_label_(), exit_label_() {}
Riscv64Label* GetEntryLabel() { return &entry_label_; }
Riscv64Label* GetExitLabel() { return &exit_label_; }
private:
Riscv64Label entry_label_;
Riscv64Label exit_label_;
DISALLOW_COPY_AND_ASSIGN(SlowPathCodeRISCV64);
};
class ParallelMoveResolverRISCV64 : public ParallelMoveResolverWithSwap {
public:
ParallelMoveResolverRISCV64(ArenaAllocator* allocator, CodeGeneratorRISCV64* codegen)
: ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {}
void EmitMove(size_t index) override;
void EmitSwap(size_t index) override;
void SpillScratch(int reg) override;
void RestoreScratch(int reg) override;
void Exchange(int index1, int index2, bool double_slot);
Riscv64Assembler* GetAssembler() const;
private:
CodeGeneratorRISCV64* const codegen_;
DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverRISCV64);
};
class FieldAccessCallingConventionRISCV64 : public FieldAccessCallingConvention {
public:
FieldAccessCallingConventionRISCV64() {}
Location GetObjectLocation() const override {
return Location::RegisterLocation(A1);
}
Location GetFieldIndexLocation() const override {
return Location::RegisterLocation(A0);
}
Location GetReturnLocation(DataType::Type type ATTRIBUTE_UNUSED) const override {
return Location::RegisterLocation(A0);
}
Location GetSetValueLocation(DataType::Type type ATTRIBUTE_UNUSED,
bool is_instance) const override {
return is_instance
? Location::RegisterLocation(A2)
: Location::RegisterLocation(A1);
}
Location GetFpuLocation(DataType::Type type ATTRIBUTE_UNUSED) const override {
return Location::FpuRegisterLocation(FA0);
}
private:
DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionRISCV64);
};
class LocationsBuilderRISCV64 : public HGraphVisitor {
public:
LocationsBuilderRISCV64(HGraph* graph, CodeGeneratorRISCV64* codegen)
: HGraphVisitor(graph), codegen_(codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_RISCV64(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id "
<< instruction->GetId() << ")";
}
protected:
void HandleInvoke(HInvoke* invoke);
void HandleBinaryOp(HBinaryOperation* operation);
void HandleCondition(HCondition* instruction);
void HandleShift(HBinaryOperation* operation);
void HandleFieldSet(HInstruction* instruction);
void HandleFieldGet(HInstruction* instruction);
InvokeDexCallingConventionVisitorRISCV64 parameter_visitor_;
CodeGeneratorRISCV64* const codegen_;
DISALLOW_COPY_AND_ASSIGN(LocationsBuilderRISCV64);
};
class InstructionCodeGeneratorRISCV64 : public InstructionCodeGenerator {
public:
InstructionCodeGeneratorRISCV64(HGraph* graph, CodeGeneratorRISCV64* codegen);
#define DECLARE_VISIT_INSTRUCTION(name, super) void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_RISCV64(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id "
<< instruction->GetId() << ")";
}
Riscv64Assembler* GetAssembler() const { return assembler_; }
void GenerateMemoryBarrier(MemBarrierKind kind);
void FAdd(FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FClass(XRegister rd, FRegister rs1, DataType::Type type);
void Load(Location out, XRegister rs1, int32_t offset, DataType::Type type);
void Store(Location value, XRegister rs1, int32_t offset, DataType::Type type);
// Sequentially consistent store. Used for volatile fields and intrinsics.
// The `instruction` argument is for recording an implicit null check stack map with the
// store instruction which may not be the last instruction emitted by `StoreSeqCst()`.
void StoreSeqCst(Location value,
XRegister rs1,
int32_t offset,
DataType::Type type,
HInstruction* instruction = nullptr);
void ShNAdd(XRegister rd, XRegister rs1, XRegister rs2, DataType::Type type);
protected:
void GenerateClassInitializationCheck(SlowPathCodeRISCV64* slow_path, XRegister class_reg);
void GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, XRegister temp);
void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor);
void HandleBinaryOp(HBinaryOperation* operation);
void HandleCondition(HCondition* instruction);
void HandleShift(HBinaryOperation* operation);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null,
WriteBarrierKind write_barrier_kind);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
// Generate a heap reference load using one register `out`:
//
// out <- *(out + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a read barrier and
// shall be a register in that case; it may be an invalid location
// otherwise.
void GenerateReferenceLoadOneRegister(HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a heap reference load using two different registers
// `out` and `obj`:
//
// out <- *(obj + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a Baker's (fast
// path) read barrier and shall be a register in that case; it may
// be an invalid location otherwise.
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
void GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
Riscv64Label* true_target,
Riscv64Label* false_target);
void DivRemOneOrMinusOne(HBinaryOperation* instruction);
void DivRemByPowerOfTwo(HBinaryOperation* instruction);
void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateDivRemIntegral(HBinaryOperation* instruction);
void GenerateIntLongCondition(IfCondition cond, LocationSummary* locations);
void GenerateIntLongCondition(IfCondition cond,
LocationSummary* locations,
XRegister rd,
bool to_all_bits);
void GenerateIntLongCompareAndBranch(IfCondition cond,
LocationSummary* locations,
Riscv64Label* label);
void GenerateFpCondition(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations,
Riscv64Label* label = nullptr);
void GenerateFpCondition(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations,
Riscv64Label* label,
XRegister rd,
bool to_all_bits);
void GenerateMethodEntryExitHook(HInstruction* instruction);
void HandleGoto(HInstruction* got, HBasicBlock* successor);
void GenPackedSwitchWithCompares(XRegister adjusted,
XRegister temp,
uint32_t num_entries,
HBasicBlock* switch_block);
void GenTableBasedPackedSwitch(XRegister adjusted,
XRegister temp,
uint32_t num_entries,
HBasicBlock* switch_block);
int32_t VecAddress(LocationSummary* locations,
size_t size,
/*out*/ XRegister* adjusted_base);
template <typename Reg,
void (Riscv64Assembler::*opS)(Reg, FRegister, FRegister),
void (Riscv64Assembler::*opD)(Reg, FRegister, FRegister)>
void FpBinOp(Reg rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FSub(FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FDiv(FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FMul(FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FMin(FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FMax(FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FEq(XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FLt(XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
void FLe(XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type);
template <typename Reg,
void (Riscv64Assembler::*opS)(Reg, FRegister),
void (Riscv64Assembler::*opD)(Reg, FRegister)>
void FpUnOp(Reg rd, FRegister rs1, DataType::Type type);
void FAbs(FRegister rd, FRegister rs1, DataType::Type type);
void FNeg(FRegister rd, FRegister rs1, DataType::Type type);
void FMv(FRegister rd, FRegister rs1, DataType::Type type);
void FMvX(XRegister rd, FRegister rs1, DataType::Type type);
Riscv64Assembler* const assembler_;
CodeGeneratorRISCV64* const codegen_;
DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorRISCV64);
};
class CodeGeneratorRISCV64 : public CodeGenerator {
public:
CodeGeneratorRISCV64(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats = nullptr);
virtual ~CodeGeneratorRISCV64() {}
void GenerateFrameEntry() override;
void GenerateFrameExit() override;
void Bind(HBasicBlock* block) override;
size_t GetWordSize() const override {
// The "word" for the compiler is the core register size (64-bit for riscv64) while the
// riscv64 assembler uses "word" for 32-bit values and "double word" for 64-bit values.
return kRiscv64DoublewordSize;
}
bool SupportsPredicatedSIMD() const override {
// TODO(riscv64): Check the vector extension.
return false;
}
// Get FP register width in bytes for spilling/restoring in the slow paths.
//
// Note: In SIMD graphs this should return SIMD register width as all FP and SIMD registers
// alias and live SIMD registers are forced to be spilled in full size in the slow paths.
size_t GetSlowPathFPWidth() const override {
// Default implementation.
return GetCalleePreservedFPWidth();
}
size_t GetCalleePreservedFPWidth() const override {
return kRiscv64FloatRegSizeInBytes;
};
size_t GetSIMDRegisterWidth() const override {
// TODO(riscv64): Implement SIMD with the Vector extension.
// Note: HLoopOptimization calls this function even for an ISA without SIMD support.
return kRiscv64FloatRegSizeInBytes;
};
uintptr_t GetAddressOf(HBasicBlock* block) override {
return assembler_.GetLabelLocation(GetLabelOf(block));
};
Riscv64Label* GetLabelOf(HBasicBlock* block) const {
return CommonGetLabelOf<Riscv64Label>(block_labels_, block);
}
void Initialize() override { block_labels_ = CommonInitializeLabels<Riscv64Label>(); }
void MoveConstant(Location destination, int32_t value) override;
void MoveLocation(Location destination, Location source, DataType::Type dst_type) override;
void AddLocationAsTemp(Location location, LocationSummary* locations) override;
Riscv64Assembler* GetAssembler() override { return &assembler_; }
const Riscv64Assembler& GetAssembler() const override { return assembler_; }
HGraphVisitor* GetLocationBuilder() override { return &location_builder_; }
InstructionCodeGeneratorRISCV64* GetInstructionVisitor() override {
return &instruction_visitor_;
}
void MaybeGenerateInlineCacheCheck(HInstruction* instruction, XRegister klass);
void SetupBlockedRegisters() const override;
size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
void DumpCoreRegister(std::ostream& stream, int reg) const override;
void DumpFloatingPointRegister(std::ostream& stream, int reg) const override;
InstructionSet GetInstructionSet() const override { return InstructionSet::kRiscv64; }
const Riscv64InstructionSetFeatures& GetInstructionSetFeatures() const;
uint32_t GetPreferredSlotsAlignment() const override {
return static_cast<uint32_t>(kRiscv64PointerSize);
}
void Finalize() override;
// Generate code to invoke a runtime entry point.
void InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path = nullptr) override;
// Generate code to invoke a runtime entry point, but do not record
// PC-related information in a stack map.
void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path);
ParallelMoveResolver* GetMoveResolver() override { return &move_resolver_; }
bool NeedsTwoRegisters([[maybe_unused]] DataType::Type type) const override { return false; }
void IncreaseFrame(size_t adjustment) override;
void DecreaseFrame(size_t adjustment) override;
void GenerateNop() override;
void GenerateImplicitNullCheck(HNullCheck* instruction) override;
void GenerateExplicitNullCheck(HNullCheck* instruction) override;
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) override;
// Check if the desired_class_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadClass::LoadKind GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) override;
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method) override;
// The PcRelativePatchInfo is used for PC-relative addressing of methods/strings/types,
// whether through .data.bimg.rel.ro, .bss, or directly in the boot image.
//
// The 20-bit and 12-bit parts of the 32-bit PC-relative offset are patched separately,
// necessitating two patches/infos. There can be more than two patches/infos if the
// instruction supplying the high part is shared with e.g. a slow path, while the low
// part is supplied by separate instructions, e.g.:
// auipc r1, high // patch
// lwu r2, low(r1) // patch
// beqz r2, slow_path
// back:
// ...
// slow_path:
// ...
// sw r2, low(r1) // patch
// j back
struct PcRelativePatchInfo : PatchInfo<Riscv64Label> {
PcRelativePatchInfo(const DexFile* dex_file,
uint32_t off_or_idx,
const PcRelativePatchInfo* info_high)
: PatchInfo<Riscv64Label>(dex_file, off_or_idx),
pc_insn_label(info_high != nullptr ? &info_high->label : &label) {
DCHECK_IMPLIES(info_high != nullptr, info_high->pc_insn_label == &info_high->label);
}
// Pointer to the info for the high part patch or nullptr if this is the high part patch info.
const Riscv64Label* pc_insn_label;
private:
PcRelativePatchInfo(PcRelativePatchInfo&& other) = delete;
DISALLOW_COPY_AND_ASSIGN(PcRelativePatchInfo);
};
PcRelativePatchInfo* NewBootImageIntrinsicPatch(uint32_t intrinsic_data,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageRelRoPatch(uint32_t boot_image_offset,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageMethodPatch(MethodReference target_method,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewMethodBssEntryPatch(MethodReference target_method,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageJniEntrypointPatch(
MethodReference target_method, const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageTypePatch(const DexFile& dex_file,
dex::TypeIndex type_index,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewTypeBssEntryPatch(HLoadClass* load_class,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewBootImageStringPatch(const DexFile& dex_file,
dex::StringIndex string_index,
const PcRelativePatchInfo* info_high = nullptr);
PcRelativePatchInfo* NewStringBssEntryPatch(const DexFile& dex_file,
dex::StringIndex string_index,
const PcRelativePatchInfo* info_high = nullptr);
void EmitPcRelativeAuipcPlaceholder(PcRelativePatchInfo* info_high, XRegister out);
void EmitPcRelativeAddiPlaceholder(PcRelativePatchInfo* info_low, XRegister rd, XRegister rs1);
void EmitPcRelativeLwuPlaceholder(PcRelativePatchInfo* info_low, XRegister rd, XRegister rs1);
void EmitPcRelativeLdPlaceholder(PcRelativePatchInfo* info_low, XRegister rd, XRegister rs1);
void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) override;
Literal* DeduplicateBootImageAddressLiteral(uint64_t address);
void PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
const Literal* literal,
uint64_t index_in_table) const;
Literal* DeduplicateJitStringLiteral(const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle);
Literal* DeduplicateJitClassLiteral(const DexFile& dex_file,
dex::TypeIndex type_index,
Handle<mirror::Class> handle);
void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) override;
void LoadTypeForBootImageIntrinsic(XRegister dest, TypeReference target_type);
void LoadBootImageRelRoEntry(XRegister dest, uint32_t boot_image_offset);
void LoadBootImageAddress(XRegister dest, uint32_t boot_image_reference);
void LoadIntrinsicDeclaringClass(XRegister dest, HInvoke* invoke);
void LoadClassRootForIntrinsic(XRegister dest, ClassRoot class_root);
void LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke);
void GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
Location temp,
SlowPathCode* slow_path = nullptr) override;
void GenerateVirtualCall(HInvokeVirtual* invoke,
Location temp,
SlowPathCode* slow_path = nullptr) override;
void MoveFromReturnRegister(Location trg, DataType::Type type) override;
void GenerateMemoryBarrier(MemBarrierKind kind);
void MaybeIncrementHotness(HSuspendCheck* suspend_check, bool is_frame_entry);
bool CanUseImplicitSuspendCheck() const;
// Create slow path for a Baker read barrier for a GC root load within `instruction`.
SlowPathCodeRISCV64* AddGcRootBakerBarrierBarrierSlowPath(
HInstruction* instruction, Location root, Location temp);
// Emit marking check for a Baker read barrier for a GC root load within `instruction`.
void EmitBakerReadBarierMarkingCheck(
SlowPathCodeRISCV64* slow_path, Location root, Location temp);
// Generate a GC root reference load:
//
// root <- *(obj + offset)
//
// while honoring read barriers (if any).
void GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
XRegister obj,
uint32_t offset,
ReadBarrierOption read_barrier_option,
Riscv64Label* label_low = nullptr);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
XRegister obj,
uint32_t offset,
Location temp,
bool needs_null_check);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference array load when Baker's read barriers are used.
void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
XRegister obj,
uint32_t data_offset,
Location index,
Location temp,
bool needs_null_check);
// Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier,
// GenerateArrayLoadWithBakerReadBarrier and intrinsics.
void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
XRegister obj,
uint32_t offset,
Location index,
Location temp,
bool needs_null_check);
// Create slow path for a read barrier for a heap reference within `instruction`.
//
// This is a helper function for GenerateReadBarrierSlow() that has the same
// arguments. The creation and adding of the slow path is exposed for intrinsics
// that cannot use GenerateReadBarrierSlow() from their own slow paths.
SlowPathCodeRISCV64* AddReadBarrierSlowPath(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index);
// Generate a read barrier for a heap reference within `instruction`
// using a slow path.
//
// A read barrier for an object reference read from the heap is
// implemented as a call to the artReadBarrierSlow runtime entry
// point, which is passed the values in locations `ref`, `obj`, and
// `offset`:
//
// mirror::Object* artReadBarrierSlow(mirror::Object* ref,
// mirror::Object* obj,
// uint32_t offset);
//
// The `out` location contains the value returned by
// artReadBarrierSlow.
//
// When `index` is provided (i.e. for array accesses), the offset
// value passed to artReadBarrierSlow is adjusted to take `index`
// into account.
void GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// If read barriers are enabled, generate a read barrier for a heap
// reference using a slow path. If heap poisoning is enabled, also
// unpoison the reference in `out`.
void MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// Generate a read barrier for a GC root within `instruction` using
// a slow path.
//
// A read barrier for an object reference GC root is implemented as
// a call to the artReadBarrierForRootSlow runtime entry point,
// which is passed the value in location `root`:
//
// mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root);
//
// The `out` location contains the value returned by
// artReadBarrierForRootSlow.
void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root);
// Emit a write barrier if:
// A) emit_null_check is false
// B) emit_null_check is true, and value is not null.
void MaybeMarkGCCard(XRegister object, XRegister value, bool emit_null_check);
// Emit a write barrier unconditionally.
void MarkGCCard(XRegister object);
// Crash if the card table is not valid. This check is only emitted for the CC GC. We assert
// `(!clean || !self->is_gc_marking)`, since the card table should not be set to clean when the CC
// GC is marking for eliminated write barriers.
void CheckGCCardIsValid(XRegister object);
//
// Heap poisoning.
//
// Poison a heap reference contained in `reg`.
void PoisonHeapReference(XRegister reg);
// Unpoison a heap reference contained in `reg`.
void UnpoisonHeapReference(XRegister reg);
// Poison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybePoisonHeapReference(XRegister reg);
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybeUnpoisonHeapReference(XRegister reg);
void SwapLocations(Location loc1, Location loc2, DataType::Type type);
private:
using Uint32ToLiteralMap = ArenaSafeMap<uint32_t, Literal*>;
using Uint64ToLiteralMap = ArenaSafeMap<uint64_t, Literal*>;
using StringToLiteralMap =
ArenaSafeMap<StringReference, Literal*, StringReferenceValueComparator>;
using TypeToLiteralMap = ArenaSafeMap<TypeReference, Literal*, TypeReferenceValueComparator>;
Literal* DeduplicateUint32Literal(uint32_t value);
Literal* DeduplicateUint64Literal(uint64_t value);
PcRelativePatchInfo* NewPcRelativePatch(const DexFile* dex_file,
uint32_t offset_or_index,
const PcRelativePatchInfo* info_high,
ArenaDeque<PcRelativePatchInfo>* patches);
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
void EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches);
Riscv64Assembler assembler_;
LocationsBuilderRISCV64 location_builder_;
InstructionCodeGeneratorRISCV64 instruction_visitor_;
Riscv64Label frame_entry_label_;
// Labels for each block that will be compiled.
Riscv64Label* block_labels_; // Indexed by block id.
ParallelMoveResolverRISCV64 move_resolver_;
// Deduplication map for 32-bit literals, used for non-patchable boot image addresses.
Uint32ToLiteralMap uint32_literals_;
// Deduplication map for 64-bit literals, used for non-patchable method address or method code
// address.
Uint64ToLiteralMap uint64_literals_;
// PC-relative method patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_method_patches_;
// PC-relative method patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> method_bss_entry_patches_;
// PC-relative type patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_type_patches_;
// PC-relative type patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> type_bss_entry_patches_;
// PC-relative public type patch info for kBssEntryPublic.
ArenaDeque<PcRelativePatchInfo> public_type_bss_entry_patches_;
// PC-relative package type patch info for kBssEntryPackage.
ArenaDeque<PcRelativePatchInfo> package_type_bss_entry_patches_;
// PC-relative String patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_string_patches_;
// PC-relative String patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> string_bss_entry_patches_;
// PC-relative method patch info for kBootImageLinkTimePcRelative+kCallCriticalNative.
ArenaDeque<PcRelativePatchInfo> boot_image_jni_entrypoint_patches_;
// PC-relative patch info for IntrinsicObjects for the boot image,
// and for method/type/string patches for kBootImageRelRo otherwise.
ArenaDeque<PcRelativePatchInfo> boot_image_other_patches_;
// Patches for string root accesses in JIT compiled code.
StringToLiteralMap jit_string_patches_;
// Patches for class root accesses in JIT compiled code.
TypeToLiteralMap jit_class_patches_;
};
} // namespace riscv64
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_RISCV64_H_