blob: d10fb3018bbc49f4620c0f932d56a9205f322a07 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_ARM64_H_
#define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_ARM64_H_
#include "base/bit_field.h"
#include "base/macros.h"
#include "class_root.h"
#include "code_generator.h"
#include "common_arm64.h"
#include "dex/dex_file_types.h"
#include "dex/string_reference.h"
#include "dex/type_reference.h"
#include "driver/compiler_options.h"
#include "jit_patches_arm64.h"
#include "nodes.h"
#include "parallel_move_resolver.h"
#include "utils/arm64/assembler_arm64.h"
// TODO(VIXL): Make VIXL compile with -Wshadow.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#include "aarch64/disasm-aarch64.h"
#include "aarch64/macro-assembler-aarch64.h"
#pragma GCC diagnostic pop
namespace art HIDDEN {
namespace linker {
class Arm64RelativePatcherTest;
} // namespace linker
namespace arm64 {
class CodeGeneratorARM64;
// Use a local definition to prevent copying mistakes.
static constexpr size_t kArm64WordSize = static_cast<size_t>(kArm64PointerSize);
// This constant is used as an approximate margin when emission of veneer and literal pools
// must be blocked.
static constexpr int kMaxMacroInstructionSizeInBytes = 15 * vixl::aarch64::kInstructionSize;
static const vixl::aarch64::Register kParameterCoreRegisters[] = {
vixl::aarch64::x1,
vixl::aarch64::x2,
vixl::aarch64::x3,
vixl::aarch64::x4,
vixl::aarch64::x5,
vixl::aarch64::x6,
vixl::aarch64::x7
};
static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters);
static const vixl::aarch64::VRegister kParameterFPRegisters[] = {
vixl::aarch64::d0,
vixl::aarch64::d1,
vixl::aarch64::d2,
vixl::aarch64::d3,
vixl::aarch64::d4,
vixl::aarch64::d5,
vixl::aarch64::d6,
vixl::aarch64::d7
};
static constexpr size_t kParameterFPRegistersLength = arraysize(kParameterFPRegisters);
// Thread Register.
const vixl::aarch64::Register tr = vixl::aarch64::x19;
// Marking Register.
const vixl::aarch64::Register mr = vixl::aarch64::x20;
// Implicit suspend check register.
const vixl::aarch64::Register kImplicitSuspendCheckRegister = vixl::aarch64::x21;
// Method register on invoke.
static const vixl::aarch64::Register kArtMethodRegister = vixl::aarch64::x0;
const vixl::aarch64::CPURegList vixl_reserved_core_registers(vixl::aarch64::ip0,
vixl::aarch64::ip1);
const vixl::aarch64::CPURegList vixl_reserved_fp_registers(vixl::aarch64::d31);
const vixl::aarch64::CPURegList runtime_reserved_core_registers =
vixl::aarch64::CPURegList(
tr,
// Reserve X20 as Marking Register when emitting Baker read barriers.
// TODO: We don't need to reserve marking-register for userfaultfd GC. But
// that would require some work in the assembler code as the right GC is
// chosen at load-time and not compile time.
(kReserveMarkingRegister ? mr : vixl::aarch64::NoCPUReg),
kImplicitSuspendCheckRegister,
vixl::aarch64::lr);
// Some instructions have special requirements for a temporary, for example
// LoadClass/kBssEntry and LoadString/kBssEntry for Baker read barrier require
// temp that's not an R0 (to avoid an extra move) and Baker read barrier field
// loads with large offsets need a fixed register to limit the number of link-time
// thunks we generate. For these and similar cases, we want to reserve a specific
// register that's neither callee-save nor an argument register. We choose x15.
inline Location FixedTempLocation() {
return Location::RegisterLocation(vixl::aarch64::x15.GetCode());
}
// Callee-save registers AAPCS64, without x19 (Thread Register) (nor
// x20 (Marking Register) when emitting Baker read barriers).
const vixl::aarch64::CPURegList callee_saved_core_registers(
vixl::aarch64::CPURegister::kRegister,
vixl::aarch64::kXRegSize,
(kReserveMarkingRegister ? vixl::aarch64::x21.GetCode() : vixl::aarch64::x20.GetCode()),
vixl::aarch64::x30.GetCode());
const vixl::aarch64::CPURegList callee_saved_fp_registers(vixl::aarch64::CPURegister::kVRegister,
vixl::aarch64::kDRegSize,
vixl::aarch64::d8.GetCode(),
vixl::aarch64::d15.GetCode());
Location ARM64ReturnLocation(DataType::Type return_type);
#define UNIMPLEMENTED_INTRINSIC_LIST_ARM64(V) \
V(StringStringIndexOf) \
V(StringStringIndexOfAfter) \
V(StringBufferAppend) \
V(StringBufferLength) \
V(StringBufferToString) \
V(StringBuilderAppendObject) \
V(StringBuilderAppendString) \
V(StringBuilderAppendCharSequence) \
V(StringBuilderAppendCharArray) \
V(StringBuilderAppendBoolean) \
V(StringBuilderAppendChar) \
V(StringBuilderAppendInt) \
V(StringBuilderAppendLong) \
V(StringBuilderAppendFloat) \
V(StringBuilderAppendDouble) \
V(StringBuilderLength) \
V(StringBuilderToString) \
V(SystemArrayCopyByte) \
V(SystemArrayCopyInt) \
/* 1.8 */ \
V(MethodHandleInvokeExact) \
V(MethodHandleInvoke)
class SlowPathCodeARM64 : public SlowPathCode {
public:
explicit SlowPathCodeARM64(HInstruction* instruction)
: SlowPathCode(instruction), entry_label_(), exit_label_() {}
vixl::aarch64::Label* GetEntryLabel() { return &entry_label_; }
vixl::aarch64::Label* GetExitLabel() { return &exit_label_; }
void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) override;
void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) override;
private:
vixl::aarch64::Label entry_label_;
vixl::aarch64::Label exit_label_;
DISALLOW_COPY_AND_ASSIGN(SlowPathCodeARM64);
};
class JumpTableARM64 : public DeletableArenaObject<kArenaAllocSwitchTable> {
public:
explicit JumpTableARM64(HPackedSwitch* switch_instr)
: switch_instr_(switch_instr), table_start_() {}
vixl::aarch64::Label* GetTableStartLabel() { return &table_start_; }
void EmitTable(CodeGeneratorARM64* codegen);
private:
HPackedSwitch* const switch_instr_;
vixl::aarch64::Label table_start_;
DISALLOW_COPY_AND_ASSIGN(JumpTableARM64);
};
static const vixl::aarch64::Register kRuntimeParameterCoreRegisters[] = {
vixl::aarch64::x0,
vixl::aarch64::x1,
vixl::aarch64::x2,
vixl::aarch64::x3,
vixl::aarch64::x4,
vixl::aarch64::x5,
vixl::aarch64::x6,
vixl::aarch64::x7
};
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static const vixl::aarch64::VRegister kRuntimeParameterFpuRegisters[] = {
vixl::aarch64::d0,
vixl::aarch64::d1,
vixl::aarch64::d2,
vixl::aarch64::d3,
vixl::aarch64::d4,
vixl::aarch64::d5,
vixl::aarch64::d6,
vixl::aarch64::d7
};
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
class InvokeRuntimeCallingConvention : public CallingConvention<vixl::aarch64::Register,
vixl::aarch64::VRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength,
kArm64PointerSize) {}
Location GetReturnLocation(DataType::Type return_type);
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
class InvokeDexCallingConvention : public CallingConvention<vixl::aarch64::Register,
vixl::aarch64::VRegister> {
public:
InvokeDexCallingConvention()
: CallingConvention(kParameterCoreRegisters,
kParameterCoreRegistersLength,
kParameterFPRegisters,
kParameterFPRegistersLength,
kArm64PointerSize) {}
Location GetReturnLocation(DataType::Type return_type) const {
return ARM64ReturnLocation(return_type);
}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention);
};
class InvokeDexCallingConventionVisitorARM64 : public InvokeDexCallingConventionVisitor {
public:
InvokeDexCallingConventionVisitorARM64() {}
virtual ~InvokeDexCallingConventionVisitorARM64() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type return_type) const override {
return calling_convention.GetReturnLocation(return_type);
}
Location GetMethodLocation() const override;
private:
InvokeDexCallingConvention calling_convention;
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorARM64);
};
class CriticalNativeCallingConventionVisitorARM64 : public InvokeDexCallingConventionVisitor {
public:
explicit CriticalNativeCallingConventionVisitorARM64(bool for_register_allocation)
: for_register_allocation_(for_register_allocation) {}
virtual ~CriticalNativeCallingConventionVisitorARM64() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
size_t GetStackOffset() const { return stack_offset_; }
private:
// Register allocator does not support adjusting frame size, so we cannot provide final locations
// of stack arguments for register allocation. We ask the register allocator for any location and
// move these arguments to the right place after adjusting the SP when generating the call.
const bool for_register_allocation_;
size_t gpr_index_ = 0u;
size_t fpr_index_ = 0u;
size_t stack_offset_ = 0u;
DISALLOW_COPY_AND_ASSIGN(CriticalNativeCallingConventionVisitorARM64);
};
class FieldAccessCallingConventionARM64 : public FieldAccessCallingConvention {
public:
FieldAccessCallingConventionARM64() {}
Location GetObjectLocation() const override {
return helpers::LocationFrom(vixl::aarch64::x1);
}
Location GetFieldIndexLocation() const override {
return helpers::LocationFrom(vixl::aarch64::x0);
}
Location GetReturnLocation([[maybe_unused]] DataType::Type type) const override {
return helpers::LocationFrom(vixl::aarch64::x0);
}
Location GetSetValueLocation([[maybe_unused]] DataType::Type type,
bool is_instance) const override {
return is_instance
? helpers::LocationFrom(vixl::aarch64::x2)
: helpers::LocationFrom(vixl::aarch64::x1);
}
Location GetFpuLocation([[maybe_unused]] DataType::Type type) const override {
return helpers::LocationFrom(vixl::aarch64::d0);
}
private:
DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionARM64);
};
class InstructionCodeGeneratorARM64 : public InstructionCodeGenerator {
public:
InstructionCodeGeneratorARM64(HGraph* graph, CodeGeneratorARM64* codegen);
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_ARM64(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_SHARED(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
Arm64Assembler* GetAssembler() const { return assembler_; }
vixl::aarch64::MacroAssembler* GetVIXLAssembler() { return GetAssembler()->GetVIXLAssembler(); }
// SIMD helpers.
virtual Location AllocateSIMDScratchLocation(vixl::aarch64::UseScratchRegisterScope* scope) = 0;
virtual void FreeSIMDScratchLocation(Location loc,
vixl::aarch64::UseScratchRegisterScope* scope) = 0;
virtual void LoadSIMDRegFromStack(Location destination, Location source) = 0;
virtual void MoveSIMDRegToSIMDReg(Location destination, Location source) = 0;
virtual void MoveToSIMDStackSlot(Location destination, Location source) = 0;
virtual void SaveLiveRegistersHelper(LocationSummary* locations,
int64_t spill_offset) = 0;
virtual void RestoreLiveRegistersHelper(LocationSummary* locations,
int64_t spill_offset) = 0;
protected:
void GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
vixl::aarch64::Register class_reg);
void GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check,
vixl::aarch64::Register temp);
void GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor);
void HandleBinaryOp(HBinaryOperation* instr);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null,
WriteBarrierKind write_barrier_kind);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
void HandleCondition(HCondition* instruction);
// Generate a heap reference load using one register `out`:
//
// out <- *(out + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a read barrier and
// shall be a register in that case; it may be an invalid location
// otherwise.
void GenerateReferenceLoadOneRegister(HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a heap reference load using two different registers
// `out` and `obj`:
//
// out <- *(obj + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a Baker's (fast
// path) read barrier and shall be a register in that case; it may
// be an invalid location otherwise.
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a floating-point comparison.
void GenerateFcmp(HInstruction* instruction);
void HandleShift(HBinaryOperation* instr);
void GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
vixl::aarch64::Label* true_target,
vixl::aarch64::Label* false_target);
void DivRemOneOrMinusOne(HBinaryOperation* instruction);
void DivRemByPowerOfTwo(HBinaryOperation* instruction);
void GenerateIncrementNegativeByOne(vixl::aarch64::Register out,
vixl::aarch64::Register in, bool use_cond_inc);
void GenerateResultRemWithAnyConstant(vixl::aarch64::Register out,
vixl::aarch64::Register dividend,
vixl::aarch64::Register quotient,
int64_t divisor,
// This function may acquire a scratch register.
vixl::aarch64::UseScratchRegisterScope* temps_scope);
void GenerateInt64UnsignedDivRemWithAnyPositiveConstant(HBinaryOperation* instruction);
void GenerateInt64DivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateInt32DivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction, int64_t divisor);
void GenerateIntDiv(HDiv* instruction);
void GenerateIntDivForConstDenom(HDiv *instruction);
void GenerateIntDivForPower2Denom(HDiv *instruction);
void GenerateIntRem(HRem* instruction);
void GenerateIntRemForConstDenom(HRem *instruction);
void GenerateIntRemForPower2Denom(HRem *instruction);
void HandleGoto(HInstruction* got, HBasicBlock* successor);
void GenerateMethodEntryExitHook(HInstruction* instruction);
// Helpers to set up locations for vector memory operations. Returns the memory operand and,
// if used, sets the output parameter scratch to a temporary register used in this operand,
// so that the client can release it right after the memory operand use.
// Neon version.
vixl::aarch64::MemOperand VecNEONAddress(
HVecMemoryOperation* instruction,
// This function may acquire a scratch register.
vixl::aarch64::UseScratchRegisterScope* temps_scope,
size_t size,
bool is_string_char_at,
/*out*/ vixl::aarch64::Register* scratch);
// SVE version.
vixl::aarch64::SVEMemOperand VecSVEAddress(
HVecMemoryOperation* instruction,
// This function may acquire a scratch register.
vixl::aarch64::UseScratchRegisterScope* temps_scope,
size_t size,
bool is_string_char_at,
/*out*/ vixl::aarch64::Register* scratch);
Arm64Assembler* const assembler_;
CodeGeneratorARM64* const codegen_;
DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorARM64);
};
class LocationsBuilderARM64 : public HGraphVisitor {
public:
LocationsBuilderARM64(HGraph* graph, CodeGeneratorARM64* codegen)
: HGraphVisitor(graph), codegen_(codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_ARM64(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_SHARED(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
protected:
void HandleBinaryOp(HBinaryOperation* instr);
void HandleFieldSet(HInstruction* instruction);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
void HandleInvoke(HInvoke* instr);
void HandleCondition(HCondition* instruction);
void HandleShift(HBinaryOperation* instr);
CodeGeneratorARM64* const codegen_;
InvokeDexCallingConventionVisitorARM64 parameter_visitor_;
DISALLOW_COPY_AND_ASSIGN(LocationsBuilderARM64);
};
class InstructionCodeGeneratorARM64Neon : public InstructionCodeGeneratorARM64 {
public:
InstructionCodeGeneratorARM64Neon(HGraph* graph, CodeGeneratorARM64* codegen) :
InstructionCodeGeneratorARM64(graph, codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
Location AllocateSIMDScratchLocation(vixl::aarch64::UseScratchRegisterScope* scope) override;
void FreeSIMDScratchLocation(Location loc,
vixl::aarch64::UseScratchRegisterScope* scope) override;
void LoadSIMDRegFromStack(Location destination, Location source) override;
void MoveSIMDRegToSIMDReg(Location destination, Location source) override;
void MoveToSIMDStackSlot(Location destination, Location source) override;
void SaveLiveRegistersHelper(LocationSummary* locations, int64_t spill_offset) override;
void RestoreLiveRegistersHelper(LocationSummary* locations, int64_t spill_offset) override;
};
class LocationsBuilderARM64Neon : public LocationsBuilderARM64 {
public:
LocationsBuilderARM64Neon(HGraph* graph, CodeGeneratorARM64* codegen) :
LocationsBuilderARM64(graph, codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
};
class InstructionCodeGeneratorARM64Sve : public InstructionCodeGeneratorARM64 {
public:
InstructionCodeGeneratorARM64Sve(HGraph* graph, CodeGeneratorARM64* codegen) :
InstructionCodeGeneratorARM64(graph, codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
Location AllocateSIMDScratchLocation(vixl::aarch64::UseScratchRegisterScope* scope) override;
void FreeSIMDScratchLocation(Location loc,
vixl::aarch64::UseScratchRegisterScope* scope) override;
void LoadSIMDRegFromStack(Location destination, Location source) override;
void MoveSIMDRegToSIMDReg(Location destination, Location source) override;
void MoveToSIMDStackSlot(Location destination, Location source) override;
void SaveLiveRegistersHelper(LocationSummary* locations, int64_t spill_offset) override;
void RestoreLiveRegistersHelper(LocationSummary* locations, int64_t spill_offset) override;
private:
// Validate that instruction vector length and packed type are compliant with the SIMD
// register size (full SIMD register is used).
void ValidateVectorLength(HVecOperation* instr) const;
vixl::aarch64::PRegister GetVecGoverningPReg(HVecOperation* instr) {
return GetVecPredSetFixedOutPReg(instr->GetGoverningPredicate());
}
// Returns a fixed p-reg for predicate setting instruction.
//
// Currently we only support diamond CF loops for predicated vectorization; also we don't have
// register allocator support for vector predicates. Thus we use fixed P-regs for loop main,
// True and False predicates as a temporary solution.
//
// TODO: Support SIMD types and registers in ART.
static vixl::aarch64::PRegister GetVecPredSetFixedOutPReg(HVecPredSetOperation* instr) {
if (instr->IsVecPredWhile() || instr->IsVecPredSetAll()) {
// VecPredWhile and VecPredSetAll live ranges never overlap due to the current vectorization
// scheme: the former only is live inside a vectorized loop and the later is never in a
// loop and never spans across loops.
return vixl::aarch64::p0;
} else if (instr->IsVecPredNot()) {
// This relies on the fact that we only use PredNot manually in the autovectorizer,
// so there is only one of them in each loop.
return vixl::aarch64::p1;
} else {
DCHECK(instr->IsVecCondition());
return vixl::aarch64::p2;
}
}
};
class LocationsBuilderARM64Sve : public LocationsBuilderARM64 {
public:
LocationsBuilderARM64Sve(HGraph* graph, CodeGeneratorARM64* codegen) :
LocationsBuilderARM64(graph, codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
};
class ParallelMoveResolverARM64 : public ParallelMoveResolverNoSwap {
public:
ParallelMoveResolverARM64(ArenaAllocator* allocator, CodeGeneratorARM64* codegen)
: ParallelMoveResolverNoSwap(allocator), codegen_(codegen), vixl_temps_() {}
protected:
void PrepareForEmitNativeCode() override;
void FinishEmitNativeCode() override;
Location AllocateScratchLocationFor(Location::Kind kind) override;
void FreeScratchLocation(Location loc) override;
void EmitMove(size_t index) override;
private:
Arm64Assembler* GetAssembler() const;
vixl::aarch64::MacroAssembler* GetVIXLAssembler() const {
return GetAssembler()->GetVIXLAssembler();
}
CodeGeneratorARM64* const codegen_;
vixl::aarch64::UseScratchRegisterScope vixl_temps_;
DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverARM64);
};
class CodeGeneratorARM64 : public CodeGenerator {
public:
CodeGeneratorARM64(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats = nullptr);
virtual ~CodeGeneratorARM64() {}
void GenerateFrameEntry() override;
void GenerateFrameExit() override;
vixl::aarch64::CPURegList GetFramePreservedCoreRegisters() const;
vixl::aarch64::CPURegList GetFramePreservedFPRegisters() const;
void Bind(HBasicBlock* block) override;
vixl::aarch64::Label* GetLabelOf(HBasicBlock* block) {
block = FirstNonEmptyBlock(block);
return &(block_labels_[block->GetBlockId()]);
}
size_t GetWordSize() const override {
return kArm64WordSize;
}
bool SupportsPredicatedSIMD() const override { return ShouldUseSVE(); }
size_t GetSlowPathFPWidth() const override {
return GetGraph()->HasSIMD()
? GetSIMDRegisterWidth()
: vixl::aarch64::kDRegSizeInBytes;
}
size_t GetCalleePreservedFPWidth() const override {
return vixl::aarch64::kDRegSizeInBytes;
}
size_t GetSIMDRegisterWidth() const override;
uintptr_t GetAddressOf(HBasicBlock* block) override {
vixl::aarch64::Label* block_entry_label = GetLabelOf(block);
DCHECK(block_entry_label->IsBound());
return block_entry_label->GetLocation();
}
HGraphVisitor* GetLocationBuilder() override { return location_builder_; }
InstructionCodeGeneratorARM64* GetInstructionCodeGeneratorArm64() {
return instruction_visitor_;
}
HGraphVisitor* GetInstructionVisitor() override { return GetInstructionCodeGeneratorArm64(); }
Arm64Assembler* GetAssembler() override { return &assembler_; }
const Arm64Assembler& GetAssembler() const override { return assembler_; }
vixl::aarch64::MacroAssembler* GetVIXLAssembler() { return GetAssembler()->GetVIXLAssembler(); }
// Emit a write barrier if:
// A) emit_null_check is false
// B) emit_null_check is true, and value is not null.
void MaybeMarkGCCard(vixl::aarch64::Register object,
vixl::aarch64::Register value,
bool emit_null_check);
// Emit a write barrier unconditionally.
void MarkGCCard(vixl::aarch64::Register object);
// Crash if the card table is not valid. This check is only emitted for the CC GC. We assert
// `(!clean || !self->is_gc_marking)`, since the card table should not be set to clean when the CC
// GC is marking for eliminated write barriers.
void CheckGCCardIsValid(vixl::aarch64::Register object);
void GenerateMemoryBarrier(MemBarrierKind kind);
// Register allocation.
void SetupBlockedRegisters() const override;
size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
// The number of registers that can be allocated. The register allocator may
// decide to reserve and not use a few of them.
// We do not consider registers sp, xzr, wzr. They are either not allocatable
// (xzr, wzr), or make for poor allocatable registers (sp alignment
// requirements, etc.). This also facilitates our task as all other registers
// can easily be mapped via to or from their type and index or code.
static const int kNumberOfAllocatableRegisters = vixl::aarch64::kNumberOfRegisters - 1;
static const int kNumberOfAllocatableFPRegisters = vixl::aarch64::kNumberOfVRegisters;
static constexpr int kNumberOfAllocatableRegisterPairs = 0;
void DumpCoreRegister(std::ostream& stream, int reg) const override;
void DumpFloatingPointRegister(std::ostream& stream, int reg) const override;
InstructionSet GetInstructionSet() const override {
return InstructionSet::kArm64;
}
const Arm64InstructionSetFeatures& GetInstructionSetFeatures() const;
void Initialize() override {
block_labels_.resize(GetGraph()->GetBlocks().size());
}
// We want to use the STP and LDP instructions to spill and restore registers for slow paths.
// These instructions can only encode offsets that are multiples of the register size accessed.
uint32_t GetPreferredSlotsAlignment() const override { return vixl::aarch64::kXRegSizeInBytes; }
JumpTableARM64* CreateJumpTable(HPackedSwitch* switch_instr) {
jump_tables_.emplace_back(new (GetGraph()->GetAllocator()) JumpTableARM64(switch_instr));
return jump_tables_.back().get();
}
void Finalize() override;
// Code generation helpers.
void MoveConstant(vixl::aarch64::CPURegister destination, HConstant* constant);
void MoveConstant(Location destination, int32_t value) override;
void MoveLocation(Location dst, Location src, DataType::Type dst_type) override;
void AddLocationAsTemp(Location location, LocationSummary* locations) override;
void Load(DataType::Type type,
vixl::aarch64::CPURegister dst,
const vixl::aarch64::MemOperand& src);
void Store(DataType::Type type,
vixl::aarch64::CPURegister src,
const vixl::aarch64::MemOperand& dst);
void LoadAcquire(HInstruction* instruction,
DataType::Type type,
vixl::aarch64::CPURegister dst,
const vixl::aarch64::MemOperand& src,
bool needs_null_check);
void StoreRelease(HInstruction* instruction,
DataType::Type type,
vixl::aarch64::CPURegister src,
const vixl::aarch64::MemOperand& dst,
bool needs_null_check);
// Generate code to invoke a runtime entry point.
void InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path = nullptr) override;
// Generate code to invoke a runtime entry point, but do not record
// PC-related information in a stack map.
void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path);
ParallelMoveResolverARM64* GetMoveResolver() override { return &move_resolver_; }
bool NeedsTwoRegisters([[maybe_unused]] DataType::Type type) const override { return false; }
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) override;
// Check if the desired_class_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadClass::LoadKind GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) override;
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
ArtMethod* method) override;
void LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke);
void GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) override;
void GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) override;
void MoveFromReturnRegister(Location trg, DataType::Type type) override;
// Add a new boot image intrinsic patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the ADD (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBootImageIntrinsicPatch(uint32_t intrinsic_data,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new boot image relocation patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the LDR (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBootImageRelRoPatch(uint32_t boot_image_offset,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new boot image method patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the ADD (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBootImageMethodPatch(MethodReference target_method,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new .bss entry method patch for an instruction and return
// the label to be bound before the instruction. The instruction will be
// either the ADRP (pass `adrp_label = null`) or the LDR (pass `adrp_label`
// pointing to the associated ADRP patch label).
vixl::aarch64::Label* NewMethodBssEntryPatch(MethodReference target_method,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new boot image type patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the ADD (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBootImageTypePatch(const DexFile& dex_file,
dex::TypeIndex type_index,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new .bss entry type patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the ADD (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBssEntryTypePatch(HLoadClass* load_class,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new boot image string patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the ADD (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBootImageStringPatch(const DexFile& dex_file,
dex::StringIndex string_index,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new .bss entry string patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the ADD (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewStringBssEntryPatch(const DexFile& dex_file,
dex::StringIndex string_index,
vixl::aarch64::Label* adrp_label = nullptr);
// Add a new boot image JNI entrypoint patch for an instruction and return the label
// to be bound before the instruction. The instruction will be either the
// ADRP (pass `adrp_label = null`) or the LDR (pass `adrp_label` pointing
// to the associated ADRP patch label).
vixl::aarch64::Label* NewBootImageJniEntrypointPatch(MethodReference target_method,
vixl::aarch64::Label* adrp_label = nullptr);
// Emit the BL instruction for entrypoint thunk call and record the associated patch for AOT.
void EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset);
// Emit the CBNZ instruction for baker read barrier and record
// the associated patch for AOT or slow path for JIT.
void EmitBakerReadBarrierCbnz(uint32_t custom_data);
vixl::aarch64::Literal<uint32_t>* DeduplicateBootImageAddressLiteral(uint64_t address) {
return jit_patches_.DeduplicateBootImageAddressLiteral(address);
}
vixl::aarch64::Literal<uint32_t>* DeduplicateJitStringLiteral(const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle) {
return jit_patches_.DeduplicateJitStringLiteral(
dex_file, string_index, handle, GetCodeGenerationData());
}
vixl::aarch64::Literal<uint32_t>* DeduplicateJitClassLiteral(const DexFile& dex_file,
dex::TypeIndex class_index,
Handle<mirror::Class> handle) {
return jit_patches_.DeduplicateJitClassLiteral(
dex_file, class_index, handle, GetCodeGenerationData());
}
void EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label, vixl::aarch64::Register reg);
void EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
vixl::aarch64::Register out,
vixl::aarch64::Register base);
void EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
vixl::aarch64::Register out,
vixl::aarch64::Register base);
void LoadBootImageRelRoEntry(vixl::aarch64::Register reg, uint32_t boot_image_offset);
void LoadBootImageAddress(vixl::aarch64::Register reg, uint32_t boot_image_reference);
void LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg, TypeReference type_reference);
void LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke);
void LoadClassRootForIntrinsic(vixl::aarch64::Register reg, ClassRoot class_root);
void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) override;
bool NeedsThunkCode(const linker::LinkerPatch& patch) const override;
void EmitThunkCode(const linker::LinkerPatch& patch,
/*out*/ ArenaVector<uint8_t>* code,
/*out*/ std::string* debug_name) override;
void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) override;
// Generate a GC root reference load:
//
// root <- *(obj + offset)
//
// while honoring read barriers based on read_barrier_option.
void GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
vixl::aarch64::Register obj,
uint32_t offset,
vixl::aarch64::Label* fixup_label,
ReadBarrierOption read_barrier_option);
// Generate MOV for the `old_value` in intrinsic and mark it with Baker read barrier.
void GenerateIntrinsicMoveWithBakerReadBarrier(vixl::aarch64::Register marked_old_value,
vixl::aarch64::Register old_value);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
// Overload suitable for Unsafe.getObject/-Volatile() intrinsic.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
vixl::aarch64::Register obj,
const vixl::aarch64::MemOperand& src,
bool needs_null_check,
bool use_load_acquire);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
vixl::aarch64::Register obj,
uint32_t offset,
Location maybe_temp,
bool needs_null_check,
bool use_load_acquire);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference array load when Baker's read barriers are used.
void GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
Location ref,
vixl::aarch64::Register obj,
uint32_t data_offset,
Location index,
bool needs_null_check);
// Emit code checking the status of the Marking Register, and
// aborting the program if MR does not match the value stored in the
// art::Thread object. Code is only emitted in debug mode and if
// CompilerOptions::EmitRunTimeChecksInDebugMode returns true.
//
// Argument `code` is used to identify the different occurrences of
// MaybeGenerateMarkingRegisterCheck in the code generator, and is
// passed to the BRK instruction.
//
// If `temp_loc` is a valid location, it is expected to be a
// register and will be used as a temporary to generate code;
// otherwise, a temporary will be fetched from the core register
// scratch pool.
virtual void MaybeGenerateMarkingRegisterCheck(int code,
Location temp_loc = Location::NoLocation());
// Create slow path for a read barrier for a heap reference within `instruction`.
//
// This is a helper function for GenerateReadBarrierSlow() that has the same
// arguments. The creation and adding of the slow path is exposed for intrinsics
// that cannot use GenerateReadBarrierSlow() from their own slow paths.
SlowPathCodeARM64* AddReadBarrierSlowPath(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index);
// Generate a read barrier for a heap reference within `instruction`
// using a slow path.
//
// A read barrier for an object reference read from the heap is
// implemented as a call to the artReadBarrierSlow runtime entry
// point, which is passed the values in locations `ref`, `obj`, and
// `offset`:
//
// mirror::Object* artReadBarrierSlow(mirror::Object* ref,
// mirror::Object* obj,
// uint32_t offset);
//
// The `out` location contains the value returned by
// artReadBarrierSlow.
//
// When `index` is provided (i.e. for array accesses), the offset
// value passed to artReadBarrierSlow is adjusted to take `index`
// into account.
void GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// If read barriers are enabled, generate a read barrier for a heap
// reference using a slow path. If heap poisoning is enabled, also
// unpoison the reference in `out`.
void MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// Generate a read barrier for a GC root within `instruction` using
// a slow path.
//
// A read barrier for an object reference GC root is implemented as
// a call to the artReadBarrierForRootSlow runtime entry point,
// which is passed the value in location `root`:
//
// mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root);
//
// The `out` location contains the value returned by
// artReadBarrierForRootSlow.
void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root);
void IncreaseFrame(size_t adjustment) override;
void DecreaseFrame(size_t adjustment) override;
void GenerateNop() override;
void GenerateImplicitNullCheck(HNullCheck* instruction) override;
void GenerateExplicitNullCheck(HNullCheck* instruction) override;
void MaybeRecordImplicitNullCheck(HInstruction* instr) final {
// The function must be only called within special scopes
// (EmissionCheckScope, ExactAssemblyScope) which prevent generation of
// veneer/literal pools by VIXL assembler.
CHECK_EQ(GetVIXLAssembler()->ArePoolsBlocked(), true)
<< "The function must only be called within EmissionCheckScope or ExactAssemblyScope";
CodeGenerator::MaybeRecordImplicitNullCheck(instr);
}
void MaybeGenerateInlineCacheCheck(HInstruction* instruction, vixl::aarch64::Register klass);
void MaybeIncrementHotness(HSuspendCheck* suspend_check, bool is_frame_entry);
bool CanUseImplicitSuspendCheck() const;
private:
// Encoding of thunk type and data for link-time generated thunks for Baker read barriers.
enum class BakerReadBarrierKind : uint8_t {
kField, // Field get or array get with constant offset (i.e. constant index).
kAcquire, // Volatile field get.
kArray, // Array get with index in register.
kGcRoot, // GC root load.
kLast = kGcRoot
};
static constexpr uint32_t kBakerReadBarrierInvalidEncodedReg = /* sp/zr is invalid */ 31u;
static constexpr size_t kBitsForBakerReadBarrierKind =
MinimumBitsToStore(static_cast<size_t>(BakerReadBarrierKind::kLast));
static constexpr size_t kBakerReadBarrierBitsForRegister =
MinimumBitsToStore(kBakerReadBarrierInvalidEncodedReg);
using BakerReadBarrierKindField =
BitField<BakerReadBarrierKind, 0, kBitsForBakerReadBarrierKind>;
using BakerReadBarrierFirstRegField =
BitField<uint32_t, kBitsForBakerReadBarrierKind, kBakerReadBarrierBitsForRegister>;
using BakerReadBarrierSecondRegField =
BitField<uint32_t,
kBitsForBakerReadBarrierKind + kBakerReadBarrierBitsForRegister,
kBakerReadBarrierBitsForRegister>;
static void CheckValidReg(uint32_t reg) {
DCHECK(reg < vixl::aarch64::lr.GetCode() &&
reg != vixl::aarch64::ip0.GetCode() &&
reg != vixl::aarch64::ip1.GetCode()) << reg;
}
static inline uint32_t EncodeBakerReadBarrierFieldData(uint32_t base_reg, uint32_t holder_reg) {
CheckValidReg(base_reg);
CheckValidReg(holder_reg);
return BakerReadBarrierKindField::Encode(BakerReadBarrierKind::kField) |
BakerReadBarrierFirstRegField::Encode(base_reg) |
BakerReadBarrierSecondRegField::Encode(holder_reg);
}
static inline uint32_t EncodeBakerReadBarrierAcquireData(uint32_t base_reg, uint32_t holder_reg) {
CheckValidReg(base_reg);
CheckValidReg(holder_reg);
DCHECK_NE(base_reg, holder_reg);
return BakerReadBarrierKindField::Encode(BakerReadBarrierKind::kAcquire) |
BakerReadBarrierFirstRegField::Encode(base_reg) |
BakerReadBarrierSecondRegField::Encode(holder_reg);
}
static inline uint32_t EncodeBakerReadBarrierArrayData(uint32_t base_reg) {
CheckValidReg(base_reg);
return BakerReadBarrierKindField::Encode(BakerReadBarrierKind::kArray) |
BakerReadBarrierFirstRegField::Encode(base_reg) |
BakerReadBarrierSecondRegField::Encode(kBakerReadBarrierInvalidEncodedReg);
}
static inline uint32_t EncodeBakerReadBarrierGcRootData(uint32_t root_reg) {
CheckValidReg(root_reg);
return BakerReadBarrierKindField::Encode(BakerReadBarrierKind::kGcRoot) |
BakerReadBarrierFirstRegField::Encode(root_reg) |
BakerReadBarrierSecondRegField::Encode(kBakerReadBarrierInvalidEncodedReg);
}
void CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
uint32_t encoded_data,
/*out*/ std::string* debug_name);
// The PcRelativePatchInfo is used for PC-relative addressing of methods/strings/types,
// whether through .data.bimg.rel.ro, .bss, or directly in the boot image.
struct PcRelativePatchInfo : PatchInfo<vixl::aarch64::Label> {
PcRelativePatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
: PatchInfo<vixl::aarch64::Label>(dex_file, off_or_idx), pc_insn_label() { }
vixl::aarch64::Label* pc_insn_label;
};
struct BakerReadBarrierPatchInfo {
explicit BakerReadBarrierPatchInfo(uint32_t data) : label(), custom_data(data) { }
vixl::aarch64::Label label;
uint32_t custom_data;
};
vixl::aarch64::Label* NewPcRelativePatch(const DexFile* dex_file,
uint32_t offset_or_index,
vixl::aarch64::Label* adrp_label,
ArenaDeque<PcRelativePatchInfo>* patches);
void EmitJumpTables();
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
static void EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches);
// Returns whether SVE features are supported and should be used.
bool ShouldUseSVE() const;
// Labels for each block that will be compiled.
// We use a deque so that the `vixl::aarch64::Label` objects do not move in memory.
ArenaDeque<vixl::aarch64::Label> block_labels_; // Indexed by block id.
vixl::aarch64::Label frame_entry_label_;
ArenaVector<std::unique_ptr<JumpTableARM64>> jump_tables_;
LocationsBuilderARM64Neon location_builder_neon_;
InstructionCodeGeneratorARM64Neon instruction_visitor_neon_;
LocationsBuilderARM64Sve location_builder_sve_;
InstructionCodeGeneratorARM64Sve instruction_visitor_sve_;
LocationsBuilderARM64* location_builder_;
InstructionCodeGeneratorARM64* instruction_visitor_;
ParallelMoveResolverARM64 move_resolver_;
Arm64Assembler assembler_;
// PC-relative method patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_method_patches_;
// PC-relative method patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> method_bss_entry_patches_;
// PC-relative type patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_type_patches_;
// PC-relative type patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> type_bss_entry_patches_;
// PC-relative public type patch info for kBssEntryPublic.
ArenaDeque<PcRelativePatchInfo> public_type_bss_entry_patches_;
// PC-relative package type patch info for kBssEntryPackage.
ArenaDeque<PcRelativePatchInfo> package_type_bss_entry_patches_;
// PC-relative String patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PcRelativePatchInfo> boot_image_string_patches_;
// PC-relative String patch info for kBssEntry.
ArenaDeque<PcRelativePatchInfo> string_bss_entry_patches_;
// PC-relative method patch info for kBootImageLinkTimePcRelative+kCallCriticalNative.
ArenaDeque<PcRelativePatchInfo> boot_image_jni_entrypoint_patches_;
// PC-relative patch info for IntrinsicObjects for the boot image,
// and for method/type/string patches for kBootImageRelRo otherwise.
ArenaDeque<PcRelativePatchInfo> boot_image_other_patches_;
// Patch info for calls to entrypoint dispatch thunks. Used for slow paths.
ArenaDeque<PatchInfo<vixl::aarch64::Label>> call_entrypoint_patches_;
// Baker read barrier patch info.
ArenaDeque<BakerReadBarrierPatchInfo> baker_read_barrier_patches_;
JitPatchesARM64 jit_patches_;
// Baker read barrier slow paths, mapping custom data (uint32_t) to label.
// Wrap the label to work around vixl::aarch64::Label being non-copyable
// and non-moveable and as such unusable in ArenaSafeMap<>.
struct LabelWrapper {
LabelWrapper(const LabelWrapper& src)
: label() {
DCHECK(!src.label.IsLinked() && !src.label.IsBound());
}
LabelWrapper() = default;
vixl::aarch64::Label label;
};
ArenaSafeMap<uint32_t, LabelWrapper> jit_baker_read_barrier_slow_paths_;
friend class linker::Arm64RelativePatcherTest;
DISALLOW_COPY_AND_ASSIGN(CodeGeneratorARM64);
};
inline Arm64Assembler* ParallelMoveResolverARM64::GetAssembler() const {
return codegen_->GetAssembler();
}
} // namespace arm64
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_ARM64_H_