| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator.h" |
| #include "base/globals.h" |
| |
| #ifdef ART_ENABLE_CODEGEN_arm |
| #include "code_generator_arm_vixl.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| #include "code_generator_arm64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_riscv64 |
| #include "code_generator_riscv64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| #include "code_generator_x86.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| #include "code_generator_x86_64.h" |
| #endif |
| |
| #include "art_method-inl.h" |
| #include "base/bit_utils.h" |
| #include "base/bit_utils_iterator.h" |
| #include "base/casts.h" |
| #include "base/leb128.h" |
| #include "class_linker.h" |
| #include "class_root-inl.h" |
| #include "code_generation_data.h" |
| #include "dex/bytecode_utils.h" |
| #include "dex/code_item_accessors-inl.h" |
| #include "graph_visualizer.h" |
| #include "gc/space/image_space.h" |
| #include "intern_table.h" |
| #include "intrinsics.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/object_reference.h" |
| #include "mirror/reference.h" |
| #include "mirror/string.h" |
| #include "parallel_move_resolver.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "ssa_liveness_analysis.h" |
| #include "oat/image.h" |
| #include "oat/stack_map.h" |
| #include "stack_map_stream.h" |
| #include "string_builder_append.h" |
| #include "thread-current-inl.h" |
| #include "utils/assembler.h" |
| |
| namespace art HIDDEN { |
| |
| // Return whether a location is consistent with a type. |
| static bool CheckType(DataType::Type type, Location location) { |
| if (location.IsFpuRegister() |
| || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) { |
| return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64); |
| } else if (location.IsRegister() || |
| (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) { |
| return DataType::IsIntegralType(type) || (type == DataType::Type::kReference); |
| } else if (location.IsRegisterPair()) { |
| return type == DataType::Type::kInt64; |
| } else if (location.IsFpuRegisterPair()) { |
| return type == DataType::Type::kFloat64; |
| } else if (location.IsStackSlot()) { |
| return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64) |
| || (type == DataType::Type::kFloat32) |
| || (type == DataType::Type::kReference); |
| } else if (location.IsDoubleStackSlot()) { |
| return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64); |
| } else if (location.IsConstant()) { |
| if (location.GetConstant()->IsIntConstant()) { |
| return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64); |
| } else if (location.GetConstant()->IsNullConstant()) { |
| return type == DataType::Type::kReference; |
| } else if (location.GetConstant()->IsLongConstant()) { |
| return type == DataType::Type::kInt64; |
| } else if (location.GetConstant()->IsFloatConstant()) { |
| return type == DataType::Type::kFloat32; |
| } else { |
| return location.GetConstant()->IsDoubleConstant() |
| && (type == DataType::Type::kFloat64); |
| } |
| } else { |
| return location.IsInvalid() || (location.GetPolicy() == Location::kAny); |
| } |
| } |
| |
| // Check that a location summary is consistent with an instruction. |
| static bool CheckTypeConsistency(HInstruction* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (locations == nullptr) { |
| return true; |
| } |
| |
| if (locations->Out().IsUnallocated() |
| && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) { |
| DCHECK(CheckType(instruction->GetType(), locations->InAt(0))) |
| << instruction->GetType() |
| << " " << locations->InAt(0); |
| } else { |
| DCHECK(CheckType(instruction->GetType(), locations->Out())) |
| << instruction->GetType() |
| << " " << locations->Out(); |
| } |
| |
| HConstInputsRef inputs = instruction->GetInputs(); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i))) |
| << inputs[i]->GetType() << " " << locations->InAt(i); |
| } |
| |
| HEnvironment* environment = instruction->GetEnvironment(); |
| for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) { |
| if (environment->GetInstructionAt(i) != nullptr) { |
| DataType::Type type = environment->GetInstructionAt(i)->GetType(); |
| DCHECK(CheckType(type, environment->GetLocationAt(i))) |
| << type << " " << environment->GetLocationAt(i); |
| } else { |
| DCHECK(environment->GetLocationAt(i).IsInvalid()) |
| << environment->GetLocationAt(i); |
| } |
| } |
| return true; |
| } |
| |
| bool CodeGenerator::EmitReadBarrier() const { |
| return GetCompilerOptions().EmitReadBarrier(); |
| } |
| |
| bool CodeGenerator::EmitBakerReadBarrier() const { |
| return kUseBakerReadBarrier && GetCompilerOptions().EmitReadBarrier(); |
| } |
| |
| bool CodeGenerator::EmitNonBakerReadBarrier() const { |
| return !kUseBakerReadBarrier && GetCompilerOptions().EmitReadBarrier(); |
| } |
| |
| ReadBarrierOption CodeGenerator::GetCompilerReadBarrierOption() const { |
| return EmitReadBarrier() ? kWithReadBarrier : kWithoutReadBarrier; |
| } |
| |
| bool CodeGenerator::ShouldCheckGCCard(DataType::Type type, |
| HInstruction* value, |
| WriteBarrierKind write_barrier_kind) const { |
| const CompilerOptions& options = GetCompilerOptions(); |
| const bool result = |
| // Check the GC card in debug mode, |
| options.EmitRunTimeChecksInDebugMode() && |
| // only for CC GC, |
| options.EmitReadBarrier() && |
| // and if we eliminated the write barrier in WBE. |
| !StoreNeedsWriteBarrier(type, value, write_barrier_kind) && |
| CodeGenerator::StoreNeedsWriteBarrier(type, value); |
| |
| DCHECK_IMPLIES(result, write_barrier_kind == WriteBarrierKind::kDontEmit); |
| DCHECK_IMPLIES( |
| result, !(GetGraph()->IsCompilingBaseline() && compiler_options_.ProfileBranches())); |
| |
| return result; |
| } |
| |
| ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetScopedAllocator(); |
| } |
| |
| StackMapStream* CodeGenerator::GetStackMapStream() { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetStackMapStream(); |
| } |
| |
| void CodeGenerator::ReserveJitStringRoot(StringReference string_reference, |
| Handle<mirror::String> string) { |
| DCHECK(code_generation_data_ != nullptr); |
| code_generation_data_->ReserveJitStringRoot(string_reference, string); |
| } |
| |
| uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetJitStringRootIndex(string_reference); |
| } |
| |
| void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) { |
| DCHECK(code_generation_data_ != nullptr); |
| code_generation_data_->ReserveJitClassRoot(type_reference, klass); |
| } |
| |
| uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetJitClassRootIndex(type_reference); |
| } |
| |
| void CodeGenerator::EmitJitRootPatches([[maybe_unused]] uint8_t* code, |
| [[maybe_unused]] const uint8_t* roots_data) { |
| DCHECK(code_generation_data_ != nullptr); |
| DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u); |
| DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u); |
| } |
| |
| uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) { |
| return array_length->IsStringLength() |
| ? mirror::String::CountOffset().Uint32Value() |
| : mirror::Array::LengthOffset().Uint32Value(); |
| } |
| |
| uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) { |
| DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt()); |
| return array_get->IsStringCharAt() |
| ? mirror::String::ValueOffset().Uint32Value() |
| : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value(); |
| } |
| |
| bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { |
| DCHECK_EQ((*block_order_)[current_block_index_], current); |
| return GetNextBlockToEmit() == FirstNonEmptyBlock(next); |
| } |
| |
| HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { |
| for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) { |
| HBasicBlock* block = (*block_order_)[i]; |
| if (!block->IsSingleJump()) { |
| return block; |
| } |
| } |
| return nullptr; |
| } |
| |
| HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { |
| while (block->IsSingleJump()) { |
| block = block->GetSuccessors()[0]; |
| } |
| return block; |
| } |
| |
| class DisassemblyScope { |
| public: |
| DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen) |
| : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) { |
| if (codegen_.GetDisassemblyInformation() != nullptr) { |
| start_offset_ = codegen_.GetAssembler().CodeSize(); |
| } |
| } |
| |
| ~DisassemblyScope() { |
| // We avoid building this data when we know it will not be used. |
| if (codegen_.GetDisassemblyInformation() != nullptr) { |
| codegen_.GetDisassemblyInformation()->AddInstructionInterval( |
| instruction_, start_offset_, codegen_.GetAssembler().CodeSize()); |
| } |
| } |
| |
| private: |
| const CodeGenerator& codegen_; |
| HInstruction* instruction_; |
| size_t start_offset_; |
| }; |
| |
| |
| void CodeGenerator::GenerateSlowPaths() { |
| DCHECK(code_generation_data_ != nullptr); |
| size_t code_start = 0; |
| for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) { |
| SlowPathCode* slow_path = slow_path_ptr.get(); |
| current_slow_path_ = slow_path; |
| if (disasm_info_ != nullptr) { |
| code_start = GetAssembler()->CodeSize(); |
| } |
| // Record the dex pc at start of slow path (required for java line number mapping). |
| MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path); |
| slow_path->EmitNativeCode(this); |
| if (disasm_info_ != nullptr) { |
| disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize()); |
| } |
| } |
| current_slow_path_ = nullptr; |
| } |
| |
| void CodeGenerator::InitializeCodeGenerationData() { |
| DCHECK(code_generation_data_ == nullptr); |
| code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet()); |
| } |
| |
| void CodeGenerator::Compile() { |
| InitializeCodeGenerationData(); |
| |
| // The register allocator already called `InitializeCodeGeneration`, |
| // where the frame size has been computed. |
| DCHECK(block_order_ != nullptr); |
| Initialize(); |
| |
| HGraphVisitor* instruction_visitor = GetInstructionVisitor(); |
| DCHECK_EQ(current_block_index_, 0u); |
| |
| GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_, |
| core_spill_mask_, |
| fpu_spill_mask_, |
| GetGraph()->GetNumberOfVRegs(), |
| GetGraph()->IsCompilingBaseline(), |
| GetGraph()->IsDebuggable(), |
| GetGraph()->HasShouldDeoptimizeFlag()); |
| |
| size_t frame_start = GetAssembler()->CodeSize(); |
| GenerateFrameEntry(); |
| DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_)); |
| if (disasm_info_ != nullptr) { |
| disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize()); |
| } |
| |
| for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) { |
| HBasicBlock* block = (*block_order_)[current_block_index_]; |
| // Don't generate code for an empty block. Its predecessors will branch to its successor |
| // directly. Also, the label of that block will not be emitted, so this helps catch |
| // errors where we reference that label. |
| if (block->IsSingleJump()) continue; |
| Bind(block); |
| // This ensures that we have correct native line mapping for all native instructions. |
| // It is necessary to make stepping over a statement work. Otherwise, any initial |
| // instructions (e.g. moves) would be assumed to be the start of next statement. |
| MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc()); |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| if (current->HasEnvironment()) { |
| // Catch StackMaps are dealt with later on in `RecordCatchBlockInfo`. |
| if (block->IsCatchBlock() && block->GetFirstInstruction() == current) { |
| DCHECK(current->IsNop()); |
| continue; |
| } |
| |
| // Create stackmap for HNop or any instruction which calls native code. |
| // Note that we need correct mapping for the native PC of the call instruction, |
| // so the runtime's stackmap is not sufficient since it is at PC after the call. |
| MaybeRecordNativeDebugInfo(current, block->GetDexPc()); |
| } |
| DisassemblyScope disassembly_scope(current, *this); |
| DCHECK(CheckTypeConsistency(current)); |
| current->Accept(instruction_visitor); |
| } |
| } |
| |
| GenerateSlowPaths(); |
| |
| // Emit catch stack maps at the end of the stack map stream as expected by the |
| // runtime exception handler. |
| if (graph_->HasTryCatch()) { |
| RecordCatchBlockInfo(); |
| } |
| |
| // Finalize instructions in assember; |
| Finalize(); |
| |
| GetStackMapStream()->EndMethod(GetAssembler()->CodeSize()); |
| } |
| |
| void CodeGenerator::Finalize() { |
| GetAssembler()->FinalizeCode(); |
| } |
| |
| void CodeGenerator::EmitLinkerPatches( |
| [[maybe_unused]] ArenaVector<linker::LinkerPatch>* linker_patches) { |
| // No linker patches by default. |
| } |
| |
| bool CodeGenerator::NeedsThunkCode([[maybe_unused]] const linker::LinkerPatch& patch) const { |
| // Code generators that create patches requiring thunk compilation should override this function. |
| return false; |
| } |
| |
| void CodeGenerator::EmitThunkCode([[maybe_unused]] const linker::LinkerPatch& patch, |
| [[maybe_unused]] /*out*/ ArenaVector<uint8_t>* code, |
| [[maybe_unused]] /*out*/ std::string* debug_name) { |
| // Code generators that create patches requiring thunk compilation should override this function. |
| LOG(FATAL) << "Unexpected call to EmitThunkCode()."; |
| } |
| |
| void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, |
| size_t maximum_safepoint_spill_size, |
| size_t number_of_out_slots, |
| const ArenaVector<HBasicBlock*>& block_order) { |
| block_order_ = &block_order; |
| DCHECK(!block_order.empty()); |
| DCHECK(block_order[0] == GetGraph()->GetEntryBlock()); |
| ComputeSpillMask(); |
| first_register_slot_in_slow_path_ = RoundUp( |
| (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment()); |
| |
| if (number_of_spill_slots == 0 |
| && !HasAllocatedCalleeSaveRegisters() |
| && IsLeafMethod() |
| && !RequiresCurrentMethod()) { |
| DCHECK_EQ(maximum_safepoint_spill_size, 0u); |
| SetFrameSize(CallPushesPC() ? GetWordSize() : 0); |
| } else { |
| SetFrameSize(RoundUp( |
| first_register_slot_in_slow_path_ |
| + maximum_safepoint_spill_size |
| + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0) |
| + FrameEntrySpillSize(), |
| kStackAlignment)); |
| } |
| } |
| |
| void CodeGenerator::CreateCommonInvokeLocationSummary( |
| HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) { |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnMainOnly); |
| |
| for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { |
| HInstruction* input = invoke->InputAt(i); |
| locations->SetInAt(i, visitor->GetNextLocation(input->GetType())); |
| } |
| |
| locations->SetOut(visitor->GetReturnLocation(invoke->GetType())); |
| |
| if (invoke->IsInvokeStaticOrDirect()) { |
| HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect(); |
| MethodLoadKind method_load_kind = call->GetMethodLoadKind(); |
| CodePtrLocation code_ptr_location = call->GetCodePtrLocation(); |
| if (code_ptr_location == CodePtrLocation::kCallCriticalNative) { |
| locations->AddTemp(Location::RequiresRegister()); // For target method. |
| } |
| if (code_ptr_location == CodePtrLocation::kCallCriticalNative || |
| method_load_kind == MethodLoadKind::kRecursive) { |
| // For `kCallCriticalNative` we need the current method as the hidden argument |
| // if we reach the dlsym lookup stub for @CriticalNative. |
| locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation()); |
| } else { |
| locations->AddTemp(visitor->GetMethodLocation()); |
| if (method_load_kind == MethodLoadKind::kRuntimeCall) { |
| locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister()); |
| } |
| } |
| } else if (!invoke->IsInvokePolymorphic()) { |
| locations->AddTemp(visitor->GetMethodLocation()); |
| } |
| } |
| |
| void CodeGenerator::PrepareCriticalNativeArgumentMoves( |
| HInvokeStaticOrDirect* invoke, |
| /*inout*/InvokeDexCallingConventionVisitor* visitor, |
| /*out*/HParallelMove* parallel_move) { |
| LocationSummary* locations = invoke->GetLocations(); |
| for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) { |
| Location in_location = locations->InAt(i); |
| DataType::Type type = invoke->InputAt(i)->GetType(); |
| DCHECK_NE(type, DataType::Type::kReference); |
| Location out_location = visitor->GetNextLocation(type); |
| if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) { |
| // Stack arguments will need to be moved after adjusting the SP. |
| parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr); |
| } else { |
| // Register arguments should have been assigned their final locations for register allocation. |
| DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location; |
| } |
| } |
| } |
| |
| void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size, |
| /*inout*/HParallelMove* parallel_move) { |
| DCHECK_NE(out_frame_size, 0u); |
| IncreaseFrame(out_frame_size); |
| // Adjust the source stack offsets by `out_frame_size`, i.e. the additional |
| // frame size needed for outgoing stack arguments. |
| for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) { |
| MoveOperands* operands = parallel_move->MoveOperandsAt(i); |
| Location source = operands->GetSource(); |
| if (operands->GetSource().IsStackSlot()) { |
| operands->SetSource(Location::StackSlot(source.GetStackIndex() + out_frame_size)); |
| } else if (operands->GetSource().IsDoubleStackSlot()) { |
| operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() + out_frame_size)); |
| } |
| } |
| // Emit the moves. |
| GetMoveResolver()->EmitNativeCode(parallel_move); |
| } |
| |
| const char* CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke, |
| uint32_t* shorty_len) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(invoke->GetResolvedMethod()->IsCriticalNative()); |
| return invoke->GetResolvedMethod()->GetShorty(shorty_len); |
| } |
| |
| void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| MethodReference method_reference(invoke->GetMethodReference()); |
| MoveConstant(temp, method_reference.index); |
| |
| // The access check is unnecessary but we do not want to introduce |
| // extra entrypoints for the codegens that do not support some |
| // invoke type and fall back to the runtime call. |
| |
| // Initialize to anything to silent compiler warnings. |
| QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| switch (invoke->GetInvokeType()) { |
| case kStatic: |
| entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| break; |
| case kDirect: |
| entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck; |
| break; |
| case kSuper: |
| entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck; |
| break; |
| case kVirtual: |
| case kInterface: |
| case kPolymorphic: |
| case kCustom: |
| LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType(); |
| UNREACHABLE(); |
| } |
| |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path); |
| } |
| void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) { |
| MethodReference method_reference(invoke->GetMethodReference()); |
| MoveConstant(invoke->GetLocations()->GetTemp(0), method_reference.index); |
| |
| // Initialize to anything to silent compiler warnings. |
| QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| switch (invoke->GetInvokeType()) { |
| case kStatic: |
| entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| break; |
| case kDirect: |
| entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck; |
| break; |
| case kVirtual: |
| entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck; |
| break; |
| case kSuper: |
| entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck; |
| break; |
| case kInterface: |
| entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck; |
| break; |
| case kPolymorphic: |
| case kCustom: |
| LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType(); |
| UNREACHABLE(); |
| } |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr); |
| } |
| |
| void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke, |
| SlowPathCode* slow_path) { |
| // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a |
| // method index) since it requires multiple info from the instruction (registers A, B, H). Not |
| // using the reservation has no effect on the registers used in the runtime call. |
| QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic; |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path); |
| } |
| |
| void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) { |
| MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex()); |
| QuickEntrypointEnum entrypoint = kQuickInvokeCustom; |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr); |
| } |
| |
| void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction, |
| Location out) { |
| ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| locations->SetOut(out); |
| instruction->GetLocations()->SetInAt(instruction->FormatIndex(), |
| Location::ConstantLocation(instruction->GetFormat())); |
| |
| uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue()); |
| uint32_t f = format; |
| PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet()); |
| size_t stack_offset = static_cast<size_t>(pointer_size); // Start after the ArtMethod*. |
| for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) { |
| StringBuilderAppend::Argument arg_type = |
| static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask); |
| switch (arg_type) { |
| case StringBuilderAppend::Argument::kStringBuilder: |
| case StringBuilderAppend::Argument::kString: |
| case StringBuilderAppend::Argument::kCharArray: |
| static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check."); |
| FALLTHROUGH_INTENDED; |
| case StringBuilderAppend::Argument::kBoolean: |
| case StringBuilderAppend::Argument::kChar: |
| case StringBuilderAppend::Argument::kInt: |
| case StringBuilderAppend::Argument::kFloat: |
| locations->SetInAt(i, Location::StackSlot(stack_offset)); |
| break; |
| case StringBuilderAppend::Argument::kLong: |
| case StringBuilderAppend::Argument::kDouble: |
| stack_offset = RoundUp(stack_offset, sizeof(uint64_t)); |
| locations->SetInAt(i, Location::DoubleStackSlot(stack_offset)); |
| // Skip the low word, let the common code skip the high word. |
| stack_offset += sizeof(uint32_t); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected arg format: 0x" << std::hex |
| << (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format; |
| UNREACHABLE(); |
| } |
| f >>= StringBuilderAppend::kBitsPerArg; |
| stack_offset += sizeof(uint32_t); |
| } |
| DCHECK_EQ(f, 0u); |
| |
| size_t param_size = stack_offset - static_cast<size_t>(pointer_size); |
| DCHECK_ALIGNED(param_size, kVRegSize); |
| size_t num_vregs = param_size / kVRegSize; |
| graph_->UpdateMaximumNumberOfOutVRegs(num_vregs); |
| } |
| |
| void CodeGenerator::CreateUnresolvedFieldLocationSummary( |
| HInstruction* field_access, |
| DataType::Type field_type, |
| const FieldAccessCallingConvention& calling_convention) { |
| bool is_instance = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedInstanceFieldSet(); |
| bool is_get = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedStaticFieldGet(); |
| |
| ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly); |
| |
| locations->AddTemp(calling_convention.GetFieldIndexLocation()); |
| |
| if (is_instance) { |
| // Add the `this` object for instance field accesses. |
| locations->SetInAt(0, calling_convention.GetObjectLocation()); |
| } |
| |
| // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64 |
| // regardless of the type. Because of that we forced to special case |
| // the access to floating point values. |
| if (is_get) { |
| if (DataType::IsFloatingPointType(field_type)) { |
| // The return value will be stored in regular registers while register |
| // allocator expects it in a floating point register. |
| // Note We don't need to request additional temps because the return |
| // register(s) are already blocked due the call and they may overlap with |
| // the input or field index. |
| // The transfer between the two will be done at codegen level. |
| locations->SetOut(calling_convention.GetFpuLocation(field_type)); |
| } else { |
| locations->SetOut(calling_convention.GetReturnLocation(field_type)); |
| } |
| } else { |
| size_t set_index = is_instance ? 1 : 0; |
| if (DataType::IsFloatingPointType(field_type)) { |
| // The set value comes from a float location while the calling convention |
| // expects it in a regular register location. Allocate a temp for it and |
| // make the transfer at codegen. |
| AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations); |
| locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type)); |
| } else { |
| locations->SetInAt(set_index, |
| calling_convention.GetSetValueLocation(field_type, is_instance)); |
| } |
| } |
| } |
| |
| void CodeGenerator::GenerateUnresolvedFieldAccess( |
| HInstruction* field_access, |
| DataType::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc, |
| const FieldAccessCallingConvention& calling_convention) { |
| LocationSummary* locations = field_access->GetLocations(); |
| |
| MoveConstant(locations->GetTemp(0), field_index); |
| |
| bool is_instance = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedInstanceFieldSet(); |
| bool is_get = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedStaticFieldGet(); |
| |
| if (!is_get && DataType::IsFloatingPointType(field_type)) { |
| // Copy the float value to be set into the calling convention register. |
| // Note that using directly the temp location is problematic as we don't |
| // support temp register pairs. To avoid boilerplate conversion code, use |
| // the location from the calling convention. |
| MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance), |
| locations->InAt(is_instance ? 1 : 0), |
| (DataType::Is64BitType(field_type) ? DataType::Type::kInt64 |
| : DataType::Type::kInt32)); |
| } |
| |
| QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings. |
| switch (field_type) { |
| case DataType::Type::kBool: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance) |
| : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static); |
| break; |
| case DataType::Type::kInt8: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance) |
| : (is_get ? kQuickGetByteStatic : kQuickSet8Static); |
| break; |
| case DataType::Type::kInt16: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance) |
| : (is_get ? kQuickGetShortStatic : kQuickSet16Static); |
| break; |
| case DataType::Type::kUint16: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance) |
| : (is_get ? kQuickGetCharStatic : kQuickSet16Static); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kFloat32: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGet32Instance : kQuickSet32Instance) |
| : (is_get ? kQuickGet32Static : kQuickSet32Static); |
| break; |
| case DataType::Type::kReference: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance) |
| : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGet64Instance : kQuickSet64Instance) |
| : (is_get ? kQuickGet64Static : kQuickSet64Static); |
| break; |
| default: |
| LOG(FATAL) << "Invalid type " << field_type; |
| } |
| InvokeRuntime(entrypoint, field_access, dex_pc, nullptr); |
| |
| if (is_get && DataType::IsFloatingPointType(field_type)) { |
| MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type); |
| } |
| } |
| |
| void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls, |
| Location runtime_type_index_location, |
| Location runtime_return_location) { |
| DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall); |
| DCHECK_EQ(cls->InputCount(), 1u); |
| LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary( |
| cls, LocationSummary::kCallOnMainOnly); |
| locations->SetInAt(0, Location::NoLocation()); |
| locations->AddTemp(runtime_type_index_location); |
| locations->SetOut(runtime_return_location); |
| } |
| |
| void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) { |
| DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| LocationSummary* locations = cls->GetLocations(); |
| MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_); |
| if (cls->NeedsAccessCheck()) { |
| CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>(); |
| InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc()); |
| } else { |
| CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); |
| InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc()); |
| } |
| } |
| |
| void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary( |
| HLoadMethodHandle* method_handle, |
| Location runtime_proto_index_location, |
| Location runtime_return_location) { |
| DCHECK_EQ(method_handle->InputCount(), 1u); |
| LocationSummary* locations = |
| new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary( |
| method_handle, LocationSummary::kCallOnMainOnly); |
| locations->SetInAt(0, Location::NoLocation()); |
| locations->AddTemp(runtime_proto_index_location); |
| locations->SetOut(runtime_return_location); |
| } |
| |
| void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) { |
| LocationSummary* locations = method_handle->GetLocations(); |
| MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex()); |
| CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>(); |
| InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc()); |
| } |
| |
| void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary( |
| HLoadMethodType* method_type, |
| Location runtime_proto_index_location, |
| Location runtime_return_location) { |
| DCHECK_EQ(method_type->InputCount(), 1u); |
| LocationSummary* locations = |
| new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary( |
| method_type, LocationSummary::kCallOnMainOnly); |
| locations->SetInAt(0, Location::NoLocation()); |
| locations->AddTemp(runtime_proto_index_location); |
| locations->SetOut(runtime_return_location); |
| } |
| |
| void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) { |
| LocationSummary* locations = method_type->GetLocations(); |
| MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_); |
| CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>(); |
| InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc()); |
| } |
| |
| static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) { |
| Runtime* runtime = Runtime::Current(); |
| const std::vector<gc::space::ImageSpace*>& boot_image_spaces = |
| runtime->GetHeap()->GetBootImageSpaces(); |
| // Check that the `object` is in the expected section of one of the boot image files. |
| DCHECK(std::any_of(boot_image_spaces.begin(), |
| boot_image_spaces.end(), |
| [object, section](gc::space::ImageSpace* space) { |
| uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); |
| uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin; |
| return space->GetImageHeader().GetImageSection(section).Contains(offset); |
| })); |
| uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin()); |
| uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin; |
| return dchecked_integral_cast<uint32_t>(offset); |
| } |
| |
| uint32_t CodeGenerator::GetBootImageOffset(ObjPtr<mirror::Object> object) { |
| return GetBootImageOffsetImpl(object.Ptr(), ImageHeader::kSectionObjects); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable. |
| uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo); |
| ObjPtr<mirror::Class> klass = load_class->GetClass().Get(); |
| DCHECK(klass != nullptr); |
| return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable. |
| uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo); |
| ObjPtr<mirror::String> string = load_string->GetString().Get(); |
| DCHECK(string != nullptr); |
| return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects); |
| } |
| |
| uint32_t CodeGenerator::GetBootImageOffset(HInvoke* invoke) { |
| ArtMethod* method = invoke->GetResolvedMethod(); |
| DCHECK(method != nullptr); |
| return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image objects are non-moveable. |
| uint32_t CodeGenerator::GetBootImageOffset(ClassRoot class_root) NO_THREAD_SAFETY_ANALYSIS { |
| ObjPtr<mirror::Class> klass = GetClassRoot<kWithoutReadBarrier>(class_root); |
| return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable. |
| uint32_t CodeGenerator::GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke) |
| NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); |
| ArtMethod* method = invoke->GetResolvedMethod(); |
| DCHECK(method != nullptr); |
| ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass<kWithoutReadBarrier>(); |
| return GetBootImageOffsetImpl(declaring_class.Ptr(), ImageHeader::kSectionObjects); |
| } |
| |
| void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { |
| // The DCHECKS below check that a register is not specified twice in |
| // the summary. The out location can overlap with an input, so we need |
| // to special case it. |
| if (location.IsRegister()) { |
| DCHECK(is_out || !blocked_core_registers_[location.reg()]); |
| blocked_core_registers_[location.reg()] = true; |
| } else if (location.IsFpuRegister()) { |
| DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); |
| blocked_fpu_registers_[location.reg()] = true; |
| } else if (location.IsFpuRegisterPair()) { |
| DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); |
| blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; |
| DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); |
| blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; |
| } else if (location.IsRegisterPair()) { |
| DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); |
| blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; |
| DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); |
| blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; |
| } |
| } |
| |
| void CodeGenerator::AllocateLocations(HInstruction* instruction) { |
| for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) { |
| env->AllocateLocations(); |
| } |
| instruction->Accept(GetLocationBuilder()); |
| DCHECK(CheckTypeConsistency(instruction)); |
| LocationSummary* locations = instruction->GetLocations(); |
| if (!instruction->IsSuspendCheckEntry()) { |
| if (locations != nullptr) { |
| if (locations->CanCall()) { |
| MarkNotLeaf(); |
| if (locations->NeedsSuspendCheckEntry()) { |
| MarkNeedsSuspendCheckEntry(); |
| } |
| } else if (locations->Intrinsified() && |
| instruction->IsInvokeStaticOrDirect() && |
| !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) { |
| // A static method call that has been fully intrinsified, and cannot call on the slow |
| // path or refer to the current method directly, no longer needs current method. |
| return; |
| } |
| } |
| if (instruction->NeedsCurrentMethod()) { |
| SetRequiresCurrentMethod(); |
| } |
| } |
| } |
| |
| std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) { |
| ArenaAllocator* allocator = graph->GetAllocator(); |
| switch (compiler_options.GetInstructionSet()) { |
| #ifdef ART_ENABLE_CODEGEN_arm |
| case InstructionSet::kArm: |
| case InstructionSet::kThumb2: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| case InstructionSet::kArm64: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_riscv64 |
| case InstructionSet::kRiscv64: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) riscv64::CodeGeneratorRISCV64(graph, compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| case InstructionSet::kX86: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| case InstructionSet::kX86_64: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats)); |
| } |
| #endif |
| default: |
| UNUSED(allocator); |
| UNUSED(graph); |
| UNUSED(stats); |
| return nullptr; |
| } |
| } |
| |
| CodeGenerator::CodeGenerator(HGraph* graph, |
| size_t number_of_core_registers, |
| size_t number_of_fpu_registers, |
| size_t number_of_register_pairs, |
| uint32_t core_callee_save_mask, |
| uint32_t fpu_callee_save_mask, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats, |
| const art::ArrayRef<const bool>& unimplemented_intrinsics) |
| : frame_size_(0), |
| core_spill_mask_(0), |
| fpu_spill_mask_(0), |
| first_register_slot_in_slow_path_(0), |
| allocated_registers_(RegisterSet::Empty()), |
| blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers, |
| kArenaAllocCodeGenerator)), |
| blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers, |
| kArenaAllocCodeGenerator)), |
| number_of_core_registers_(number_of_core_registers), |
| number_of_fpu_registers_(number_of_fpu_registers), |
| number_of_register_pairs_(number_of_register_pairs), |
| core_callee_save_mask_(core_callee_save_mask), |
| fpu_callee_save_mask_(fpu_callee_save_mask), |
| block_order_(nullptr), |
| disasm_info_(nullptr), |
| stats_(stats), |
| graph_(graph), |
| compiler_options_(compiler_options), |
| current_slow_path_(nullptr), |
| current_block_index_(0), |
| is_leaf_(true), |
| needs_suspend_check_entry_(false), |
| requires_current_method_(false), |
| code_generation_data_(), |
| unimplemented_intrinsics_(unimplemented_intrinsics) { |
| if (GetGraph()->IsCompilingOsr()) { |
| // Make OSR methods have all registers spilled, this simplifies the logic of |
| // jumping to the compiled code directly. |
| for (size_t i = 0; i < number_of_core_registers_; ++i) { |
| if (IsCoreCalleeSaveRegister(i)) { |
| AddAllocatedRegister(Location::RegisterLocation(i)); |
| } |
| } |
| for (size_t i = 0; i < number_of_fpu_registers_; ++i) { |
| if (IsFloatingPointCalleeSaveRegister(i)) { |
| AddAllocatedRegister(Location::FpuRegisterLocation(i)); |
| } |
| } |
| } |
| if (GetGraph()->IsCompilingBaseline()) { |
| // We need the current method in case we reach the hotness threshold. As a |
| // side effect this makes the frame non-empty. |
| SetRequiresCurrentMethod(); |
| } |
| } |
| |
| CodeGenerator::~CodeGenerator() {} |
| |
| size_t CodeGenerator::GetNumberOfJitRoots() const { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetNumberOfJitRoots(); |
| } |
| |
| static void CheckCovers(uint32_t dex_pc, |
| const HGraph& graph, |
| const CodeInfo& code_info, |
| const ArenaVector<HSuspendCheck*>& loop_headers, |
| ArenaVector<size_t>* covered) { |
| for (size_t i = 0; i < loop_headers.size(); ++i) { |
| if (loop_headers[i]->GetDexPc() == dex_pc) { |
| if (graph.IsCompilingOsr()) { |
| DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid()); |
| } |
| ++(*covered)[i]; |
| } |
| } |
| } |
| |
| // Debug helper to ensure loop entries in compiled code are matched by |
| // dex branch instructions. |
| static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph, |
| const CodeInfo& code_info, |
| const dex::CodeItem& code_item) { |
| if (graph.HasTryCatch()) { |
| // One can write loops through try/catch, which we do not support for OSR anyway. |
| return; |
| } |
| ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc)); |
| for (HBasicBlock* block : graph.GetReversePostOrder()) { |
| if (block->IsLoopHeader()) { |
| HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck(); |
| if (suspend_check != nullptr && !suspend_check->GetEnvironment()->IsFromInlinedInvoke()) { |
| loop_headers.push_back(suspend_check); |
| } |
| } |
| } |
| ArenaVector<size_t> covered( |
| loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc)); |
| for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(), |
| &code_item)) { |
| const uint32_t dex_pc = pair.DexPc(); |
| const Instruction& instruction = pair.Inst(); |
| if (instruction.IsBranch()) { |
| uint32_t target = dex_pc + instruction.GetTargetOffset(); |
| CheckCovers(target, graph, code_info, loop_headers, &covered); |
| } else if (instruction.IsSwitch()) { |
| DexSwitchTable table(instruction, dex_pc); |
| uint16_t num_entries = table.GetNumEntries(); |
| size_t offset = table.GetFirstValueIndex(); |
| |
| // Use a larger loop counter type to avoid overflow issues. |
| for (size_t i = 0; i < num_entries; ++i) { |
| // The target of the case. |
| uint32_t target = dex_pc + table.GetEntryAt(i + offset); |
| CheckCovers(target, graph, code_info, loop_headers, &covered); |
| } |
| } |
| } |
| |
| for (size_t i = 0; i < covered.size(); ++i) { |
| DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent"; |
| } |
| } |
| |
| ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) { |
| ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode(); |
| if (kIsDebugBuild && code_item != nullptr) { |
| CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item); |
| } |
| return stack_map; |
| } |
| |
| // Returns whether stackmap dex register info is needed for the instruction. |
| // |
| // The following cases mandate having a dex register map: |
| // * Deoptimization |
| // when we need to obtain the values to restore actual vregisters for interpreter. |
| // * Debuggability |
| // when we want to observe the values / asynchronously deoptimize. |
| // * Monitor operations |
| // to allow dumping in a stack trace locked dex registers for non-debuggable code. |
| // * On-stack-replacement (OSR) |
| // when entering compiled for OSR code from the interpreter we need to initialize the compiled |
| // code values with the values from the vregisters. |
| // * Method local catch blocks |
| // a catch block must see the environment of the instruction from the same method that can |
| // throw to this block. |
| static bool NeedsVregInfo(HInstruction* instruction, bool osr) { |
| HGraph* graph = instruction->GetBlock()->GetGraph(); |
| return instruction->IsDeoptimize() || |
| graph->IsDebuggable() || |
| graph->HasMonitorOperations() || |
| osr || |
| instruction->CanThrowIntoCatchBlock(); |
| } |
| |
| void CodeGenerator::RecordPcInfo(HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path, |
| bool native_debug_info) { |
| RecordPcInfo(instruction, dex_pc, GetAssembler()->CodePosition(), slow_path, native_debug_info); |
| } |
| |
| void CodeGenerator::RecordPcInfo(HInstruction* instruction, |
| uint32_t dex_pc, |
| uint32_t native_pc, |
| SlowPathCode* slow_path, |
| bool native_debug_info) { |
| if (instruction != nullptr) { |
| // The code generated for some type conversions |
| // may call the runtime, thus normally requiring a subsequent |
| // call to this method. However, the method verifier does not |
| // produce PC information for certain instructions, which are |
| // considered "atomic" (they cannot join a GC). |
| // Therefore we do not currently record PC information for such |
| // instructions. As this may change later, we added this special |
| // case so that code generators may nevertheless call |
| // CodeGenerator::RecordPcInfo without triggering an error in |
| // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") |
| // thereafter. |
| if (instruction->IsTypeConversion()) { |
| return; |
| } |
| if (instruction->IsRem()) { |
| DataType::Type type = instruction->AsRem()->GetResultType(); |
| if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) { |
| return; |
| } |
| } |
| } |
| |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| if (instruction == nullptr) { |
| // For stack overflow checks and native-debug-info entries without dex register |
| // mapping (i.e. start of basic block or start of slow path). |
| stack_map_stream->BeginStackMapEntry(dex_pc, native_pc); |
| stack_map_stream->EndStackMapEntry(); |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t register_mask = locations->GetRegisterMask(); |
| DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u); |
| if (locations->OnlyCallsOnSlowPath()) { |
| // In case of slow path, we currently set the location of caller-save registers |
| // to register (instead of their stack location when pushed before the slow-path |
| // call). Therefore register_mask contains both callee-save and caller-save |
| // registers that hold objects. We must remove the spilled caller-save from the |
| // mask, since they will be overwritten by the callee. |
| uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true); |
| register_mask &= ~spills; |
| } else { |
| // The register mask must be a subset of callee-save registers. |
| DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); |
| } |
| |
| uint32_t outer_dex_pc = dex_pc; |
| uint32_t inlining_depth = 0; |
| HEnvironment* const environment = instruction->GetEnvironment(); |
| if (environment != nullptr) { |
| HEnvironment* outer_environment = environment; |
| while (outer_environment->GetParent() != nullptr) { |
| outer_environment = outer_environment->GetParent(); |
| ++inlining_depth; |
| } |
| outer_dex_pc = outer_environment->GetDexPc(); |
| } |
| |
| HLoopInformation* info = instruction->GetBlock()->GetLoopInformation(); |
| bool osr = |
| instruction->IsSuspendCheck() && |
| (info != nullptr) && |
| graph_->IsCompilingOsr() && |
| (inlining_depth == 0); |
| StackMap::Kind kind = native_debug_info |
| ? StackMap::Kind::Debug |
| : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default); |
| bool needs_vreg_info = NeedsVregInfo(instruction, osr); |
| stack_map_stream->BeginStackMapEntry(outer_dex_pc, |
| native_pc, |
| register_mask, |
| locations->GetStackMask(), |
| kind, |
| needs_vreg_info); |
| |
| EmitEnvironment(environment, slow_path, needs_vreg_info); |
| stack_map_stream->EndStackMapEntry(); |
| |
| if (osr) { |
| DCHECK_EQ(info->GetSuspendCheck(), instruction); |
| DCHECK(info->IsIrreducible()); |
| DCHECK(environment != nullptr); |
| if (kIsDebugBuild) { |
| for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { |
| HInstruction* in_environment = environment->GetInstructionAt(i); |
| if (in_environment != nullptr) { |
| DCHECK(in_environment->IsPhi() || in_environment->IsConstant()); |
| Location location = environment->GetLocationAt(i); |
| DCHECK(location.IsStackSlot() || |
| location.IsDoubleStackSlot() || |
| location.IsConstant() || |
| location.IsInvalid()); |
| if (location.IsStackSlot() || location.IsDoubleStackSlot()) { |
| DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize())); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| bool CodeGenerator::HasStackMapAtCurrentPc() { |
| uint32_t pc = GetAssembler()->CodeSize(); |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| size_t count = stack_map_stream->GetNumberOfStackMaps(); |
| if (count == 0) { |
| return false; |
| } |
| return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc; |
| } |
| |
| void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) { |
| if (HasStackMapAtCurrentPc()) { |
| // Ensure that we do not collide with the stack map of the previous instruction. |
| GenerateNop(); |
| } |
| RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true); |
| } |
| } |
| |
| void CodeGenerator::RecordCatchBlockInfo() { |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| |
| for (HBasicBlock* block : *block_order_) { |
| if (!block->IsCatchBlock()) { |
| continue; |
| } |
| |
| // Get the outer dex_pc. We save the full environment list for DCHECK purposes in kIsDebugBuild. |
| std::vector<uint32_t> dex_pc_list_for_verification; |
| if (kIsDebugBuild) { |
| dex_pc_list_for_verification.push_back(block->GetDexPc()); |
| } |
| DCHECK(block->GetFirstInstruction()->IsNop()); |
| DCHECK(block->GetFirstInstruction()->AsNop()->NeedsEnvironment()); |
| HEnvironment* const environment = block->GetFirstInstruction()->GetEnvironment(); |
| DCHECK(environment != nullptr); |
| HEnvironment* outer_environment = environment; |
| while (outer_environment->GetParent() != nullptr) { |
| outer_environment = outer_environment->GetParent(); |
| if (kIsDebugBuild) { |
| dex_pc_list_for_verification.push_back(outer_environment->GetDexPc()); |
| } |
| } |
| |
| if (kIsDebugBuild) { |
| // dex_pc_list_for_verification is set from innnermost to outermost. Let's reverse it |
| // since we are expected to pass from outermost to innermost. |
| std::reverse(dex_pc_list_for_verification.begin(), dex_pc_list_for_verification.end()); |
| DCHECK_EQ(dex_pc_list_for_verification.front(), outer_environment->GetDexPc()); |
| } |
| |
| uint32_t native_pc = GetAddressOf(block); |
| stack_map_stream->BeginStackMapEntry(outer_environment->GetDexPc(), |
| native_pc, |
| /* register_mask= */ 0, |
| /* sp_mask= */ nullptr, |
| StackMap::Kind::Catch, |
| /* needs_vreg_info= */ true, |
| dex_pc_list_for_verification); |
| |
| EmitEnvironment(environment, |
| /* slow_path= */ nullptr, |
| /* needs_vreg_info= */ true, |
| /* is_for_catch_handler= */ true); |
| |
| stack_map_stream->EndStackMapEntry(); |
| } |
| } |
| |
| void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) { |
| DCHECK(code_generation_data_ != nullptr); |
| code_generation_data_->AddSlowPath(slow_path); |
| } |
| |
| void CodeGenerator::EmitVRegInfo(HEnvironment* environment, |
| SlowPathCode* slow_path, |
| bool is_for_catch_handler) { |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| // Walk over the environment, and record the location of dex registers. |
| for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { |
| HInstruction* current = environment->GetInstructionAt(i); |
| if (current == nullptr) { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| continue; |
| } |
| |
| using Kind = DexRegisterLocation::Kind; |
| Location location = environment->GetLocationAt(i); |
| switch (location.GetKind()) { |
| case Location::kConstant: { |
| DCHECK_EQ(current, location.GetConstant()); |
| if (current->IsLongConstant()) { |
| int64_t value = current->AsLongConstant()->GetValue(); |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value)); |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } else if (current->IsDoubleConstant()) { |
| int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue()); |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value)); |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } else if (current->IsIntConstant()) { |
| int32_t value = current->AsIntConstant()->GetValue(); |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value); |
| } else if (current->IsNullConstant()) { |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0); |
| } else { |
| DCHECK(current->IsFloatConstant()) << current->DebugName(); |
| int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue()); |
| stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value); |
| } |
| break; |
| } |
| |
| case Location::kStackSlot: { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex()); |
| break; |
| } |
| |
| case Location::kDoubleStackSlot: { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex()); |
| stack_map_stream->AddDexRegisterEntry( |
| Kind::kInStack, location.GetHighStackIndex(kVRegSize)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kRegister : { |
| DCHECK(!is_for_catch_handler); |
| int id = location.reg(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id); |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset); |
| if (current->GetType() == DataType::Type::kInt64) { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } else { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id); |
| if (current->GetType() == DataType::Type::kInt64) { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } |
| break; |
| } |
| |
| case Location::kFpuRegister : { |
| DCHECK(!is_for_catch_handler); |
| int id = location.reg(); |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id); |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset); |
| if (current->GetType() == DataType::Type::kFloat64) { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } else { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id); |
| if (current->GetType() == DataType::Type::kFloat64) { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } |
| break; |
| } |
| |
| case Location::kFpuRegisterPair : { |
| DCHECK(!is_for_catch_handler); |
| int low = location.low(); |
| int high = location.high(); |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low); |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset); |
| } else { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low); |
| } |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high); |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset); |
| ++i; |
| } else { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high); |
| ++i; |
| } |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kRegisterPair : { |
| DCHECK(!is_for_catch_handler); |
| int low = location.low(); |
| int high = location.high(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low); |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset); |
| } else { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low); |
| } |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high); |
| stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset); |
| } else { |
| stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high); |
| } |
| ++i; |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kInvalid: { |
| stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected kind " << location.GetKind(); |
| } |
| } |
| } |
| |
| void CodeGenerator::EmitVRegInfoOnlyCatchPhis(HEnvironment* environment) { |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| DCHECK(environment->GetHolder()->GetBlock()->IsCatchBlock()); |
| DCHECK_EQ(environment->GetHolder()->GetBlock()->GetFirstInstruction(), environment->GetHolder()); |
| HInstruction* current_phi = environment->GetHolder()->GetBlock()->GetFirstPhi(); |
| for (size_t vreg = 0; vreg < environment->Size(); ++vreg) { |
| while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) { |
| HInstruction* next_phi = current_phi->GetNext(); |
| DCHECK(next_phi == nullptr || |
| current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber()) |
| << "Phis need to be sorted by vreg number to keep this a linear-time loop."; |
| current_phi = next_phi; |
| } |
| |
| if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| } else { |
| Location location = current_phi->GetLocations()->Out(); |
| switch (location.GetKind()) { |
| case Location::kStackSlot: { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, |
| location.GetStackIndex()); |
| break; |
| } |
| case Location::kDoubleStackSlot: { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, |
| location.GetStackIndex()); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, |
| location.GetHighStackIndex(kVRegSize)); |
| ++vreg; |
| DCHECK_LT(vreg, environment->Size()); |
| break; |
| } |
| default: { |
| LOG(FATAL) << "All catch phis must be allocated to a stack slot. Unexpected kind " |
| << location.GetKind(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| } |
| |
| void CodeGenerator::EmitEnvironment(HEnvironment* environment, |
| SlowPathCode* slow_path, |
| bool needs_vreg_info, |
| bool is_for_catch_handler, |
| bool innermost_environment) { |
| if (environment == nullptr) return; |
| |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| bool emit_inline_info = environment->GetParent() != nullptr; |
| |
| if (emit_inline_info) { |
| // We emit the parent environment first. |
| EmitEnvironment(environment->GetParent(), |
| slow_path, |
| needs_vreg_info, |
| is_for_catch_handler, |
| /* innermost_environment= */ false); |
| stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(), |
| environment->GetDexPc(), |
| needs_vreg_info ? environment->Size() : 0, |
| &graph_->GetDexFile(), |
| this); |
| } |
| |
| // If a dex register map is not required we just won't emit it. |
| if (needs_vreg_info) { |
| if (innermost_environment && is_for_catch_handler) { |
| EmitVRegInfoOnlyCatchPhis(environment); |
| } else { |
| EmitVRegInfo(environment, slow_path, is_for_catch_handler); |
| } |
| } |
| |
| if (emit_inline_info) { |
| stack_map_stream->EndInlineInfoEntry(); |
| } |
| } |
| |
| bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { |
| return null_check->IsEmittedAtUseSite(); |
| } |
| |
| void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { |
| HNullCheck* null_check = instr->GetImplicitNullCheck(); |
| if (null_check != nullptr) { |
| RecordPcInfo(null_check, null_check->GetDexPc(), GetAssembler()->CodePosition()); |
| } |
| } |
| |
| LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction, |
| RegisterSet caller_saves) { |
| // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the |
| // HSuspendCheck from entry block). However, it will still get a valid stack frame |
| // because the HNullCheck needs an environment. |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| // When throwing from a try block, we may need to retrieve dalvik registers from |
| // physical registers and we also need to set up stack mask for GC. This is |
| // implicitly achieved by passing kCallOnSlowPath to the LocationSummary. |
| bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock(); |
| if (can_throw_into_catch_block) { |
| call_kind = LocationSummary::kCallOnSlowPath; |
| } |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) { |
| locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers. |
| } |
| DCHECK(!instruction->HasUses()); |
| return locations; |
| } |
| |
| void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) { |
| if (compiler_options_.GetImplicitNullChecks()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated); |
| GenerateImplicitNullCheck(instruction); |
| } else { |
| MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated); |
| GenerateExplicitNullCheck(instruction); |
| } |
| } |
| |
| void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check, |
| HParallelMove* spills) const { |
| LocationSummary* locations = suspend_check->GetLocations(); |
| HBasicBlock* block = suspend_check->GetBlock(); |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); |
| DCHECK(block->IsLoopHeader()); |
| DCHECK(block->GetFirstInstruction() == spills); |
| |
| for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) { |
| Location dest = spills->MoveOperandsAt(i)->GetDestination(); |
| // All parallel moves in loop headers are spills. |
| DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest; |
| // Clear the stack bit marking a reference. Do not bother to check if the spill is |
| // actually a reference spill, clearing bits that are already zero is harmless. |
| locations->ClearStackBit(dest.GetStackIndex() / kVRegSize); |
| } |
| } |
| |
| void CodeGenerator::EmitParallelMoves(Location from1, |
| Location to1, |
| DataType::Type type1, |
| Location from2, |
| Location to2, |
| DataType::Type type2) { |
| HParallelMove parallel_move(GetGraph()->GetAllocator()); |
| parallel_move.AddMove(from1, to1, type1, nullptr); |
| parallel_move.AddMove(from2, to2, type2, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| |
| bool CodeGenerator::StoreNeedsWriteBarrier(DataType::Type type, |
| HInstruction* value, |
| WriteBarrierKind write_barrier_kind) const { |
| // Check that null value is not represented as an integer constant. |
| DCHECK_IMPLIES(type == DataType::Type::kReference, !value->IsIntConstant()); |
| // Branch profiling currently doesn't support running optimizations. |
| return (GetGraph()->IsCompilingBaseline() && compiler_options_.ProfileBranches()) |
| ? CodeGenerator::StoreNeedsWriteBarrier(type, value) |
| : write_barrier_kind != WriteBarrierKind::kDontEmit; |
| } |
| |
| void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| // Ensure that the call kind indication given to the register allocator is |
| // coherent with the runtime call generated. |
| if (slow_path == nullptr) { |
| DCHECK(instruction->GetLocations()->WillCall()) |
| << "instruction->DebugName()=" << instruction->DebugName(); |
| } else { |
| DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal()) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| } |
| |
| // Check that the GC side effect is set when required. |
| // TODO: Reverse EntrypointCanTriggerGC |
| if (EntrypointCanTriggerGC(entrypoint)) { |
| if (slow_path == nullptr) { |
| DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC())) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " instruction->GetSideEffects().ToString()=" |
| << instruction->GetSideEffects().ToString(); |
| } else { |
| // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend |
| // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However |
| // if execution never returns to the compiled code from a GC point this restriction is |
| // unnecessary - in particular for fatal slow paths which might trigger GC. |
| DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) || |
| instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) || |
| // When (non-Baker) read barriers are enabled, some instructions |
| // use a slow path to emit a read barrier, which does not trigger |
| // GC. |
| (EmitNonBakerReadBarrier() && |
| (instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsArrayGet() || |
| instruction->IsLoadClass() || |
| instruction->IsLoadString() || |
| instruction->IsInstanceOf() || |
| instruction->IsCheckCast() || |
| (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified())))) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " instruction->GetSideEffects().ToString()=" |
| << instruction->GetSideEffects().ToString() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription() << std::endl |
| << "Instruction and args: " << instruction->DumpWithArgs(); |
| } |
| } else { |
| // The GC side effect is not required for the instruction. But the instruction might still have |
| // it, for example if it calls other entrypoints requiring it. |
| } |
| |
| // Check the coherency of leaf information. |
| DCHECK(instruction->IsSuspendCheck() |
| || ((slow_path != nullptr) && slow_path->IsFatal()) |
| || instruction->GetLocations()->CanCall() |
| || !IsLeafMethod()) |
| << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : ""); |
| } |
| |
| void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath()) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| // Only the Baker read barrier marking slow path used by certains |
| // instructions is expected to invoke the runtime without recording |
| // PC-related information. |
| DCHECK(kUseBakerReadBarrier); |
| DCHECK(instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsArrayGet() || |
| instruction->IsArraySet() || |
| instruction->IsLoadClass() || |
| instruction->IsLoadMethodType() || |
| instruction->IsLoadString() || |
| instruction->IsInstanceOf() || |
| instruction->IsCheckCast() || |
| (instruction->IsInvoke() && instruction->GetLocations()->Intrinsified())) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| } |
| |
| void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += codegen->SaveCoreRegister(stack_offset, i); |
| } |
| |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i); |
| } |
| } |
| |
| void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| stack_offset += codegen->RestoreCoreRegister(stack_offset, i); |
| } |
| |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i); |
| } |
| } |
| |
| LocationSummary* CodeGenerator::CreateSystemArrayCopyLocationSummary( |
| HInvoke* invoke, int32_t length_threshold, size_t num_temps) { |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstantOrNull(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstantOrNull(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return nullptr; |
| } |
| |
| // The length must be >= 0. If a positive `length_threshold` is provided, lengths |
| // greater or equal to the threshold are also handled by the normal implementation. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstantOrNull(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0 || (length_threshold > 0 && len >= length_threshold)) { |
| // Just call as normal. |
| return nullptr; |
| } |
| } |
| |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| if (optimizations.GetDestinationIsSource()) { |
| if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) { |
| // We only support backward copying if source and destination are the same. |
| return nullptr; |
| } |
| } |
| |
| if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) { |
| // We currently don't intrinsify primitive copying. |
| return nullptr; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); |
| locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); |
| |
| if (num_temps != 0u) { |
| locations->AddRegisterTemps(num_temps); |
| } |
| return locations; |
| } |
| |
| void CodeGenerator::EmitJitRoots(uint8_t* code, |
| const uint8_t* roots_data, |
| /*out*/std::vector<Handle<mirror::Object>>* roots) { |
| code_generation_data_->EmitJitRoots(roots); |
| EmitJitRootPatches(code, roots_data); |
| } |
| |
| QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) { |
| switch (new_array->GetComponentSizeShift()) { |
| case 0: return kQuickAllocArrayResolved8; |
| case 1: return kQuickAllocArrayResolved16; |
| case 2: return kQuickAllocArrayResolved32; |
| case 3: return kQuickAllocArrayResolved64; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| ScaleFactor CodeGenerator::ScaleFactorForType(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| return TIMES_1; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| return TIMES_2; |
| case DataType::Type::kInt32: |
| case DataType::Type::kUint32: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kReference: |
| return TIMES_4; |
| case DataType::Type::kInt64: |
| case DataType::Type::kUint64: |
| case DataType::Type::kFloat64: |
| return TIMES_8; |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| } // namespace art |