blob: c734922268a6194595117e7a689fe796c678799f [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator.h"
#include "base/globals.h"
#ifdef ART_ENABLE_CODEGEN_arm
#include "code_generator_arm_vixl.h"
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
#include "code_generator_arm64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_riscv64
#include "code_generator_riscv64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86
#include "code_generator_x86.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
#include "code_generator_x86_64.h"
#endif
#include "art_method-inl.h"
#include "base/bit_utils.h"
#include "base/bit_utils_iterator.h"
#include "base/casts.h"
#include "base/leb128.h"
#include "class_linker.h"
#include "class_root-inl.h"
#include "code_generation_data.h"
#include "dex/bytecode_utils.h"
#include "dex/code_item_accessors-inl.h"
#include "graph_visualizer.h"
#include "gc/space/image_space.h"
#include "intern_table.h"
#include "intrinsics.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/object_reference.h"
#include "mirror/reference.h"
#include "mirror/string.h"
#include "parallel_move_resolver.h"
#include "scoped_thread_state_change-inl.h"
#include "ssa_liveness_analysis.h"
#include "oat/image.h"
#include "oat/stack_map.h"
#include "stack_map_stream.h"
#include "string_builder_append.h"
#include "thread-current-inl.h"
#include "utils/assembler.h"
namespace art HIDDEN {
// Return whether a location is consistent with a type.
static bool CheckType(DataType::Type type, Location location) {
if (location.IsFpuRegister()
|| (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
} else if (location.IsRegister() ||
(location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
} else if (location.IsRegisterPair()) {
return type == DataType::Type::kInt64;
} else if (location.IsFpuRegisterPair()) {
return type == DataType::Type::kFloat64;
} else if (location.IsStackSlot()) {
return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
|| (type == DataType::Type::kFloat32)
|| (type == DataType::Type::kReference);
} else if (location.IsDoubleStackSlot()) {
return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
} else if (location.IsConstant()) {
if (location.GetConstant()->IsIntConstant()) {
return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
} else if (location.GetConstant()->IsNullConstant()) {
return type == DataType::Type::kReference;
} else if (location.GetConstant()->IsLongConstant()) {
return type == DataType::Type::kInt64;
} else if (location.GetConstant()->IsFloatConstant()) {
return type == DataType::Type::kFloat32;
} else {
return location.GetConstant()->IsDoubleConstant()
&& (type == DataType::Type::kFloat64);
}
} else {
return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
}
}
// Check that a location summary is consistent with an instruction.
static bool CheckTypeConsistency(HInstruction* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (locations == nullptr) {
return true;
}
if (locations->Out().IsUnallocated()
&& (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
<< instruction->GetType()
<< " " << locations->InAt(0);
} else {
DCHECK(CheckType(instruction->GetType(), locations->Out()))
<< instruction->GetType()
<< " " << locations->Out();
}
HConstInputsRef inputs = instruction->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
<< inputs[i]->GetType() << " " << locations->InAt(i);
}
HEnvironment* environment = instruction->GetEnvironment();
for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
if (environment->GetInstructionAt(i) != nullptr) {
DataType::Type type = environment->GetInstructionAt(i)->GetType();
DCHECK(CheckType(type, environment->GetLocationAt(i)))
<< type << " " << environment->GetLocationAt(i);
} else {
DCHECK(environment->GetLocationAt(i).IsInvalid())
<< environment->GetLocationAt(i);
}
}
return true;
}
bool CodeGenerator::EmitReadBarrier() const {
return GetCompilerOptions().EmitReadBarrier();
}
bool CodeGenerator::EmitBakerReadBarrier() const {
return kUseBakerReadBarrier && GetCompilerOptions().EmitReadBarrier();
}
bool CodeGenerator::EmitNonBakerReadBarrier() const {
return !kUseBakerReadBarrier && GetCompilerOptions().EmitReadBarrier();
}
ReadBarrierOption CodeGenerator::GetCompilerReadBarrierOption() const {
return EmitReadBarrier() ? kWithReadBarrier : kWithoutReadBarrier;
}
bool CodeGenerator::ShouldCheckGCCard(DataType::Type type,
HInstruction* value,
WriteBarrierKind write_barrier_kind) const {
const CompilerOptions& options = GetCompilerOptions();
const bool result =
// Check the GC card in debug mode,
options.EmitRunTimeChecksInDebugMode() &&
// only for CC GC,
options.EmitReadBarrier() &&
// and if we eliminated the write barrier in WBE.
!StoreNeedsWriteBarrier(type, value, write_barrier_kind) &&
CodeGenerator::StoreNeedsWriteBarrier(type, value);
DCHECK_IMPLIES(result, write_barrier_kind == WriteBarrierKind::kDontEmit);
DCHECK_IMPLIES(
result, !(GetGraph()->IsCompilingBaseline() && compiler_options_.ProfileBranches()));
return result;
}
ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
DCHECK(code_generation_data_ != nullptr);
return code_generation_data_->GetScopedAllocator();
}
StackMapStream* CodeGenerator::GetStackMapStream() {
DCHECK(code_generation_data_ != nullptr);
return code_generation_data_->GetStackMapStream();
}
void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
Handle<mirror::String> string) {
DCHECK(code_generation_data_ != nullptr);
code_generation_data_->ReserveJitStringRoot(string_reference, string);
}
uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
DCHECK(code_generation_data_ != nullptr);
return code_generation_data_->GetJitStringRootIndex(string_reference);
}
void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
DCHECK(code_generation_data_ != nullptr);
code_generation_data_->ReserveJitClassRoot(type_reference, klass);
}
uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
DCHECK(code_generation_data_ != nullptr);
return code_generation_data_->GetJitClassRootIndex(type_reference);
}
void CodeGenerator::EmitJitRootPatches([[maybe_unused]] uint8_t* code,
[[maybe_unused]] const uint8_t* roots_data) {
DCHECK(code_generation_data_ != nullptr);
DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
}
uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
return array_length->IsStringLength()
? mirror::String::CountOffset().Uint32Value()
: mirror::Array::LengthOffset().Uint32Value();
}
uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
return array_get->IsStringCharAt()
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
}
bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
DCHECK_EQ((*block_order_)[current_block_index_], current);
return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
}
HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
HBasicBlock* block = (*block_order_)[i];
if (!block->IsSingleJump()) {
return block;
}
}
return nullptr;
}
HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
while (block->IsSingleJump()) {
block = block->GetSuccessors()[0];
}
return block;
}
class DisassemblyScope {
public:
DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
: codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
if (codegen_.GetDisassemblyInformation() != nullptr) {
start_offset_ = codegen_.GetAssembler().CodeSize();
}
}
~DisassemblyScope() {
// We avoid building this data when we know it will not be used.
if (codegen_.GetDisassemblyInformation() != nullptr) {
codegen_.GetDisassemblyInformation()->AddInstructionInterval(
instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
}
}
private:
const CodeGenerator& codegen_;
HInstruction* instruction_;
size_t start_offset_;
};
void CodeGenerator::GenerateSlowPaths() {
DCHECK(code_generation_data_ != nullptr);
size_t code_start = 0;
for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
SlowPathCode* slow_path = slow_path_ptr.get();
current_slow_path_ = slow_path;
if (disasm_info_ != nullptr) {
code_start = GetAssembler()->CodeSize();
}
// Record the dex pc at start of slow path (required for java line number mapping).
MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
slow_path->EmitNativeCode(this);
if (disasm_info_ != nullptr) {
disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
}
}
current_slow_path_ = nullptr;
}
void CodeGenerator::InitializeCodeGenerationData() {
DCHECK(code_generation_data_ == nullptr);
code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
}
void CodeGenerator::Compile() {
InitializeCodeGenerationData();
// The register allocator already called `InitializeCodeGeneration`,
// where the frame size has been computed.
DCHECK(block_order_ != nullptr);
Initialize();
HGraphVisitor* instruction_visitor = GetInstructionVisitor();
DCHECK_EQ(current_block_index_, 0u);
GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
core_spill_mask_,
fpu_spill_mask_,
GetGraph()->GetNumberOfVRegs(),
GetGraph()->IsCompilingBaseline(),
GetGraph()->IsDebuggable(),
GetGraph()->HasShouldDeoptimizeFlag());
size_t frame_start = GetAssembler()->CodeSize();
GenerateFrameEntry();
DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
if (disasm_info_ != nullptr) {
disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
}
for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
HBasicBlock* block = (*block_order_)[current_block_index_];
// Don't generate code for an empty block. Its predecessors will branch to its successor
// directly. Also, the label of that block will not be emitted, so this helps catch
// errors where we reference that label.
if (block->IsSingleJump()) continue;
Bind(block);
// This ensures that we have correct native line mapping for all native instructions.
// It is necessary to make stepping over a statement work. Otherwise, any initial
// instructions (e.g. moves) would be assumed to be the start of next statement.
MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasEnvironment()) {
// Catch StackMaps are dealt with later on in `RecordCatchBlockInfo`.
if (block->IsCatchBlock() && block->GetFirstInstruction() == current) {
DCHECK(current->IsNop());
continue;
}
// Create stackmap for HNop or any instruction which calls native code.
// Note that we need correct mapping for the native PC of the call instruction,
// so the runtime's stackmap is not sufficient since it is at PC after the call.
MaybeRecordNativeDebugInfo(current, block->GetDexPc());
}
DisassemblyScope disassembly_scope(current, *this);
DCHECK(CheckTypeConsistency(current));
current->Accept(instruction_visitor);
}
}
GenerateSlowPaths();
// Emit catch stack maps at the end of the stack map stream as expected by the
// runtime exception handler.
if (graph_->HasTryCatch()) {
RecordCatchBlockInfo();
}
// Finalize instructions in assember;
Finalize();
GetStackMapStream()->EndMethod(GetAssembler()->CodeSize());
}
void CodeGenerator::Finalize() {
GetAssembler()->FinalizeCode();
}
void CodeGenerator::EmitLinkerPatches(
[[maybe_unused]] ArenaVector<linker::LinkerPatch>* linker_patches) {
// No linker patches by default.
}
bool CodeGenerator::NeedsThunkCode([[maybe_unused]] const linker::LinkerPatch& patch) const {
// Code generators that create patches requiring thunk compilation should override this function.
return false;
}
void CodeGenerator::EmitThunkCode([[maybe_unused]] const linker::LinkerPatch& patch,
[[maybe_unused]] /*out*/ ArenaVector<uint8_t>* code,
[[maybe_unused]] /*out*/ std::string* debug_name) {
// Code generators that create patches requiring thunk compilation should override this function.
LOG(FATAL) << "Unexpected call to EmitThunkCode().";
}
void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
size_t maximum_safepoint_spill_size,
size_t number_of_out_slots,
const ArenaVector<HBasicBlock*>& block_order) {
block_order_ = &block_order;
DCHECK(!block_order.empty());
DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
ComputeSpillMask();
first_register_slot_in_slow_path_ = RoundUp(
(number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
if (number_of_spill_slots == 0
&& !HasAllocatedCalleeSaveRegisters()
&& IsLeafMethod()
&& !RequiresCurrentMethod()) {
DCHECK_EQ(maximum_safepoint_spill_size, 0u);
SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
} else {
SetFrameSize(RoundUp(
first_register_slot_in_slow_path_
+ maximum_safepoint_spill_size
+ (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
+ FrameEntrySpillSize(),
kStackAlignment));
}
}
void CodeGenerator::CreateCommonInvokeLocationSummary(
HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnMainOnly);
for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
HInstruction* input = invoke->InputAt(i);
locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
}
locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
if (invoke->IsInvokeStaticOrDirect()) {
HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
MethodLoadKind method_load_kind = call->GetMethodLoadKind();
CodePtrLocation code_ptr_location = call->GetCodePtrLocation();
if (code_ptr_location == CodePtrLocation::kCallCriticalNative) {
locations->AddTemp(Location::RequiresRegister()); // For target method.
}
if (code_ptr_location == CodePtrLocation::kCallCriticalNative ||
method_load_kind == MethodLoadKind::kRecursive) {
// For `kCallCriticalNative` we need the current method as the hidden argument
// if we reach the dlsym lookup stub for @CriticalNative.
locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation());
} else {
locations->AddTemp(visitor->GetMethodLocation());
if (method_load_kind == MethodLoadKind::kRuntimeCall) {
locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister());
}
}
} else if (!invoke->IsInvokePolymorphic()) {
locations->AddTemp(visitor->GetMethodLocation());
}
}
void CodeGenerator::PrepareCriticalNativeArgumentMoves(
HInvokeStaticOrDirect* invoke,
/*inout*/InvokeDexCallingConventionVisitor* visitor,
/*out*/HParallelMove* parallel_move) {
LocationSummary* locations = invoke->GetLocations();
for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) {
Location in_location = locations->InAt(i);
DataType::Type type = invoke->InputAt(i)->GetType();
DCHECK_NE(type, DataType::Type::kReference);
Location out_location = visitor->GetNextLocation(type);
if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) {
// Stack arguments will need to be moved after adjusting the SP.
parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr);
} else {
// Register arguments should have been assigned their final locations for register allocation.
DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location;
}
}
}
void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size,
/*inout*/HParallelMove* parallel_move) {
DCHECK_NE(out_frame_size, 0u);
IncreaseFrame(out_frame_size);
// Adjust the source stack offsets by `out_frame_size`, i.e. the additional
// frame size needed for outgoing stack arguments.
for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) {
MoveOperands* operands = parallel_move->MoveOperandsAt(i);
Location source = operands->GetSource();
if (operands->GetSource().IsStackSlot()) {
operands->SetSource(Location::StackSlot(source.GetStackIndex() + out_frame_size));
} else if (operands->GetSource().IsDoubleStackSlot()) {
operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() + out_frame_size));
}
}
// Emit the moves.
GetMoveResolver()->EmitNativeCode(parallel_move);
}
const char* CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke,
uint32_t* shorty_len) {
ScopedObjectAccess soa(Thread::Current());
DCHECK(invoke->GetResolvedMethod()->IsCriticalNative());
return invoke->GetResolvedMethod()->GetShorty(shorty_len);
}
void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
MethodReference method_reference(invoke->GetMethodReference());
MoveConstant(temp, method_reference.index);
// The access check is unnecessary but we do not want to introduce
// extra entrypoints for the codegens that do not support some
// invoke type and fall back to the runtime call.
// Initialize to anything to silent compiler warnings.
QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
switch (invoke->GetInvokeType()) {
case kStatic:
entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
break;
case kDirect:
entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
break;
case kSuper:
entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
break;
case kVirtual:
case kInterface:
case kPolymorphic:
case kCustom:
LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
UNREACHABLE();
}
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
}
void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
MethodReference method_reference(invoke->GetMethodReference());
MoveConstant(invoke->GetLocations()->GetTemp(0), method_reference.index);
// Initialize to anything to silent compiler warnings.
QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
switch (invoke->GetInvokeType()) {
case kStatic:
entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
break;
case kDirect:
entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
break;
case kVirtual:
entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
break;
case kSuper:
entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
break;
case kInterface:
entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
break;
case kPolymorphic:
case kCustom:
LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
UNREACHABLE();
}
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
}
void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke,
SlowPathCode* slow_path) {
// invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
// method index) since it requires multiple info from the instruction (registers A, B, H). Not
// using the reservation has no effect on the registers used in the runtime call.
QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
}
void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
}
void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction,
Location out) {
ArenaAllocator* allocator = GetGraph()->GetAllocator();
LocationSummary* locations =
new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
locations->SetOut(out);
instruction->GetLocations()->SetInAt(instruction->FormatIndex(),
Location::ConstantLocation(instruction->GetFormat()));
uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue());
uint32_t f = format;
PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
size_t stack_offset = static_cast<size_t>(pointer_size); // Start after the ArtMethod*.
for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) {
StringBuilderAppend::Argument arg_type =
static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask);
switch (arg_type) {
case StringBuilderAppend::Argument::kStringBuilder:
case StringBuilderAppend::Argument::kString:
case StringBuilderAppend::Argument::kCharArray:
static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check.");
FALLTHROUGH_INTENDED;
case StringBuilderAppend::Argument::kBoolean:
case StringBuilderAppend::Argument::kChar:
case StringBuilderAppend::Argument::kInt:
case StringBuilderAppend::Argument::kFloat:
locations->SetInAt(i, Location::StackSlot(stack_offset));
break;
case StringBuilderAppend::Argument::kLong:
case StringBuilderAppend::Argument::kDouble:
stack_offset = RoundUp(stack_offset, sizeof(uint64_t));
locations->SetInAt(i, Location::DoubleStackSlot(stack_offset));
// Skip the low word, let the common code skip the high word.
stack_offset += sizeof(uint32_t);
break;
default:
LOG(FATAL) << "Unexpected arg format: 0x" << std::hex
<< (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format;
UNREACHABLE();
}
f >>= StringBuilderAppend::kBitsPerArg;
stack_offset += sizeof(uint32_t);
}
DCHECK_EQ(f, 0u);
size_t param_size = stack_offset - static_cast<size_t>(pointer_size);
DCHECK_ALIGNED(param_size, kVRegSize);
size_t num_vregs = param_size / kVRegSize;
graph_->UpdateMaximumNumberOfOutVRegs(num_vregs);
}
void CodeGenerator::CreateUnresolvedFieldLocationSummary(
HInstruction* field_access,
DataType::Type field_type,
const FieldAccessCallingConvention& calling_convention) {
bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedInstanceFieldSet();
bool is_get = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedStaticFieldGet();
ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations =
new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
locations->AddTemp(calling_convention.GetFieldIndexLocation());
if (is_instance) {
// Add the `this` object for instance field accesses.
locations->SetInAt(0, calling_convention.GetObjectLocation());
}
// Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
// regardless of the type. Because of that we forced to special case
// the access to floating point values.
if (is_get) {
if (DataType::IsFloatingPointType(field_type)) {
// The return value will be stored in regular registers while register
// allocator expects it in a floating point register.
// Note We don't need to request additional temps because the return
// register(s) are already blocked due the call and they may overlap with
// the input or field index.
// The transfer between the two will be done at codegen level.
locations->SetOut(calling_convention.GetFpuLocation(field_type));
} else {
locations->SetOut(calling_convention.GetReturnLocation(field_type));
}
} else {
size_t set_index = is_instance ? 1 : 0;
if (DataType::IsFloatingPointType(field_type)) {
// The set value comes from a float location while the calling convention
// expects it in a regular register location. Allocate a temp for it and
// make the transfer at codegen.
AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
} else {
locations->SetInAt(set_index,
calling_convention.GetSetValueLocation(field_type, is_instance));
}
}
}
void CodeGenerator::GenerateUnresolvedFieldAccess(
HInstruction* field_access,
DataType::Type field_type,
uint32_t field_index,
uint32_t dex_pc,
const FieldAccessCallingConvention& calling_convention) {
LocationSummary* locations = field_access->GetLocations();
MoveConstant(locations->GetTemp(0), field_index);
bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedInstanceFieldSet();
bool is_get = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedStaticFieldGet();
if (!is_get && DataType::IsFloatingPointType(field_type)) {
// Copy the float value to be set into the calling convention register.
// Note that using directly the temp location is problematic as we don't
// support temp register pairs. To avoid boilerplate conversion code, use
// the location from the calling convention.
MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
locations->InAt(is_instance ? 1 : 0),
(DataType::Is64BitType(field_type) ? DataType::Type::kInt64
: DataType::Type::kInt32));
}
QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
switch (field_type) {
case DataType::Type::kBool:
entrypoint = is_instance
? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
: (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
break;
case DataType::Type::kInt8:
entrypoint = is_instance
? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
: (is_get ? kQuickGetByteStatic : kQuickSet8Static);
break;
case DataType::Type::kInt16:
entrypoint = is_instance
? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
: (is_get ? kQuickGetShortStatic : kQuickSet16Static);
break;
case DataType::Type::kUint16:
entrypoint = is_instance
? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
: (is_get ? kQuickGetCharStatic : kQuickSet16Static);
break;
case DataType::Type::kInt32:
case DataType::Type::kFloat32:
entrypoint = is_instance
? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
: (is_get ? kQuickGet32Static : kQuickSet32Static);
break;
case DataType::Type::kReference:
entrypoint = is_instance
? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
: (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
break;
case DataType::Type::kInt64:
case DataType::Type::kFloat64:
entrypoint = is_instance
? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
: (is_get ? kQuickGet64Static : kQuickSet64Static);
break;
default:
LOG(FATAL) << "Invalid type " << field_type;
}
InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
if (is_get && DataType::IsFloatingPointType(field_type)) {
MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
}
}
void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
Location runtime_type_index_location,
Location runtime_return_location) {
DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
DCHECK_EQ(cls->InputCount(), 1u);
LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
cls, LocationSummary::kCallOnMainOnly);
locations->SetInAt(0, Location::NoLocation());
locations->AddTemp(runtime_type_index_location);
locations->SetOut(runtime_return_location);
}
void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
DCHECK(!cls->MustGenerateClinitCheck());
LocationSummary* locations = cls->GetLocations();
MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
if (cls->NeedsAccessCheck()) {
CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
} else {
CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
}
}
void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
HLoadMethodHandle* method_handle,
Location runtime_proto_index_location,
Location runtime_return_location) {
DCHECK_EQ(method_handle->InputCount(), 1u);
LocationSummary* locations =
new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
method_handle, LocationSummary::kCallOnMainOnly);
locations->SetInAt(0, Location::NoLocation());
locations->AddTemp(runtime_proto_index_location);
locations->SetOut(runtime_return_location);
}
void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
LocationSummary* locations = method_handle->GetLocations();
MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
}
void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
HLoadMethodType* method_type,
Location runtime_proto_index_location,
Location runtime_return_location) {
DCHECK_EQ(method_type->InputCount(), 1u);
LocationSummary* locations =
new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
method_type, LocationSummary::kCallOnMainOnly);
locations->SetInAt(0, Location::NoLocation());
locations->AddTemp(runtime_proto_index_location);
locations->SetOut(runtime_return_location);
}
void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
LocationSummary* locations = method_type->GetLocations();
MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
}
static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
Runtime* runtime = Runtime::Current();
const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
runtime->GetHeap()->GetBootImageSpaces();
// Check that the `object` is in the expected section of one of the boot image files.
DCHECK(std::any_of(boot_image_spaces.begin(),
boot_image_spaces.end(),
[object, section](gc::space::ImageSpace* space) {
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
return space->GetImageHeader().GetImageSection(section).Contains(offset);
}));
uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
return dchecked_integral_cast<uint32_t>(offset);
}
uint32_t CodeGenerator::GetBootImageOffset(ObjPtr<mirror::Object> object) {
return GetBootImageOffsetImpl(object.Ptr(), ImageHeader::kSectionObjects);
}
// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
DCHECK(klass != nullptr);
return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
}
// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
ObjPtr<mirror::String> string = load_string->GetString().Get();
DCHECK(string != nullptr);
return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
}
uint32_t CodeGenerator::GetBootImageOffset(HInvoke* invoke) {
ArtMethod* method = invoke->GetResolvedMethod();
DCHECK(method != nullptr);
return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
}
// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image objects are non-moveable.
uint32_t CodeGenerator::GetBootImageOffset(ClassRoot class_root) NO_THREAD_SAFETY_ANALYSIS {
ObjPtr<mirror::Class> klass = GetClassRoot<kWithoutReadBarrier>(class_root);
return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
}
// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
uint32_t CodeGenerator::GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke)
NO_THREAD_SAFETY_ANALYSIS {
DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
ArtMethod* method = invoke->GetResolvedMethod();
DCHECK(method != nullptr);
ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass<kWithoutReadBarrier>();
return GetBootImageOffsetImpl(declaring_class.Ptr(), ImageHeader::kSectionObjects);
}
void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
// The DCHECKS below check that a register is not specified twice in
// the summary. The out location can overlap with an input, so we need
// to special case it.
if (location.IsRegister()) {
DCHECK(is_out || !blocked_core_registers_[location.reg()]);
blocked_core_registers_[location.reg()] = true;
} else if (location.IsFpuRegister()) {
DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
blocked_fpu_registers_[location.reg()] = true;
} else if (location.IsFpuRegisterPair()) {
DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
} else if (location.IsRegisterPair()) {
DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
}
}
void CodeGenerator::AllocateLocations(HInstruction* instruction) {
for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
env->AllocateLocations();
}
instruction->Accept(GetLocationBuilder());
DCHECK(CheckTypeConsistency(instruction));
LocationSummary* locations = instruction->GetLocations();
if (!instruction->IsSuspendCheckEntry()) {
if (locations != nullptr) {
if (locations->CanCall()) {
MarkNotLeaf();
if (locations->NeedsSuspendCheckEntry()) {
MarkNeedsSuspendCheckEntry();
}
} else if (locations->Intrinsified() &&
instruction->IsInvokeStaticOrDirect() &&
!instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
// A static method call that has been fully intrinsified, and cannot call on the slow
// path or refer to the current method directly, no longer needs current method.
return;
}
}
if (instruction->NeedsCurrentMethod()) {
SetRequiresCurrentMethod();
}
}
}
std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats) {
ArenaAllocator* allocator = graph->GetAllocator();
switch (compiler_options.GetInstructionSet()) {
#ifdef ART_ENABLE_CODEGEN_arm
case InstructionSet::kArm:
case InstructionSet::kThumb2: {
return std::unique_ptr<CodeGenerator>(
new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
case InstructionSet::kArm64: {
return std::unique_ptr<CodeGenerator>(
new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_riscv64
case InstructionSet::kRiscv64: {
return std::unique_ptr<CodeGenerator>(
new (allocator) riscv64::CodeGeneratorRISCV64(graph, compiler_options, stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case InstructionSet::kX86: {
return std::unique_ptr<CodeGenerator>(
new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
case InstructionSet::kX86_64: {
return std::unique_ptr<CodeGenerator>(
new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
}
#endif
default:
UNUSED(allocator);
UNUSED(graph);
UNUSED(stats);
return nullptr;
}
}
CodeGenerator::CodeGenerator(HGraph* graph,
size_t number_of_core_registers,
size_t number_of_fpu_registers,
size_t number_of_register_pairs,
uint32_t core_callee_save_mask,
uint32_t fpu_callee_save_mask,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats,
const art::ArrayRef<const bool>& unimplemented_intrinsics)
: frame_size_(0),
core_spill_mask_(0),
fpu_spill_mask_(0),
first_register_slot_in_slow_path_(0),
allocated_registers_(RegisterSet::Empty()),
blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
kArenaAllocCodeGenerator)),
blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
kArenaAllocCodeGenerator)),
number_of_core_registers_(number_of_core_registers),
number_of_fpu_registers_(number_of_fpu_registers),
number_of_register_pairs_(number_of_register_pairs),
core_callee_save_mask_(core_callee_save_mask),
fpu_callee_save_mask_(fpu_callee_save_mask),
block_order_(nullptr),
disasm_info_(nullptr),
stats_(stats),
graph_(graph),
compiler_options_(compiler_options),
current_slow_path_(nullptr),
current_block_index_(0),
is_leaf_(true),
needs_suspend_check_entry_(false),
requires_current_method_(false),
code_generation_data_(),
unimplemented_intrinsics_(unimplemented_intrinsics) {
if (GetGraph()->IsCompilingOsr()) {
// Make OSR methods have all registers spilled, this simplifies the logic of
// jumping to the compiled code directly.
for (size_t i = 0; i < number_of_core_registers_; ++i) {
if (IsCoreCalleeSaveRegister(i)) {
AddAllocatedRegister(Location::RegisterLocation(i));
}
}
for (size_t i = 0; i < number_of_fpu_registers_; ++i) {
if (IsFloatingPointCalleeSaveRegister(i)) {
AddAllocatedRegister(Location::FpuRegisterLocation(i));
}
}
}
if (GetGraph()->IsCompilingBaseline()) {
// We need the current method in case we reach the hotness threshold. As a
// side effect this makes the frame non-empty.
SetRequiresCurrentMethod();
}
}
CodeGenerator::~CodeGenerator() {}
size_t CodeGenerator::GetNumberOfJitRoots() const {
DCHECK(code_generation_data_ != nullptr);
return code_generation_data_->GetNumberOfJitRoots();
}
static void CheckCovers(uint32_t dex_pc,
const HGraph& graph,
const CodeInfo& code_info,
const ArenaVector<HSuspendCheck*>& loop_headers,
ArenaVector<size_t>* covered) {
for (size_t i = 0; i < loop_headers.size(); ++i) {
if (loop_headers[i]->GetDexPc() == dex_pc) {
if (graph.IsCompilingOsr()) {
DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
}
++(*covered)[i];
}
}
}
// Debug helper to ensure loop entries in compiled code are matched by
// dex branch instructions.
static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
const CodeInfo& code_info,
const dex::CodeItem& code_item) {
if (graph.HasTryCatch()) {
// One can write loops through try/catch, which we do not support for OSR anyway.
return;
}
ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
for (HBasicBlock* block : graph.GetReversePostOrder()) {
if (block->IsLoopHeader()) {
HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
if (suspend_check != nullptr && !suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
loop_headers.push_back(suspend_check);
}
}
}
ArenaVector<size_t> covered(
loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
&code_item)) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
if (instruction.IsBranch()) {
uint32_t target = dex_pc + instruction.GetTargetOffset();
CheckCovers(target, graph, code_info, loop_headers, &covered);
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
uint16_t num_entries = table.GetNumEntries();
size_t offset = table.GetFirstValueIndex();
// Use a larger loop counter type to avoid overflow issues.
for (size_t i = 0; i < num_entries; ++i) {
// The target of the case.
uint32_t target = dex_pc + table.GetEntryAt(i + offset);
CheckCovers(target, graph, code_info, loop_headers, &covered);
}
}
}
for (size_t i = 0; i < covered.size(); ++i) {
DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
}
}
ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
if (kIsDebugBuild && code_item != nullptr) {
CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
}
return stack_map;
}
// Returns whether stackmap dex register info is needed for the instruction.
//
// The following cases mandate having a dex register map:
// * Deoptimization
// when we need to obtain the values to restore actual vregisters for interpreter.
// * Debuggability
// when we want to observe the values / asynchronously deoptimize.
// * Monitor operations
// to allow dumping in a stack trace locked dex registers for non-debuggable code.
// * On-stack-replacement (OSR)
// when entering compiled for OSR code from the interpreter we need to initialize the compiled
// code values with the values from the vregisters.
// * Method local catch blocks
// a catch block must see the environment of the instruction from the same method that can
// throw to this block.
static bool NeedsVregInfo(HInstruction* instruction, bool osr) {
HGraph* graph = instruction->GetBlock()->GetGraph();
return instruction->IsDeoptimize() ||
graph->IsDebuggable() ||
graph->HasMonitorOperations() ||
osr ||
instruction->CanThrowIntoCatchBlock();
}
void CodeGenerator::RecordPcInfo(HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path,
bool native_debug_info) {
RecordPcInfo(instruction, dex_pc, GetAssembler()->CodePosition(), slow_path, native_debug_info);
}
void CodeGenerator::RecordPcInfo(HInstruction* instruction,
uint32_t dex_pc,
uint32_t native_pc,
SlowPathCode* slow_path,
bool native_debug_info) {
if (instruction != nullptr) {
// The code generated for some type conversions
// may call the runtime, thus normally requiring a subsequent
// call to this method. However, the method verifier does not
// produce PC information for certain instructions, which are
// considered "atomic" (they cannot join a GC).
// Therefore we do not currently record PC information for such
// instructions. As this may change later, we added this special
// case so that code generators may nevertheless call
// CodeGenerator::RecordPcInfo without triggering an error in
// CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
// thereafter.
if (instruction->IsTypeConversion()) {
return;
}
if (instruction->IsRem()) {
DataType::Type type = instruction->AsRem()->GetResultType();
if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
return;
}
}
}
StackMapStream* stack_map_stream = GetStackMapStream();
if (instruction == nullptr) {
// For stack overflow checks and native-debug-info entries without dex register
// mapping (i.e. start of basic block or start of slow path).
stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
stack_map_stream->EndStackMapEntry();
return;
}
LocationSummary* locations = instruction->GetLocations();
uint32_t register_mask = locations->GetRegisterMask();
DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
if (locations->OnlyCallsOnSlowPath()) {
// In case of slow path, we currently set the location of caller-save registers
// to register (instead of their stack location when pushed before the slow-path
// call). Therefore register_mask contains both callee-save and caller-save
// registers that hold objects. We must remove the spilled caller-save from the
// mask, since they will be overwritten by the callee.
uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
register_mask &= ~spills;
} else {
// The register mask must be a subset of callee-save registers.
DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
}
uint32_t outer_dex_pc = dex_pc;
uint32_t inlining_depth = 0;
HEnvironment* const environment = instruction->GetEnvironment();
if (environment != nullptr) {
HEnvironment* outer_environment = environment;
while (outer_environment->GetParent() != nullptr) {
outer_environment = outer_environment->GetParent();
++inlining_depth;
}
outer_dex_pc = outer_environment->GetDexPc();
}
HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
bool osr =
instruction->IsSuspendCheck() &&
(info != nullptr) &&
graph_->IsCompilingOsr() &&
(inlining_depth == 0);
StackMap::Kind kind = native_debug_info
? StackMap::Kind::Debug
: (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
bool needs_vreg_info = NeedsVregInfo(instruction, osr);
stack_map_stream->BeginStackMapEntry(outer_dex_pc,
native_pc,
register_mask,
locations->GetStackMask(),
kind,
needs_vreg_info);
EmitEnvironment(environment, slow_path, needs_vreg_info);
stack_map_stream->EndStackMapEntry();
if (osr) {
DCHECK_EQ(info->GetSuspendCheck(), instruction);
DCHECK(info->IsIrreducible());
DCHECK(environment != nullptr);
if (kIsDebugBuild) {
for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
HInstruction* in_environment = environment->GetInstructionAt(i);
if (in_environment != nullptr) {
DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
Location location = environment->GetLocationAt(i);
DCHECK(location.IsStackSlot() ||
location.IsDoubleStackSlot() ||
location.IsConstant() ||
location.IsInvalid());
if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
}
}
}
}
}
}
bool CodeGenerator::HasStackMapAtCurrentPc() {
uint32_t pc = GetAssembler()->CodeSize();
StackMapStream* stack_map_stream = GetStackMapStream();
size_t count = stack_map_stream->GetNumberOfStackMaps();
if (count == 0) {
return false;
}
return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
}
void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
if (HasStackMapAtCurrentPc()) {
// Ensure that we do not collide with the stack map of the previous instruction.
GenerateNop();
}
RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
}
}
void CodeGenerator::RecordCatchBlockInfo() {
StackMapStream* stack_map_stream = GetStackMapStream();
for (HBasicBlock* block : *block_order_) {
if (!block->IsCatchBlock()) {
continue;
}
// Get the outer dex_pc. We save the full environment list for DCHECK purposes in kIsDebugBuild.
std::vector<uint32_t> dex_pc_list_for_verification;
if (kIsDebugBuild) {
dex_pc_list_for_verification.push_back(block->GetDexPc());
}
DCHECK(block->GetFirstInstruction()->IsNop());
DCHECK(block->GetFirstInstruction()->AsNop()->NeedsEnvironment());
HEnvironment* const environment = block->GetFirstInstruction()->GetEnvironment();
DCHECK(environment != nullptr);
HEnvironment* outer_environment = environment;
while (outer_environment->GetParent() != nullptr) {
outer_environment = outer_environment->GetParent();
if (kIsDebugBuild) {
dex_pc_list_for_verification.push_back(outer_environment->GetDexPc());
}
}
if (kIsDebugBuild) {
// dex_pc_list_for_verification is set from innnermost to outermost. Let's reverse it
// since we are expected to pass from outermost to innermost.
std::reverse(dex_pc_list_for_verification.begin(), dex_pc_list_for_verification.end());
DCHECK_EQ(dex_pc_list_for_verification.front(), outer_environment->GetDexPc());
}
uint32_t native_pc = GetAddressOf(block);
stack_map_stream->BeginStackMapEntry(outer_environment->GetDexPc(),
native_pc,
/* register_mask= */ 0,
/* sp_mask= */ nullptr,
StackMap::Kind::Catch,
/* needs_vreg_info= */ true,
dex_pc_list_for_verification);
EmitEnvironment(environment,
/* slow_path= */ nullptr,
/* needs_vreg_info= */ true,
/* is_for_catch_handler= */ true);
stack_map_stream->EndStackMapEntry();
}
}
void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
DCHECK(code_generation_data_ != nullptr);
code_generation_data_->AddSlowPath(slow_path);
}
void CodeGenerator::EmitVRegInfo(HEnvironment* environment,
SlowPathCode* slow_path,
bool is_for_catch_handler) {
StackMapStream* stack_map_stream = GetStackMapStream();
// Walk over the environment, and record the location of dex registers.
for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
HInstruction* current = environment->GetInstructionAt(i);
if (current == nullptr) {
stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
continue;
}
using Kind = DexRegisterLocation::Kind;
Location location = environment->GetLocationAt(i);
switch (location.GetKind()) {
case Location::kConstant: {
DCHECK_EQ(current, location.GetConstant());
if (current->IsLongConstant()) {
int64_t value = current->AsLongConstant()->GetValue();
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
++i;
DCHECK_LT(i, environment_size);
} else if (current->IsDoubleConstant()) {
int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
++i;
DCHECK_LT(i, environment_size);
} else if (current->IsIntConstant()) {
int32_t value = current->AsIntConstant()->GetValue();
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
} else if (current->IsNullConstant()) {
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
} else {
DCHECK(current->IsFloatConstant()) << current->DebugName();
int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
}
break;
}
case Location::kStackSlot: {
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
break;
}
case Location::kDoubleStackSlot: {
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
stack_map_stream->AddDexRegisterEntry(
Kind::kInStack, location.GetHighStackIndex(kVRegSize));
++i;
DCHECK_LT(i, environment_size);
break;
}
case Location::kRegister : {
DCHECK(!is_for_catch_handler);
int id = location.reg();
if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
if (current->GetType() == DataType::Type::kInt64) {
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
++i;
DCHECK_LT(i, environment_size);
}
} else {
stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
if (current->GetType() == DataType::Type::kInt64) {
stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
++i;
DCHECK_LT(i, environment_size);
}
}
break;
}
case Location::kFpuRegister : {
DCHECK(!is_for_catch_handler);
int id = location.reg();
if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
if (current->GetType() == DataType::Type::kFloat64) {
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
++i;
DCHECK_LT(i, environment_size);
}
} else {
stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
if (current->GetType() == DataType::Type::kFloat64) {
stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
++i;
DCHECK_LT(i, environment_size);
}
}
break;
}
case Location::kFpuRegisterPair : {
DCHECK(!is_for_catch_handler);
int low = location.low();
int high = location.high();
if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
} else {
stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
}
if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
++i;
} else {
stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
++i;
}
DCHECK_LT(i, environment_size);
break;
}
case Location::kRegisterPair : {
DCHECK(!is_for_catch_handler);
int low = location.low();
int high = location.high();
if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
} else {
stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
}
if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
} else {
stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
}
++i;
DCHECK_LT(i, environment_size);
break;
}
case Location::kInvalid: {
stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
break;
}
default:
LOG(FATAL) << "Unexpected kind " << location.GetKind();
}
}
}
void CodeGenerator::EmitVRegInfoOnlyCatchPhis(HEnvironment* environment) {
StackMapStream* stack_map_stream = GetStackMapStream();
DCHECK(environment->GetHolder()->GetBlock()->IsCatchBlock());
DCHECK_EQ(environment->GetHolder()->GetBlock()->GetFirstInstruction(), environment->GetHolder());
HInstruction* current_phi = environment->GetHolder()->GetBlock()->GetFirstPhi();
for (size_t vreg = 0; vreg < environment->Size(); ++vreg) {
while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
HInstruction* next_phi = current_phi->GetNext();
DCHECK(next_phi == nullptr ||
current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
<< "Phis need to be sorted by vreg number to keep this a linear-time loop.";
current_phi = next_phi;
}
if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
} else {
Location location = current_phi->GetLocations()->Out();
switch (location.GetKind()) {
case Location::kStackSlot: {
stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
location.GetStackIndex());
break;
}
case Location::kDoubleStackSlot: {
stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
location.GetStackIndex());
stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
location.GetHighStackIndex(kVRegSize));
++vreg;
DCHECK_LT(vreg, environment->Size());
break;
}
default: {
LOG(FATAL) << "All catch phis must be allocated to a stack slot. Unexpected kind "
<< location.GetKind();
UNREACHABLE();
}
}
}
}
}
void CodeGenerator::EmitEnvironment(HEnvironment* environment,
SlowPathCode* slow_path,
bool needs_vreg_info,
bool is_for_catch_handler,
bool innermost_environment) {
if (environment == nullptr) return;
StackMapStream* stack_map_stream = GetStackMapStream();
bool emit_inline_info = environment->GetParent() != nullptr;
if (emit_inline_info) {
// We emit the parent environment first.
EmitEnvironment(environment->GetParent(),
slow_path,
needs_vreg_info,
is_for_catch_handler,
/* innermost_environment= */ false);
stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
environment->GetDexPc(),
needs_vreg_info ? environment->Size() : 0,
&graph_->GetDexFile(),
this);
}
// If a dex register map is not required we just won't emit it.
if (needs_vreg_info) {
if (innermost_environment && is_for_catch_handler) {
EmitVRegInfoOnlyCatchPhis(environment);
} else {
EmitVRegInfo(environment, slow_path, is_for_catch_handler);
}
}
if (emit_inline_info) {
stack_map_stream->EndInlineInfoEntry();
}
}
bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
return null_check->IsEmittedAtUseSite();
}
void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
HNullCheck* null_check = instr->GetImplicitNullCheck();
if (null_check != nullptr) {
RecordPcInfo(null_check, null_check->GetDexPc(), GetAssembler()->CodePosition());
}
}
LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
RegisterSet caller_saves) {
// Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
// HSuspendCheck from entry block). However, it will still get a valid stack frame
// because the HNullCheck needs an environment.
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
// When throwing from a try block, we may need to retrieve dalvik registers from
// physical registers and we also need to set up stack mask for GC. This is
// implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
if (can_throw_into_catch_block) {
call_kind = LocationSummary::kCallOnSlowPath;
}
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
}
DCHECK(!instruction->HasUses());
return locations;
}
void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
if (compiler_options_.GetImplicitNullChecks()) {
MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
GenerateImplicitNullCheck(instruction);
} else {
MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
GenerateExplicitNullCheck(instruction);
}
}
void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
HParallelMove* spills) const {
LocationSummary* locations = suspend_check->GetLocations();
HBasicBlock* block = suspend_check->GetBlock();
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
DCHECK(block->IsLoopHeader());
DCHECK(block->GetFirstInstruction() == spills);
for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
Location dest = spills->MoveOperandsAt(i)->GetDestination();
// All parallel moves in loop headers are spills.
DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
// Clear the stack bit marking a reference. Do not bother to check if the spill is
// actually a reference spill, clearing bits that are already zero is harmless.
locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
}
}
void CodeGenerator::EmitParallelMoves(Location from1,
Location to1,
DataType::Type type1,
Location from2,
Location to2,
DataType::Type type2) {
HParallelMove parallel_move(GetGraph()->GetAllocator());
parallel_move.AddMove(from1, to1, type1, nullptr);
parallel_move.AddMove(from2, to2, type2, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
}
bool CodeGenerator::StoreNeedsWriteBarrier(DataType::Type type,
HInstruction* value,
WriteBarrierKind write_barrier_kind) const {
// Check that null value is not represented as an integer constant.
DCHECK_IMPLIES(type == DataType::Type::kReference, !value->IsIntConstant());
// Branch profiling currently doesn't support running optimizations.
return (GetGraph()->IsCompilingBaseline() && compiler_options_.ProfileBranches())
? CodeGenerator::StoreNeedsWriteBarrier(type, value)
: write_barrier_kind != WriteBarrierKind::kDontEmit;
}
void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
SlowPathCode* slow_path) {
// Ensure that the call kind indication given to the register allocator is
// coherent with the runtime call generated.
if (slow_path == nullptr) {
DCHECK(instruction->GetLocations()->WillCall())
<< "instruction->DebugName()=" << instruction->DebugName();
} else {
DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
<< "instruction->DebugName()=" << instruction->DebugName()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
}
// Check that the GC side effect is set when required.
// TODO: Reverse EntrypointCanTriggerGC
if (EntrypointCanTriggerGC(entrypoint)) {
if (slow_path == nullptr) {
DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
<< "instruction->DebugName()=" << instruction->DebugName()
<< " instruction->GetSideEffects().ToString()="
<< instruction->GetSideEffects().ToString();
} else {
// 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
// on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
// if execution never returns to the compiled code from a GC point this restriction is
// unnecessary - in particular for fatal slow paths which might trigger GC.
DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
// When (non-Baker) read barriers are enabled, some instructions
// use a slow path to emit a read barrier, which does not trigger
// GC.
(EmitNonBakerReadBarrier() &&
(instruction->IsInstanceFieldGet() ||
instruction->IsStaticFieldGet() ||
instruction->IsArrayGet() ||
instruction->IsLoadClass() ||
instruction->IsLoadString() ||
instruction->IsInstanceOf() ||
instruction->IsCheckCast() ||
(instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
<< "instruction->DebugName()=" << instruction->DebugName()
<< " instruction->GetSideEffects().ToString()="
<< instruction->GetSideEffects().ToString()
<< " slow_path->GetDescription()=" << slow_path->GetDescription() << std::endl
<< "Instruction and args: " << instruction->DumpWithArgs();
}
} else {
// The GC side effect is not required for the instruction. But the instruction might still have
// it, for example if it calls other entrypoints requiring it.
}
// Check the coherency of leaf information.
DCHECK(instruction->IsSuspendCheck()
|| ((slow_path != nullptr) && slow_path->IsFatal())
|| instruction->GetLocations()->CanCall()
|| !IsLeafMethod())
<< instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
}
void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
SlowPathCode* slow_path) {
DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
<< "instruction->DebugName()=" << instruction->DebugName()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
// Only the Baker read barrier marking slow path used by certains
// instructions is expected to invoke the runtime without recording
// PC-related information.
DCHECK(kUseBakerReadBarrier);
DCHECK(instruction->IsInstanceFieldGet() ||
instruction->IsStaticFieldGet() ||
instruction->IsArrayGet() ||
instruction->IsArraySet() ||
instruction->IsLoadClass() ||
instruction->IsLoadMethodType() ||
instruction->IsLoadString() ||
instruction->IsInstanceOf() ||
instruction->IsCheckCast() ||
(instruction->IsInvoke() && instruction->GetLocations()->Intrinsified()))
<< "instruction->DebugName()=" << instruction->DebugName()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
}
void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
// If the register holds an object, update the stack mask.
if (locations->RegisterContainsObject(i)) {
locations->SetStackBit(stack_offset / kVRegSize);
}
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_core_stack_offsets_[i] = stack_offset;
stack_offset += codegen->SaveCoreRegister(stack_offset, i);
}
const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
for (uint32_t i : LowToHighBits(fp_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_fpu_stack_offsets_[i] = stack_offset;
stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
}
}
void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
}
const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
for (uint32_t i : LowToHighBits(fp_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
}
}
LocationSummary* CodeGenerator::CreateSystemArrayCopyLocationSummary(
HInvoke* invoke, int32_t length_threshold, size_t num_temps) {
// Check to see if we have known failures that will cause us to have to bail out
// to the runtime, and just generate the runtime call directly.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstantOrNull();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstantOrNull();
// The positions must be non-negative.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return nullptr;
}
// The length must be >= 0. If a positive `length_threshold` is provided, lengths
// greater or equal to the threshold are also handled by the normal implementation.
HIntConstant* length = invoke->InputAt(4)->AsIntConstantOrNull();
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0 || (length_threshold > 0 && len >= length_threshold)) {
// Just call as normal.
return nullptr;
}
}
SystemArrayCopyOptimizations optimizations(invoke);
if (optimizations.GetDestinationIsSource()) {
if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
// We only support backward copying if source and destination are the same.
return nullptr;
}
}
if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
// We currently don't intrinsify primitive copying.
return nullptr;
}
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
if (num_temps != 0u) {
locations->AddRegisterTemps(num_temps);
}
return locations;
}
void CodeGenerator::EmitJitRoots(uint8_t* code,
const uint8_t* roots_data,
/*out*/std::vector<Handle<mirror::Object>>* roots) {
code_generation_data_->EmitJitRoots(roots);
EmitJitRootPatches(code, roots_data);
}
QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
switch (new_array->GetComponentSizeShift()) {
case 0: return kQuickAllocArrayResolved8;
case 1: return kQuickAllocArrayResolved16;
case 2: return kQuickAllocArrayResolved32;
case 3: return kQuickAllocArrayResolved64;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
ScaleFactor CodeGenerator::ScaleFactorForType(DataType::Type type) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
return TIMES_1;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
return TIMES_2;
case DataType::Type::kInt32:
case DataType::Type::kUint32:
case DataType::Type::kFloat32:
case DataType::Type::kReference:
return TIMES_4;
case DataType::Type::kInt64:
case DataType::Type::kUint64:
case DataType::Type::kFloat64:
return TIMES_8;
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
}
} // namespace art