blob: 12c260a1461217e70715eae1010a133810c0da77 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "block_builder.h"
#include "base/logging.h" // FOR VLOG.
#include "dex/bytecode_utils.h"
#include "dex/code_item_accessors-inl.h"
#include "dex/dex_file_exception_helpers.h"
namespace art HIDDEN {
HBasicBlockBuilder::HBasicBlockBuilder(HGraph* graph,
const DexFile* const dex_file,
const CodeItemDebugInfoAccessor& accessor,
ScopedArenaAllocator* local_allocator)
: allocator_(graph->GetAllocator()),
graph_(graph),
dex_file_(dex_file),
code_item_accessor_(accessor),
local_allocator_(local_allocator),
branch_targets_(code_item_accessor_.HasCodeItem()
? code_item_accessor_.InsnsSizeInCodeUnits()
: /* fake dex_pc=0 for intrinsic graph */ 1u,
nullptr,
local_allocator->Adapter(kArenaAllocGraphBuilder)),
throwing_blocks_(kDefaultNumberOfThrowingBlocks,
local_allocator->Adapter(kArenaAllocGraphBuilder)) {}
HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) {
return MaybeCreateBlockAt(dex_pc, dex_pc);
}
HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc,
uint32_t store_dex_pc) {
HBasicBlock* block = branch_targets_[store_dex_pc];
if (block == nullptr) {
block = new (allocator_) HBasicBlock(graph_, semantic_dex_pc);
branch_targets_[store_dex_pc] = block;
}
DCHECK_EQ(block->GetDexPc(), semantic_dex_pc);
return block;
}
bool HBasicBlockBuilder::CreateBranchTargets() {
// Create the first block for the dex instructions, single successor of the entry block.
MaybeCreateBlockAt(0u);
if (code_item_accessor_.TriesSize() != 0) {
// Create branch targets at the start/end of the TryItem range. These are
// places where the program might fall through into/out of the a block and
// where TryBoundary instructions will be inserted later. Other edges which
// enter/exit the try blocks are a result of branches/switches.
for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
uint32_t dex_pc_start = try_item.start_addr_;
uint32_t dex_pc_end = dex_pc_start + try_item.insn_count_;
MaybeCreateBlockAt(dex_pc_start);
if (dex_pc_end < code_item_accessor_.InsnsSizeInCodeUnits()) {
// TODO: Do not create block if the last instruction cannot fall through.
MaybeCreateBlockAt(dex_pc_end);
} else if (dex_pc_end == code_item_accessor_.InsnsSizeInCodeUnits()) {
// The TryItem spans until the very end of the CodeItem and therefore
// cannot have any code afterwards.
} else {
// The TryItem spans beyond the end of the CodeItem. This is invalid code.
VLOG(compiler) << "Not compiled: TryItem spans beyond the end of the CodeItem";
return false;
}
}
// Create branch targets for exception handlers.
const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
for (uint32_t idx = 0; idx < handlers_size; ++idx) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
MaybeCreateBlockAt(iterator.GetHandlerAddress());
}
handlers_ptr = iterator.EndDataPointer();
}
}
// Iterate over all instructions and find branching instructions. Create blocks for
// the locations these instructions branch to.
for (const DexInstructionPcPair& pair : code_item_accessor_) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
if (instruction.IsBranch()) {
MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset());
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset());
// Create N-1 blocks where we will insert comparisons of the input value
// against the Switch's case keys.
if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
// Store the block under dex_pc of the current key at the switch data
// instruction for uniqueness but give it the dex_pc of the SWITCH
// instruction which it semantically belongs to.
MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex());
}
}
} else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) {
// End the basic block after MOVE_EXCEPTION. This simplifies the later
// stage of TryBoundary-block insertion.
} else {
continue;
}
if (instruction.CanFlowThrough()) {
DexInstructionIterator next(std::next(DexInstructionIterator(pair)));
if (next == code_item_accessor_.end()) {
// In the normal case we should never hit this but someone can artificially forge a dex
// file to fall-through out the method code. In this case we bail out compilation.
VLOG(compiler) << "Not compiled: Fall-through beyond the CodeItem";
return false;
}
MaybeCreateBlockAt(next.DexPc());
}
}
return true;
}
void HBasicBlockBuilder::ConnectBasicBlocks() {
HBasicBlock* block = graph_->GetEntryBlock();
graph_->AddBlock(block);
bool is_throwing_block = false;
// Calculate the qucikening index here instead of CreateBranchTargets since it's easier to
// calculate in dex_pc order.
for (const DexInstructionPcPair& pair : code_item_accessor_) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
// Check if this dex_pc address starts a new basic block.
HBasicBlock* next_block = GetBlockAt(dex_pc);
if (next_block != nullptr) {
if (block != nullptr) {
// Last instruction did not end its basic block but a new one starts here.
// It must have been a block falling through into the next one.
block->AddSuccessor(next_block);
}
block = next_block;
is_throwing_block = false;
graph_->AddBlock(block);
}
if (block == nullptr) {
// Ignore dead code.
continue;
}
if (!is_throwing_block && IsThrowingDexInstruction(instruction)) {
DCHECK(!ContainsElement(throwing_blocks_, block));
is_throwing_block = true;
throwing_blocks_.push_back(block);
}
if (instruction.IsBranch()) {
uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
block->AddSuccessor(GetBlockAt(target_dex_pc));
} else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) {
block->AddSuccessor(graph_->GetExitBlock());
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
block->AddSuccessor(GetBlockAt(target_dex_pc));
if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex();
HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc);
block->AddSuccessor(next_case_block);
block = next_case_block;
graph_->AddBlock(block);
}
}
} else {
// Remaining code only applies to instructions which end their basic block.
continue;
}
// Go to the next instruction in case we read dex PC below.
if (instruction.CanFlowThrough()) {
block->AddSuccessor(GetBlockAt(std::next(DexInstructionIterator(pair)).DexPc()));
}
// The basic block ends here. Do not add any more instructions.
block = nullptr;
}
graph_->AddBlock(graph_->GetExitBlock());
}
// Returns the TryItem stored for `block` or nullptr if there is no info for it.
static const dex::TryItem* GetTryItem(
HBasicBlock* block,
const ScopedArenaSafeMap<uint32_t, const dex::TryItem*>& try_block_info) {
auto iterator = try_block_info.find(block->GetBlockId());
return (iterator == try_block_info.end()) ? nullptr : iterator->second;
}
// Iterates over the exception handlers of `try_item`, finds the corresponding
// catch blocks and makes them successors of `try_boundary`. The order of
// successors matches the order in which runtime exception delivery searches
// for a handler.
static void LinkToCatchBlocks(HTryBoundary* try_boundary,
const CodeItemDataAccessor& accessor,
const dex::TryItem* try_item,
const ScopedArenaSafeMap<uint32_t, HBasicBlock*>& catch_blocks) {
for (CatchHandlerIterator it(accessor.GetCatchHandlerData(try_item->handler_off_));
it.HasNext();
it.Next()) {
try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress()));
}
}
bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) {
if (kIsDebugBuild) {
DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks";
DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty())
<< "Basic blocks must have been created and connected";
for (HBasicBlock* predecessor : catch_block->GetPredecessors()) {
DCHECK(!predecessor->IsSingleTryBoundary())
<< "TryBoundary blocks must not have not been created yet";
}
}
const Instruction& first = code_item_accessor_.InstructionAt(catch_block->GetDexPc());
if (first.Opcode() == Instruction::MOVE_EXCEPTION) {
// Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then
// it has no live normal predecessors.
return false;
} else if (catch_block->GetPredecessors().empty()) {
// Normal control-flow edges have already been created. Since block's list of
// predecessors is empty, it cannot have any live or dead normal predecessors.
return false;
}
// The catch block has normal predecessors but we do not know which are live
// and which will be removed during the initial DCE. Return `true` to signal
// that it may have live normal predecessors.
return true;
}
void HBasicBlockBuilder::InsertTryBoundaryBlocks() {
if (code_item_accessor_.TriesSize() == 0) {
return;
}
// Keep a map of all try blocks and their respective TryItems. We do not use
// the block's pointer but rather its id to ensure deterministic iteration.
ScopedArenaSafeMap<uint32_t, const dex::TryItem*> try_block_info(
std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
// Obtain TryItem information for blocks with throwing instructions, and split
// blocks which are both try & catch to simplify the graph.
for (HBasicBlock* block : graph_->GetBlocks()) {
if (block->GetDexPc() == kNoDexPc) {
continue;
}
// Do not bother creating exceptional edges for try blocks which have no
// throwing instructions. In that case we simply assume that the block is
// not covered by a TryItem. This prevents us from creating a throw-catch
// loop for synchronized blocks.
if (ContainsElement(throwing_blocks_, block)) {
// Try to find a TryItem covering the block.
const dex::TryItem* try_item = code_item_accessor_.FindTryItem(block->GetDexPc());
if (try_item != nullptr) {
// Block throwing and in a TryItem. Store the try block information.
try_block_info.Put(block->GetBlockId(), try_item);
}
}
}
// Map from a handler dex_pc to the corresponding catch block.
ScopedArenaSafeMap<uint32_t, HBasicBlock*> catch_blocks(
std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
// Iterate over catch blocks, create artifical landing pads if necessary to
// simplify the CFG, and set metadata.
const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
for (uint32_t idx = 0; idx < handlers_size; ++idx) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
uint32_t address = iterator.GetHandlerAddress();
auto existing = catch_blocks.find(address);
if (existing != catch_blocks.end()) {
// Catch block already processed.
TryCatchInformation* info = existing->second->GetTryCatchInformation();
if (iterator.GetHandlerTypeIndex() != info->GetCatchTypeIndex()) {
// The handler is for multiple types. We could record all the types, but
// doing class resolution here isn't ideal, and it's unclear whether wasting
// the space in TryCatchInformation is worth it.
info->SetInvalidTypeIndex();
}
continue;
}
// Check if we should create an artifical landing pad for the catch block.
// We create one if the catch block is also a try block because we do not
// have a strategy for inserting TryBoundaries on exceptional edges.
// We also create one if the block might have normal predecessors so as to
// simplify register allocation.
HBasicBlock* catch_block = GetBlockAt(address);
bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end());
if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) {
HBasicBlock* new_catch_block = new (allocator_) HBasicBlock(graph_, address);
new_catch_block->AddInstruction(new (allocator_) HGoto(address));
new_catch_block->AddSuccessor(catch_block);
graph_->AddBlock(new_catch_block);
catch_block = new_catch_block;
}
catch_blocks.Put(address, catch_block);
catch_block->SetTryCatchInformation(
new (allocator_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
}
handlers_ptr = iterator.EndDataPointer();
}
// Do a pass over the try blocks and insert entering TryBoundaries where at
// least one predecessor is not covered by the same TryItem as the try block.
// We do not split each edge separately, but rather create one boundary block
// that all predecessors are relinked to. This preserves loop headers (b/23895756).
for (const auto& entry : try_block_info) {
uint32_t block_id = entry.first;
const dex::TryItem* try_item = entry.second;
HBasicBlock* try_block = graph_->GetBlocks()[block_id];
for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
if (GetTryItem(predecessor, try_block_info) != try_item) {
// Found a predecessor not covered by the same TryItem. Insert entering
// boundary block.
HTryBoundary* try_entry = new (allocator_) HTryBoundary(
HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc());
try_block->CreateImmediateDominator()->AddInstruction(try_entry);
LinkToCatchBlocks(try_entry, code_item_accessor_, try_item, catch_blocks);
break;
}
}
}
// Do a second pass over the try blocks and insert exit TryBoundaries where
// the successor is not in the same TryItem.
for (const auto& entry : try_block_info) {
uint32_t block_id = entry.first;
const dex::TryItem* try_item = entry.second;
HBasicBlock* try_block = graph_->GetBlocks()[block_id];
// NOTE: Do not use iterators because SplitEdge would invalidate them.
for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
HBasicBlock* successor = try_block->GetSuccessors()[i];
// If the successor is a try block, all of its predecessors must be
// covered by the same TryItem. Otherwise the previous pass would have
// created a non-throwing boundary block.
if (GetTryItem(successor, try_block_info) != nullptr) {
DCHECK_EQ(try_item, GetTryItem(successor, try_block_info));
continue;
}
// Insert TryBoundary and link to catch blocks.
HTryBoundary* try_exit =
new (allocator_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc());
graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
LinkToCatchBlocks(try_exit, code_item_accessor_, try_item, catch_blocks);
}
}
}
void HBasicBlockBuilder::InsertSynthesizedLoopsForOsr() {
ArenaSet<uint32_t> targets(allocator_->Adapter(kArenaAllocGraphBuilder));
// Collect basic blocks that are targets of a negative branch.
for (const DexInstructionPcPair& pair : code_item_accessor_) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
if (instruction.IsBranch()) {
uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
if (target_dex_pc < dex_pc) {
HBasicBlock* block = GetBlockAt(target_dex_pc);
CHECK_NE(kNoDexPc, block->GetDexPc());
targets.insert(block->GetBlockId());
}
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
if (target_dex_pc < dex_pc) {
HBasicBlock* block = GetBlockAt(target_dex_pc);
CHECK_NE(kNoDexPc, block->GetDexPc());
targets.insert(block->GetBlockId());
}
}
}
}
// Insert synthesized loops before the collected blocks.
for (uint32_t block_id : targets) {
HBasicBlock* block = graph_->GetBlocks()[block_id];
HBasicBlock* loop_block = new (allocator_) HBasicBlock(graph_, block->GetDexPc());
graph_->AddBlock(loop_block);
while (!block->GetPredecessors().empty()) {
block->GetPredecessors()[0]->ReplaceSuccessor(block, loop_block);
}
loop_block->AddSuccessor(loop_block);
loop_block->AddSuccessor(block);
// We loop on false - we know this won't be optimized later on as the loop
// is marked irreducible, which disables loop optimizations.
loop_block->AddInstruction(new (allocator_) HIf(graph_->GetIntConstant(0), kNoDexPc));
}
}
bool HBasicBlockBuilder::Build() {
DCHECK(code_item_accessor_.HasCodeItem());
DCHECK(graph_->GetBlocks().empty());
graph_->SetEntryBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
graph_->SetExitBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
// TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass.
if (!CreateBranchTargets()) {
return false;
}
ConnectBasicBlocks();
InsertTryBoundaryBlocks();
if (graph_->IsCompilingOsr()) {
InsertSynthesizedLoopsForOsr();
}
return true;
}
void HBasicBlockBuilder::BuildIntrinsic() {
DCHECK(!code_item_accessor_.HasCodeItem());
DCHECK(graph_->GetBlocks().empty());
// Create blocks.
HBasicBlock* entry_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
HBasicBlock* exit_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
HBasicBlock* body = MaybeCreateBlockAt(/* semantic_dex_pc= */ kNoDexPc, /* store_dex_pc= */ 0u);
// Add blocks to the graph.
graph_->AddBlock(entry_block);
graph_->AddBlock(body);
graph_->AddBlock(exit_block);
graph_->SetEntryBlock(entry_block);
graph_->SetExitBlock(exit_block);
// Connect blocks.
entry_block->AddSuccessor(body);
body->AddSuccessor(exit_block);
}
} // namespace art