blob: 09c78b2428513cab4af3d21bac18b01a4d339704 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_DEX_INSTRUCTION_H_
#define ART_RUNTIME_DEX_INSTRUCTION_H_
#include "base/logging.h"
#include "base/macros.h"
#include "globals.h"
typedef uint8_t uint4_t;
typedef int8_t int4_t;
namespace art {
class DexFile;
enum {
kNumPackedOpcodes = 0x100
};
class Instruction {
public:
// NOP-encoded switch-statement signatures.
enum Signatures {
kPackedSwitchSignature = 0x0100,
kSparseSwitchSignature = 0x0200,
kArrayDataSignature = 0x0300,
};
struct PACKED(4) PackedSwitchPayload {
const uint16_t ident;
const uint16_t case_count;
const int32_t first_key;
const int32_t targets[];
private:
DISALLOW_COPY_AND_ASSIGN(PackedSwitchPayload);
};
struct PACKED(4) SparseSwitchPayload {
const uint16_t ident;
const uint16_t case_count;
const int32_t keys_and_targets[];
public:
const int32_t* GetKeys() const {
return keys_and_targets;
}
const int32_t* GetTargets() const {
return keys_and_targets + case_count;
}
private:
DISALLOW_COPY_AND_ASSIGN(SparseSwitchPayload);
};
struct PACKED(4) ArrayDataPayload {
const uint16_t ident;
const uint16_t element_width;
const uint32_t element_count;
const uint8_t data[];
private:
DISALLOW_COPY_AND_ASSIGN(ArrayDataPayload);
};
enum Code { // private marker to avoid generate-operator-out.py from processing.
#define INSTRUCTION_ENUM(opcode, cname, p, f, i, a, e, v) cname = (opcode),
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_ENUM)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_ENUM
RSUB_INT_LIT16 = RSUB_INT,
};
enum Format : uint8_t {
k10x, // op
k12x, // op vA, vB
k11n, // op vA, #+B
k11x, // op vAA
k10t, // op +AA
k20t, // op +AAAA
k22x, // op vAA, vBBBB
k21t, // op vAA, +BBBB
k21s, // op vAA, #+BBBB
k21h, // op vAA, #+BBBB00000[00000000]
k21c, // op vAA, thing@BBBB
k23x, // op vAA, vBB, vCC
k22b, // op vAA, vBB, #+CC
k22t, // op vA, vB, +CCCC
k22s, // op vA, vB, #+CCCC
k22c, // op vA, vB, thing@CCCC
k32x, // op vAAAA, vBBBB
k30t, // op +AAAAAAAA
k31t, // op vAA, +BBBBBBBB
k31i, // op vAA, #+BBBBBBBB
k31c, // op vAA, thing@BBBBBBBB
k35c, // op {vC, vD, vE, vF, vG}, thing@BBBB (B: count, A: vG)
k3rc, // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB
// op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH (A: count)
// format: AG op BBBB FEDC HHHH
k45cc,
// op {VCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH (AA: count)
// format: AA op BBBB CCCC HHHH
k4rcc, // op {VCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH (AA: count)
k51l, // op vAA, #+BBBBBBBBBBBBBBBB
};
enum IndexType : uint8_t {
kIndexUnknown = 0,
kIndexNone, // has no index
kIndexTypeRef, // type reference index
kIndexStringRef, // string reference index
kIndexMethodRef, // method reference index
kIndexFieldRef, // field reference index
kIndexFieldOffset, // field offset (for static linked fields)
kIndexVtableOffset, // vtable offset (for static linked methods)
kIndexMethodAndProtoRef, // method and a proto reference index (for invoke-polymorphic)
kIndexCallSiteRef, // call site reference index
kIndexMethodHandleRef, // constant method handle reference index
kIndexProtoRef, // prototype reference index
};
enum Flags : uint8_t {
kBranch = 0x01, // conditional or unconditional branch
kContinue = 0x02, // flow can continue to next statement
kSwitch = 0x04, // switch statement
kThrow = 0x08, // could cause an exception to be thrown
kReturn = 0x10, // returns, no additional statements
kInvoke = 0x20, // a flavor of invoke
kUnconditional = 0x40, // unconditional branch
kExperimental = 0x80, // is an experimental opcode
};
// Old flags. Keeping them around in case we might need them again some day.
enum ExtendedFlags : uint32_t {
kAdd = 0x0000080, // addition
kSubtract = 0x0000100, // subtract
kMultiply = 0x0000200, // multiply
kDivide = 0x0000400, // division
kRemainder = 0x0000800, // remainder
kAnd = 0x0001000, // and
kOr = 0x0002000, // or
kXor = 0x0004000, // xor
kShl = 0x0008000, // shl
kShr = 0x0010000, // shr
kUshr = 0x0020000, // ushr
kCast = 0x0040000, // cast
kStore = 0x0080000, // store opcode
kLoad = 0x0100000, // load opcode
kClobber = 0x0200000, // clobbers memory in a big way (not just a write)
kRegCFieldOrConstant = 0x0400000, // is the third virtual register a field or literal constant (vC)
kRegBFieldOrConstant = 0x0800000, // is the second virtual register a field or literal constant (vB)
};
enum VerifyFlag : uint32_t {
kVerifyNone = 0x0000000,
kVerifyRegA = 0x0000001,
kVerifyRegAWide = 0x0000002,
kVerifyRegB = 0x0000004,
kVerifyRegBField = 0x0000008,
kVerifyRegBMethod = 0x0000010,
kVerifyRegBNewInstance = 0x0000020,
kVerifyRegBString = 0x0000040,
kVerifyRegBType = 0x0000080,
kVerifyRegBWide = 0x0000100,
kVerifyRegC = 0x0000200,
kVerifyRegCField = 0x0000400,
kVerifyRegCNewArray = 0x0000800,
kVerifyRegCType = 0x0001000,
kVerifyRegCWide = 0x0002000,
kVerifyArrayData = 0x0004000,
kVerifyBranchTarget = 0x0008000,
kVerifySwitchTargets = 0x0010000,
kVerifyVarArg = 0x0020000,
kVerifyVarArgNonZero = 0x0040000,
kVerifyVarArgRange = 0x0080000,
kVerifyVarArgRangeNonZero = 0x0100000,
kVerifyRuntimeOnly = 0x0200000,
kVerifyError = 0x0400000,
kVerifyRegHPrototype = 0x0800000,
kVerifyRegBCallSite = 0x1000000,
kVerifyRegBMethodHandle = 0x2000000,
kVerifyRegBPrototype = 0x4000000,
};
// Collect the enums in a struct for better locality.
struct InstructionDescriptor {
uint32_t verify_flags; // Set of VerifyFlag.
Format format;
IndexType index_type;
uint8_t flags; // Set of Flags.
int8_t size_in_code_units;
};
static constexpr uint32_t kMaxVarArgRegs = 5;
static constexpr bool kHaveExperimentalInstructions = false;
// Returns the size (in 2 byte code units) of this instruction.
size_t SizeInCodeUnits() const {
int8_t result = kInstructionDescriptors[Opcode()].size_in_code_units;
if (UNLIKELY(result < 0)) {
return SizeInCodeUnitsComplexOpcode();
} else {
return static_cast<size_t>(result);
}
}
// Code units required to calculate the size of the instruction.
size_t CodeUnitsRequiredForSizeComputation() const {
const int8_t result = kInstructionDescriptors[Opcode()].size_in_code_units;
return UNLIKELY(result < 0) ? CodeUnitsRequiredForSizeOfComplexOpcode() : 1;
}
// Reads an instruction out of the stream at the specified address.
static const Instruction* At(const uint16_t* code) {
DCHECK(code != nullptr);
return reinterpret_cast<const Instruction*>(code);
}
// Reads an instruction out of the stream from the current address plus an offset.
const Instruction* RelativeAt(int32_t offset) const WARN_UNUSED {
return At(reinterpret_cast<const uint16_t*>(this) + offset);
}
// Returns a pointer to the next instruction in the stream.
const Instruction* Next() const {
return RelativeAt(SizeInCodeUnits());
}
// Returns a pointer to the instruction after this 1xx instruction in the stream.
const Instruction* Next_1xx() const {
DCHECK(FormatOf(Opcode()) >= k10x && FormatOf(Opcode()) <= k10t);
return RelativeAt(1);
}
// Returns a pointer to the instruction after this 2xx instruction in the stream.
const Instruction* Next_2xx() const {
DCHECK(FormatOf(Opcode()) >= k20t && FormatOf(Opcode()) <= k22c);
return RelativeAt(2);
}
// Returns a pointer to the instruction after this 3xx instruction in the stream.
const Instruction* Next_3xx() const {
DCHECK(FormatOf(Opcode()) >= k32x && FormatOf(Opcode()) <= k3rc);
return RelativeAt(3);
}
// Returns a pointer to the instruction after this 4xx instruction in the stream.
const Instruction* Next_4xx() const {
DCHECK(FormatOf(Opcode()) >= k45cc && FormatOf(Opcode()) <= k4rcc);
return RelativeAt(4);
}
// Returns a pointer to the instruction after this 51l instruction in the stream.
const Instruction* Next_51l() const {
DCHECK(FormatOf(Opcode()) == k51l);
return RelativeAt(5);
}
// Returns the name of this instruction's opcode.
const char* Name() const {
return Instruction::Name(Opcode());
}
// Returns the name of the given opcode.
static const char* Name(Code opcode) {
return kInstructionNames[opcode];
}
// VRegA
bool HasVRegA() const;
ALWAYS_INLINE int32_t VRegA() const;
int8_t VRegA_10t() const {
return VRegA_10t(Fetch16(0));
}
uint8_t VRegA_10x() const {
return VRegA_10x(Fetch16(0));
}
uint4_t VRegA_11n() const {
return VRegA_11n(Fetch16(0));
}
uint8_t VRegA_11x() const {
return VRegA_11x(Fetch16(0));
}
uint4_t VRegA_12x() const {
return VRegA_12x(Fetch16(0));
}
int16_t VRegA_20t() const;
uint8_t VRegA_21c() const {
return VRegA_21c(Fetch16(0));
}
uint8_t VRegA_21h() const {
return VRegA_21h(Fetch16(0));
}
uint8_t VRegA_21s() const {
return VRegA_21s(Fetch16(0));
}
uint8_t VRegA_21t() const {
return VRegA_21t(Fetch16(0));
}
uint8_t VRegA_22b() const {
return VRegA_22b(Fetch16(0));
}
uint4_t VRegA_22c() const {
return VRegA_22c(Fetch16(0));
}
uint4_t VRegA_22s() const {
return VRegA_22s(Fetch16(0));
}
uint4_t VRegA_22t() const {
return VRegA_22t(Fetch16(0));
}
uint8_t VRegA_22x() const {
return VRegA_22x(Fetch16(0));
}
uint8_t VRegA_23x() const {
return VRegA_23x(Fetch16(0));
}
int32_t VRegA_30t() const;
uint8_t VRegA_31c() const {
return VRegA_31c(Fetch16(0));
}
uint8_t VRegA_31i() const {
return VRegA_31i(Fetch16(0));
}
uint8_t VRegA_31t() const {
return VRegA_31t(Fetch16(0));
}
uint16_t VRegA_32x() const;
uint4_t VRegA_35c() const {
return VRegA_35c(Fetch16(0));
}
uint8_t VRegA_3rc() const {
return VRegA_3rc(Fetch16(0));
}
uint8_t VRegA_51l() const {
return VRegA_51l(Fetch16(0));
}
uint4_t VRegA_45cc() const {
return VRegA_45cc(Fetch16(0));
}
uint8_t VRegA_4rcc() const {
return VRegA_4rcc(Fetch16(0));
}
// The following methods return the vA operand for various instruction formats. The "inst_data"
// parameter holds the first 16 bits of instruction which the returned value is decoded from.
int8_t VRegA_10t(uint16_t inst_data) const;
uint8_t VRegA_10x(uint16_t inst_data) const;
uint4_t VRegA_11n(uint16_t inst_data) const;
uint8_t VRegA_11x(uint16_t inst_data) const;
uint4_t VRegA_12x(uint16_t inst_data) const;
uint8_t VRegA_21c(uint16_t inst_data) const;
uint8_t VRegA_21h(uint16_t inst_data) const;
uint8_t VRegA_21s(uint16_t inst_data) const;
uint8_t VRegA_21t(uint16_t inst_data) const;
uint8_t VRegA_22b(uint16_t inst_data) const;
uint4_t VRegA_22c(uint16_t inst_data) const;
uint4_t VRegA_22s(uint16_t inst_data) const;
uint4_t VRegA_22t(uint16_t inst_data) const;
uint8_t VRegA_22x(uint16_t inst_data) const;
uint8_t VRegA_23x(uint16_t inst_data) const;
uint8_t VRegA_31c(uint16_t inst_data) const;
uint8_t VRegA_31i(uint16_t inst_data) const;
uint8_t VRegA_31t(uint16_t inst_data) const;
uint4_t VRegA_35c(uint16_t inst_data) const;
uint8_t VRegA_3rc(uint16_t inst_data) const;
uint8_t VRegA_51l(uint16_t inst_data) const;
uint4_t VRegA_45cc(uint16_t inst_data) const;
uint8_t VRegA_4rcc(uint16_t inst_data) const;
// VRegB
bool HasVRegB() const;
int32_t VRegB() const;
bool HasWideVRegB() const;
uint64_t WideVRegB() const;
int4_t VRegB_11n() const {
return VRegB_11n(Fetch16(0));
}
uint4_t VRegB_12x() const {
return VRegB_12x(Fetch16(0));
}
uint16_t VRegB_21c() const;
uint16_t VRegB_21h() const;
int16_t VRegB_21s() const;
int16_t VRegB_21t() const;
uint8_t VRegB_22b() const;
uint4_t VRegB_22c() const {
return VRegB_22c(Fetch16(0));
}
uint4_t VRegB_22s() const {
return VRegB_22s(Fetch16(0));
}
uint4_t VRegB_22t() const {
return VRegB_22t(Fetch16(0));
}
uint16_t VRegB_22x() const;
uint8_t VRegB_23x() const;
uint32_t VRegB_31c() const;
int32_t VRegB_31i() const;
int32_t VRegB_31t() const;
uint16_t VRegB_32x() const;
uint16_t VRegB_35c() const;
uint16_t VRegB_3rc() const;
uint64_t VRegB_51l() const; // vB_wide
uint16_t VRegB_45cc() const;
uint16_t VRegB_4rcc() const;
// The following methods return the vB operand for all instruction formats where it is encoded in
// the first 16 bits of instruction. The "inst_data" parameter holds these 16 bits. The returned
// value is decoded from it.
int4_t VRegB_11n(uint16_t inst_data) const;
uint4_t VRegB_12x(uint16_t inst_data) const;
uint4_t VRegB_22c(uint16_t inst_data) const;
uint4_t VRegB_22s(uint16_t inst_data) const;
uint4_t VRegB_22t(uint16_t inst_data) const;
// VRegC
bool HasVRegC() const;
int32_t VRegC() const;
int8_t VRegC_22b() const;
uint16_t VRegC_22c() const;
int16_t VRegC_22s() const;
int16_t VRegC_22t() const;
uint8_t VRegC_23x() const;
uint4_t VRegC_35c() const;
uint16_t VRegC_3rc() const;
uint4_t VRegC_45cc() const;
uint16_t VRegC_4rcc() const;
// VRegH
bool HasVRegH() const;
int32_t VRegH() const;
uint16_t VRegH_45cc() const;
uint16_t VRegH_4rcc() const;
// Fills the given array with the 'arg' array of the instruction.
bool HasVarArgs() const;
void GetVarArgs(uint32_t args[kMaxVarArgRegs], uint16_t inst_data) const;
void GetVarArgs(uint32_t args[kMaxVarArgRegs]) const {
return GetVarArgs(args, Fetch16(0));
}
// Returns the opcode field of the instruction. The given "inst_data" parameter must be the first
// 16 bits of instruction.
Code Opcode(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<Code>(inst_data & 0xFF);
}
// Returns the opcode field of the instruction from the first 16 bits of instruction.
Code Opcode() const {
return Opcode(Fetch16(0));
}
void SetOpcode(Code opcode) {
DCHECK_LT(static_cast<uint16_t>(opcode), 256u);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[0] = (insns[0] & 0xff00) | static_cast<uint16_t>(opcode);
}
void SetVRegA_10x(uint8_t val) {
DCHECK(FormatOf(Opcode()) == k10x);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[0] = (val << 8) | (insns[0] & 0x00ff);
}
void SetVRegB_3rc(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k3rc);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
void SetVRegB_35c(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k35c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
void SetVRegC_22c(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k22c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
void SetVRegA_21c(uint8_t val) {
DCHECK(FormatOf(Opcode()) == k21c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[0] = (val << 8) | (insns[0] & 0x00ff);
}
void SetVRegB_21c(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k21c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
// Returns the format of the given opcode.
static Format FormatOf(Code opcode) {
return kInstructionDescriptors[opcode].format;
}
// Returns the index type of the given opcode.
static IndexType IndexTypeOf(Code opcode) {
return kInstructionDescriptors[opcode].index_type;
}
// Returns the flags for the given opcode.
static uint8_t FlagsOf(Code opcode) {
return kInstructionDescriptors[opcode].flags;
}
// Return the verify flags for the given opcode.
static uint32_t VerifyFlagsOf(Code opcode) {
return kInstructionDescriptors[opcode].verify_flags;
}
// Returns true if this instruction is a branch.
bool IsBranch() const {
return (kInstructionDescriptors[Opcode()].flags & kBranch) != 0;
}
// Returns true if this instruction is a unconditional branch.
bool IsUnconditional() const {
return (kInstructionDescriptors[Opcode()].flags & kUnconditional) != 0;
}
// Returns the branch offset if this instruction is a branch.
int32_t GetTargetOffset() const;
// Returns true if the instruction allows control flow to go to the following instruction.
bool CanFlowThrough() const;
// Returns true if the instruction is a quickened instruction.
bool IsQuickened() const {
return (kInstructionDescriptors[Opcode()].index_type == kIndexFieldOffset) ||
(kInstructionDescriptors[Opcode()].index_type == kIndexVtableOffset);
}
// Returns true if this instruction is a switch.
bool IsSwitch() const {
return (kInstructionDescriptors[Opcode()].flags & kSwitch) != 0;
}
// Returns true if this instruction can throw.
bool IsThrow() const {
return (kInstructionDescriptors[Opcode()].flags & kThrow) != 0;
}
// Determine if the instruction is any of 'return' instructions.
bool IsReturn() const {
return (kInstructionDescriptors[Opcode()].flags & kReturn) != 0;
}
// Determine if this instruction ends execution of its basic block.
bool IsBasicBlockEnd() const {
return IsBranch() || IsReturn() || Opcode() == THROW;
}
// Determine if this instruction is an invoke.
bool IsInvoke() const {
return (kInstructionDescriptors[Opcode()].flags & kInvoke) != 0;
}
// Determine if this instruction is experimental.
bool IsExperimental() const {
return (kInstructionDescriptors[Opcode()].flags & kExperimental) != 0;
}
int GetVerifyTypeArgumentA() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyRegA | kVerifyRegAWide));
}
int GetVerifyTypeArgumentB() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyRegB | kVerifyRegBField |
kVerifyRegBMethod | kVerifyRegBNewInstance | kVerifyRegBString | kVerifyRegBType |
kVerifyRegBWide));
}
int GetVerifyTypeArgumentC() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyRegC | kVerifyRegCField |
kVerifyRegCNewArray | kVerifyRegCType | kVerifyRegCWide));
}
int GetVerifyTypeArgumentH() const {
return (kInstructionDescriptors[Opcode()].verify_flags & kVerifyRegHPrototype);
}
int GetVerifyExtraFlags() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyArrayData |
kVerifyBranchTarget | kVerifySwitchTargets | kVerifyVarArg | kVerifyVarArgNonZero |
kVerifyVarArgRange | kVerifyVarArgRangeNonZero | kVerifyError));
}
bool GetVerifyIsRuntimeOnly() const {
return (kInstructionDescriptors[Opcode()].verify_flags & kVerifyRuntimeOnly) != 0;
}
// Get the dex PC of this instruction as a offset in code units from the beginning of insns.
uint32_t GetDexPc(const uint16_t* insns) const {
return (reinterpret_cast<const uint16_t*>(this) - insns);
}
// Dump decoded version of instruction
std::string DumpString(const DexFile*) const;
// Dump code_units worth of this instruction, padding to code_units for shorter instructions
std::string DumpHex(size_t code_units) const;
// Little-endian dump code_units worth of this instruction, padding to code_units for
// shorter instructions
std::string DumpHexLE(size_t instr_code_units) const;
uint16_t Fetch16(size_t offset) const {
const uint16_t* insns = reinterpret_cast<const uint16_t*>(this);
return insns[offset];
}
private:
size_t SizeInCodeUnitsComplexOpcode() const;
// Return how many code unit words are required to compute the size of the opcode.
size_t CodeUnitsRequiredForSizeOfComplexOpcode() const;
uint32_t Fetch32(size_t offset) const {
return (Fetch16(offset) | ((uint32_t) Fetch16(offset + 1) << 16));
}
uint4_t InstA() const {
return InstA(Fetch16(0));
}
uint4_t InstB() const {
return InstB(Fetch16(0));
}
uint8_t InstAA() const {
return InstAA(Fetch16(0));
}
uint4_t InstA(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<uint4_t>((inst_data >> 8) & 0x0f);
}
uint4_t InstB(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<uint4_t>(inst_data >> 12);
}
uint8_t InstAA(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<uint8_t>(inst_data >> 8);
}
static const char* const kInstructionNames[];
static const InstructionDescriptor kInstructionDescriptors[];
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
std::ostream& operator<<(std::ostream& os, const Instruction::Code& code);
std::ostream& operator<<(std::ostream& os, const Instruction::Format& format);
std::ostream& operator<<(std::ostream& os, const Instruction::Flags& flags);
std::ostream& operator<<(std::ostream& os, const Instruction::VerifyFlag& vflags);
} // namespace art
#endif // ART_RUNTIME_DEX_INSTRUCTION_H_