| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "interpreter.h" |
| |
| #include <limits> |
| |
| #include "common_throws.h" |
| #include "dex_file_types.h" |
| #include "interpreter_common.h" |
| #include "interpreter_mterp_impl.h" |
| #include "interpreter_switch_impl.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "jvalue-inl.h" |
| #include "mirror/string-inl.h" |
| #include "mterp/mterp.h" |
| #include "nativehelper/ScopedLocalRef.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack.h" |
| #include "thread-inl.h" |
| #include "unstarted_runtime.h" |
| |
| namespace art { |
| namespace interpreter { |
| |
| ALWAYS_INLINE static ObjPtr<mirror::Object> ObjArg(uint32_t arg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return ObjPtr<mirror::Object>(reinterpret_cast<mirror::Object*>(arg)); |
| } |
| |
| static void InterpreterJni(Thread* self, |
| ArtMethod* method, |
| const StringPiece& shorty, |
| ObjPtr<mirror::Object> receiver, |
| uint32_t* args, |
| JValue* result) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler, |
| // it should be removed and JNI compiled stubs used instead. |
| ScopedObjectAccessUnchecked soa(self); |
| if (method->IsStatic()) { |
| if (shorty == "L") { |
| typedef jobject (fntype)(JNIEnv*, jclass); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| jobject jresult; |
| { |
| ScopedThreadStateChange tsc(self, kNative); |
| jresult = fn(soa.Env(), klass.get()); |
| } |
| result->SetL(soa.Decode<mirror::Object>(jresult)); |
| } else if (shorty == "V") { |
| typedef void (fntype)(JNIEnv*, jclass); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| fn(soa.Env(), klass.get()); |
| } else if (shorty == "Z") { |
| typedef jboolean (fntype)(JNIEnv*, jclass); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetZ(fn(soa.Env(), klass.get())); |
| } else if (shorty == "BI") { |
| typedef jbyte (fntype)(JNIEnv*, jclass, jint); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetB(fn(soa.Env(), klass.get(), args[0])); |
| } else if (shorty == "II") { |
| typedef jint (fntype)(JNIEnv*, jclass, jint); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetI(fn(soa.Env(), klass.get(), args[0])); |
| } else if (shorty == "LL") { |
| typedef jobject (fntype)(JNIEnv*, jclass, jobject); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedLocalRef<jobject> arg0(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[0]))); |
| jobject jresult; |
| { |
| ScopedThreadStateChange tsc(self, kNative); |
| jresult = fn(soa.Env(), klass.get(), arg0.get()); |
| } |
| result->SetL(soa.Decode<mirror::Object>(jresult)); |
| } else if (shorty == "IIZ") { |
| typedef jint (fntype)(JNIEnv*, jclass, jint, jboolean); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetI(fn(soa.Env(), klass.get(), args[0], args[1])); |
| } else if (shorty == "ILI") { |
| typedef jint (fntype)(JNIEnv*, jclass, jobject, jint); |
| fntype* const fn = reinterpret_cast<fntype*>(const_cast<void*>( |
| method->GetEntryPointFromJni())); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedLocalRef<jobject> arg0(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[0]))); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1])); |
| } else if (shorty == "SIZ") { |
| typedef jshort (fntype)(JNIEnv*, jclass, jint, jboolean); |
| fntype* const fn = |
| reinterpret_cast<fntype*>(const_cast<void*>(method->GetEntryPointFromJni())); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetS(fn(soa.Env(), klass.get(), args[0], args[1])); |
| } else if (shorty == "VIZ") { |
| typedef void (fntype)(JNIEnv*, jclass, jint, jboolean); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedThreadStateChange tsc(self, kNative); |
| fn(soa.Env(), klass.get(), args[0], args[1]); |
| } else if (shorty == "ZLL") { |
| typedef jboolean (fntype)(JNIEnv*, jclass, jobject, jobject); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedLocalRef<jobject> arg0(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[0]))); |
| ScopedLocalRef<jobject> arg1(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[1]))); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get())); |
| } else if (shorty == "ZILL") { |
| typedef jboolean (fntype)(JNIEnv*, jclass, jint, jobject, jobject); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedLocalRef<jobject> arg1(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[1]))); |
| ScopedLocalRef<jobject> arg2(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[2]))); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get())); |
| } else if (shorty == "VILII") { |
| typedef void (fntype)(JNIEnv*, jclass, jint, jobject, jint, jint); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedLocalRef<jobject> arg1(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[1]))); |
| ScopedThreadStateChange tsc(self, kNative); |
| fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]); |
| } else if (shorty == "VLILII") { |
| typedef void (fntype)(JNIEnv*, jclass, jobject, jint, jobject, jint, jint); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jclass> klass(soa.Env(), |
| soa.AddLocalReference<jclass>(method->GetDeclaringClass())); |
| ScopedLocalRef<jobject> arg0(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[0]))); |
| ScopedLocalRef<jobject> arg2(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[2]))); |
| ScopedThreadStateChange tsc(self, kNative); |
| fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]); |
| } else { |
| LOG(FATAL) << "Do something with static native method: " << method->PrettyMethod() |
| << " shorty: " << shorty; |
| } |
| } else { |
| if (shorty == "L") { |
| typedef jobject (fntype)(JNIEnv*, jobject); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jobject> rcvr(soa.Env(), |
| soa.AddLocalReference<jobject>(receiver)); |
| jobject jresult; |
| { |
| ScopedThreadStateChange tsc(self, kNative); |
| jresult = fn(soa.Env(), rcvr.get()); |
| } |
| result->SetL(soa.Decode<mirror::Object>(jresult)); |
| } else if (shorty == "V") { |
| typedef void (fntype)(JNIEnv*, jobject); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jobject> rcvr(soa.Env(), |
| soa.AddLocalReference<jobject>(receiver)); |
| ScopedThreadStateChange tsc(self, kNative); |
| fn(soa.Env(), rcvr.get()); |
| } else if (shorty == "LL") { |
| typedef jobject (fntype)(JNIEnv*, jobject, jobject); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jobject> rcvr(soa.Env(), |
| soa.AddLocalReference<jobject>(receiver)); |
| ScopedLocalRef<jobject> arg0(soa.Env(), |
| soa.AddLocalReference<jobject>(ObjArg(args[0]))); |
| jobject jresult; |
| { |
| ScopedThreadStateChange tsc(self, kNative); |
| jresult = fn(soa.Env(), rcvr.get(), arg0.get()); |
| } |
| result->SetL(soa.Decode<mirror::Object>(jresult)); |
| ScopedThreadStateChange tsc(self, kNative); |
| } else if (shorty == "III") { |
| typedef jint (fntype)(JNIEnv*, jobject, jint, jint); |
| fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); |
| ScopedLocalRef<jobject> rcvr(soa.Env(), |
| soa.AddLocalReference<jobject>(receiver)); |
| ScopedThreadStateChange tsc(self, kNative); |
| result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1])); |
| } else { |
| LOG(FATAL) << "Do something with native method: " << method->PrettyMethod() |
| << " shorty: " << shorty; |
| } |
| } |
| } |
| |
| enum InterpreterImplKind { |
| kSwitchImplKind, // Switch-based interpreter implementation. |
| kMterpImplKind // Assembly interpreter |
| }; |
| |
| static constexpr InterpreterImplKind kInterpreterImplKind = kMterpImplKind; |
| |
| static inline JValue Execute( |
| Thread* self, |
| const DexFile::CodeItem* code_item, |
| ShadowFrame& shadow_frame, |
| JValue result_register, |
| bool stay_in_interpreter = false) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!shadow_frame.GetMethod()->IsAbstract()); |
| DCHECK(!shadow_frame.GetMethod()->IsNative()); |
| if (LIKELY(shadow_frame.GetDexPC() == 0)) { // Entering the method, but not via deoptimization. |
| if (kIsDebugBuild) { |
| self->AssertNoPendingException(); |
| } |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| ArtMethod *method = shadow_frame.GetMethod(); |
| |
| if (UNLIKELY(instrumentation->HasMethodEntryListeners())) { |
| instrumentation->MethodEnterEvent(self, shadow_frame.GetThisObject(code_item->ins_size_), |
| method, 0); |
| if (UNLIKELY(self->IsExceptionPending())) { |
| instrumentation->MethodUnwindEvent(self, |
| shadow_frame.GetThisObject(code_item->ins_size_), |
| method, |
| 0); |
| return JValue(); |
| } |
| } |
| |
| if (!stay_in_interpreter) { |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit != nullptr) { |
| jit->MethodEntered(self, shadow_frame.GetMethod()); |
| if (jit->CanInvokeCompiledCode(method)) { |
| JValue result; |
| |
| // Pop the shadow frame before calling into compiled code. |
| self->PopShadowFrame(); |
| // Calculate the offset of the first input reg. The input registers are in the high regs. |
| // It's ok to access the code item here since JIT code will have been touched by the |
| // interpreter and compiler already. |
| uint16_t arg_offset = code_item->registers_size_ - code_item->ins_size_; |
| ArtInterpreterToCompiledCodeBridge(self, nullptr, &shadow_frame, arg_offset, &result); |
| // Push the shadow frame back as the caller will expect it. |
| self->PushShadowFrame(&shadow_frame); |
| |
| return result; |
| } |
| } |
| } |
| } |
| |
| shadow_frame.GetMethod()->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self); |
| |
| // Lock counting is a special version of accessibility checks, and for simplicity and |
| // reduction of template parameters, we gate it behind access-checks mode. |
| ArtMethod* method = shadow_frame.GetMethod(); |
| DCHECK(!method->SkipAccessChecks() || !method->MustCountLocks()); |
| |
| bool transaction_active = Runtime::Current()->IsActiveTransaction(); |
| if (LIKELY(method->SkipAccessChecks())) { |
| // Enter the "without access check" interpreter. |
| if (kInterpreterImplKind == kMterpImplKind) { |
| if (transaction_active) { |
| // No Mterp variant - just use the switch interpreter. |
| return ExecuteSwitchImpl<false, true>(self, code_item, shadow_frame, result_register, |
| false); |
| } else if (UNLIKELY(!Runtime::Current()->IsStarted())) { |
| return ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, |
| false); |
| } else { |
| while (true) { |
| // Mterp does not support all instrumentation/debugging. |
| if (MterpShouldSwitchInterpreters() != 0) { |
| return ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, |
| false); |
| } |
| bool returned = ExecuteMterpImpl(self, code_item, &shadow_frame, &result_register); |
| if (returned) { |
| return result_register; |
| } else { |
| // Mterp didn't like that instruction. Single-step it with the reference interpreter. |
| result_register = ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, |
| result_register, true); |
| if (shadow_frame.GetDexPC() == dex::kDexNoIndex) { |
| // Single-stepped a return or an exception not handled locally. Return to caller. |
| return result_register; |
| } |
| } |
| } |
| } |
| } else { |
| DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind); |
| if (transaction_active) { |
| return ExecuteSwitchImpl<false, true>(self, code_item, shadow_frame, result_register, |
| false); |
| } else { |
| return ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, |
| false); |
| } |
| } |
| } else { |
| // Enter the "with access check" interpreter. |
| if (kInterpreterImplKind == kMterpImplKind) { |
| // No access check variants for Mterp. Just use the switch version. |
| if (transaction_active) { |
| return ExecuteSwitchImpl<true, true>(self, code_item, shadow_frame, result_register, |
| false); |
| } else { |
| return ExecuteSwitchImpl<true, false>(self, code_item, shadow_frame, result_register, |
| false); |
| } |
| } else { |
| DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind); |
| if (transaction_active) { |
| return ExecuteSwitchImpl<true, true>(self, code_item, shadow_frame, result_register, |
| false); |
| } else { |
| return ExecuteSwitchImpl<true, false>(self, code_item, shadow_frame, result_register, |
| false); |
| } |
| } |
| } |
| } |
| |
| void EnterInterpreterFromInvoke(Thread* self, |
| ArtMethod* method, |
| ObjPtr<mirror::Object> receiver, |
| uint32_t* args, |
| JValue* result, |
| bool stay_in_interpreter) { |
| DCHECK_EQ(self, Thread::Current()); |
| bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); |
| if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { |
| ThrowStackOverflowError(self); |
| return; |
| } |
| |
| // This can happen if we are in forced interpreter mode and an obsolete method is called using |
| // reflection. |
| if (UNLIKELY(method->IsObsolete())) { |
| ThrowInternalError("Attempting to invoke obsolete version of '%s'.", |
| method->PrettyMethod().c_str()); |
| return; |
| } |
| |
| const char* old_cause = self->StartAssertNoThreadSuspension("EnterInterpreterFromInvoke"); |
| const DexFile::CodeItem* code_item = method->GetCodeItem(); |
| uint16_t num_regs; |
| uint16_t num_ins; |
| if (code_item != nullptr) { |
| num_regs = code_item->registers_size_; |
| num_ins = code_item->ins_size_; |
| } else if (!method->IsInvokable()) { |
| self->EndAssertNoThreadSuspension(old_cause); |
| method->ThrowInvocationTimeError(); |
| return; |
| } else { |
| DCHECK(method->IsNative()); |
| num_regs = num_ins = ArtMethod::NumArgRegisters(method->GetShorty()); |
| if (!method->IsStatic()) { |
| num_regs++; |
| num_ins++; |
| } |
| } |
| // Set up shadow frame with matching number of reference slots to vregs. |
| ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame(); |
| ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = |
| CREATE_SHADOW_FRAME(num_regs, last_shadow_frame, method, /* dex pc */ 0); |
| ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); |
| self->PushShadowFrame(shadow_frame); |
| |
| size_t cur_reg = num_regs - num_ins; |
| if (!method->IsStatic()) { |
| CHECK(receiver != nullptr); |
| shadow_frame->SetVRegReference(cur_reg, receiver.Ptr()); |
| ++cur_reg; |
| } |
| uint32_t shorty_len = 0; |
| const char* shorty = method->GetShorty(&shorty_len); |
| for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) { |
| DCHECK_LT(shorty_pos + 1, shorty_len); |
| switch (shorty[shorty_pos + 1]) { |
| case 'L': { |
| ObjPtr<mirror::Object> o = |
| reinterpret_cast<StackReference<mirror::Object>*>(&args[arg_pos])->AsMirrorPtr(); |
| shadow_frame->SetVRegReference(cur_reg, o.Ptr()); |
| break; |
| } |
| case 'J': case 'D': { |
| uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos]; |
| shadow_frame->SetVRegLong(cur_reg, wide_value); |
| cur_reg++; |
| arg_pos++; |
| break; |
| } |
| default: |
| shadow_frame->SetVReg(cur_reg, args[arg_pos]); |
| break; |
| } |
| } |
| self->EndAssertNoThreadSuspension(old_cause); |
| // Do this after populating the shadow frame in case EnsureInitialized causes a GC. |
| if (method->IsStatic() && UNLIKELY(!method->GetDeclaringClass()->IsInitialized())) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass())); |
| if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) { |
| CHECK(self->IsExceptionPending()); |
| self->PopShadowFrame(); |
| return; |
| } |
| } |
| if (LIKELY(!method->IsNative())) { |
| JValue r = Execute(self, code_item, *shadow_frame, JValue(), stay_in_interpreter); |
| if (result != nullptr) { |
| *result = r; |
| } |
| } else { |
| // We don't expect to be asked to interpret native code (which is entered via a JNI compiler |
| // generated stub) except during testing and image writing. |
| // Update args to be the args in the shadow frame since the input ones could hold stale |
| // references pointers due to moving GC. |
| args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1); |
| if (!Runtime::Current()->IsStarted()) { |
| UnstartedRuntime::Jni(self, method, receiver.Ptr(), args, result); |
| } else { |
| InterpreterJni(self, method, shorty, receiver, args, result); |
| } |
| } |
| self->PopShadowFrame(); |
| } |
| |
| static int16_t GetReceiverRegisterForStringInit(const Instruction* instr) { |
| DCHECK(instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE || |
| instr->Opcode() == Instruction::INVOKE_DIRECT); |
| return (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ? |
| instr->VRegC_3rc() : instr->VRegC_35c(); |
| } |
| |
| void EnterInterpreterFromDeoptimize(Thread* self, |
| ShadowFrame* shadow_frame, |
| JValue* ret_val, |
| bool from_code, |
| DeoptimizationMethodType deopt_method_type) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| JValue value; |
| // Set value to last known result in case the shadow frame chain is empty. |
| value.SetJ(ret_val->GetJ()); |
| // Are we executing the first shadow frame? |
| bool first = true; |
| while (shadow_frame != nullptr) { |
| // We do not want to recover lock state for lock counting when deoptimizing. Currently, |
| // the compiler should not have compiled a method that failed structured-locking checks. |
| DCHECK(!shadow_frame->GetMethod()->MustCountLocks()); |
| |
| self->SetTopOfShadowStack(shadow_frame); |
| const DexFile::CodeItem* code_item = shadow_frame->GetMethod()->GetCodeItem(); |
| const uint32_t dex_pc = shadow_frame->GetDexPC(); |
| uint32_t new_dex_pc = dex_pc; |
| if (UNLIKELY(self->IsExceptionPending())) { |
| // If we deoptimize from the QuickExceptionHandler, we already reported the exception to |
| // the instrumentation. To prevent from reporting it a second time, we simply pass a |
| // null Instrumentation*. |
| const instrumentation::Instrumentation* const instrumentation = |
| first ? nullptr : Runtime::Current()->GetInstrumentation(); |
| new_dex_pc = MoveToExceptionHandler( |
| self, *shadow_frame, instrumentation) ? shadow_frame->GetDexPC() : dex::kDexNoIndex; |
| } else if (!from_code) { |
| // Deoptimization is not called from code directly. |
| const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]); |
| if (deopt_method_type == DeoptimizationMethodType::kKeepDexPc) { |
| DCHECK(first); |
| // Need to re-execute the dex instruction. |
| // (1) An invocation might be split into class initialization and invoke. |
| // In this case, the invoke should not be skipped. |
| // (2) A suspend check should also execute the dex instruction at the |
| // corresponding dex pc. |
| DCHECK_EQ(new_dex_pc, dex_pc); |
| } else if (instr->Opcode() == Instruction::MONITOR_ENTER || |
| instr->Opcode() == Instruction::MONITOR_EXIT) { |
| DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault); |
| DCHECK(first); |
| // Non-idempotent dex instruction should not be re-executed. |
| // On the other hand, if a MONITOR_ENTER is at the dex_pc of a suspend |
| // check, that MONITOR_ENTER should be executed. That case is handled |
| // above. |
| new_dex_pc = dex_pc + instr->SizeInCodeUnits(); |
| } else if (instr->IsInvoke()) { |
| DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault); |
| if (IsStringInit(instr, shadow_frame->GetMethod())) { |
| uint16_t this_obj_vreg = GetReceiverRegisterForStringInit(instr); |
| // Move the StringFactory.newStringFromChars() result into the register representing |
| // "this object" when invoking the string constructor in the original dex instruction. |
| // Also move the result into all aliases. |
| DCHECK(value.GetL()->IsString()); |
| SetStringInitValueToAllAliases(shadow_frame, this_obj_vreg, value); |
| // Calling string constructor in the original dex code doesn't generate a result value. |
| value.SetJ(0); |
| } |
| new_dex_pc = dex_pc + instr->SizeInCodeUnits(); |
| } else if (instr->Opcode() == Instruction::NEW_INSTANCE) { |
| // A NEW_INSTANCE is simply re-executed, including |
| // "new-instance String" which is compiled into a call into |
| // StringFactory.newEmptyString(). |
| DCHECK_EQ(new_dex_pc, dex_pc); |
| } else { |
| DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault); |
| DCHECK(first); |
| // By default, we re-execute the dex instruction since if they are not |
| // an invoke, so that we don't have to decode the dex instruction to move |
| // result into the right vreg. All slow paths have been audited to be |
| // idempotent except monitor-enter/exit and invocation stubs. |
| // TODO: move result and advance dex pc. That also requires that we |
| // can tell the return type of a runtime method, possibly by decoding |
| // the dex instruction at the caller. |
| DCHECK_EQ(new_dex_pc, dex_pc); |
| } |
| } else { |
| // Nothing to do, the dex_pc is the one at which the code requested |
| // the deoptimization. |
| DCHECK(first); |
| DCHECK_EQ(new_dex_pc, dex_pc); |
| } |
| if (new_dex_pc != dex::kDexNoIndex) { |
| shadow_frame->SetDexPC(new_dex_pc); |
| value = Execute(self, code_item, *shadow_frame, value); |
| } |
| ShadowFrame* old_frame = shadow_frame; |
| shadow_frame = shadow_frame->GetLink(); |
| ShadowFrame::DeleteDeoptimizedFrame(old_frame); |
| // Following deoptimizations of shadow frames must be at invocation point |
| // and should advance dex pc past the invoke instruction. |
| from_code = false; |
| deopt_method_type = DeoptimizationMethodType::kDefault; |
| first = false; |
| } |
| ret_val->SetJ(value.GetJ()); |
| } |
| |
| JValue EnterInterpreterFromEntryPoint(Thread* self, const DexFile::CodeItem* code_item, |
| ShadowFrame* shadow_frame) { |
| DCHECK_EQ(self, Thread::Current()); |
| bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); |
| if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { |
| ThrowStackOverflowError(self); |
| return JValue(); |
| } |
| |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit != nullptr) { |
| jit->NotifyCompiledCodeToInterpreterTransition(self, shadow_frame->GetMethod()); |
| } |
| return Execute(self, code_item, *shadow_frame, JValue()); |
| } |
| |
| void ArtInterpreterToInterpreterBridge(Thread* self, |
| const DexFile::CodeItem* code_item, |
| ShadowFrame* shadow_frame, |
| JValue* result) { |
| bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); |
| if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { |
| ThrowStackOverflowError(self); |
| return; |
| } |
| |
| self->PushShadowFrame(shadow_frame); |
| ArtMethod* method = shadow_frame->GetMethod(); |
| // Ensure static methods are initialized. |
| const bool is_static = method->IsStatic(); |
| if (is_static) { |
| ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass(); |
| if (UNLIKELY(!declaring_class->IsInitialized())) { |
| StackHandleScope<1> hs(self); |
| HandleWrapperObjPtr<mirror::Class> h_declaring_class(hs.NewHandleWrapper(&declaring_class)); |
| if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized( |
| self, h_declaring_class, true, true))) { |
| DCHECK(self->IsExceptionPending()); |
| self->PopShadowFrame(); |
| return; |
| } |
| CHECK(h_declaring_class->IsInitializing()); |
| } |
| } |
| |
| if (LIKELY(!shadow_frame->GetMethod()->IsNative())) { |
| result->SetJ(Execute(self, code_item, *shadow_frame, JValue()).GetJ()); |
| } else { |
| // We don't expect to be asked to interpret native code (which is entered via a JNI compiler |
| // generated stub) except during testing and image writing. |
| CHECK(!Runtime::Current()->IsStarted()); |
| ObjPtr<mirror::Object> receiver = is_static ? nullptr : shadow_frame->GetVRegReference(0); |
| uint32_t* args = shadow_frame->GetVRegArgs(is_static ? 0 : 1); |
| UnstartedRuntime::Jni(self, shadow_frame->GetMethod(), receiver.Ptr(), args, result); |
| } |
| |
| self->PopShadowFrame(); |
| } |
| |
| void CheckInterpreterAsmConstants() { |
| CheckMterpAsmConstants(); |
| } |
| |
| void InitInterpreterTls(Thread* self) { |
| InitMterpTls(self); |
| } |
| |
| } // namespace interpreter |
| } // namespace art |