blob: 1b7954dcbc482afc29228d2662e1115e76008fe3 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
#define ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
#include <vector>
#include "arch/instruction_set.h"
#include "debug/method_debug_info.h"
#include "dwarf/debug_frame_opcode_writer.h"
#include "dwarf/dwarf_constants.h"
#include "dwarf/headers.h"
#include "elf/elf_builder.h"
namespace art {
namespace debug {
static constexpr bool kWriteDebugFrameHdr = false;
// Binary search table is not useful if the number of entries is small.
// In particular, this avoids it for the in-memory JIT mini-debug-info.
static constexpr size_t kMinDebugFrameHdrEntries = 100;
static void WriteCIE(InstructionSet isa, /*inout*/ std::vector<uint8_t>* buffer) {
using Reg = dwarf::Reg;
// Scratch registers should be marked as undefined. This tells the
// debugger that its value in the previous frame is not recoverable.
bool is64bit = Is64BitInstructionSet(isa);
switch (isa) {
case InstructionSet::kArm:
case InstructionSet::kThumb2: {
dwarf::DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP).
// core registers.
for (int reg = 0; reg < 13; reg++) {
if (reg < 4 || reg == 12) {
opcodes.Undefined(Reg::ArmCore(reg));
} else {
opcodes.SameValue(Reg::ArmCore(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 16) {
opcodes.Undefined(Reg::ArmFp(reg));
} else {
opcodes.SameValue(Reg::ArmFp(reg));
}
}
auto return_reg = Reg::ArmCore(14); // R14(LR).
WriteCIE(is64bit, return_reg, opcodes, buffer);
return;
}
case InstructionSet::kArm64: {
dwarf::DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP).
// core registers.
for (int reg = 0; reg < 30; reg++) {
if (reg < 8 || reg == 16 || reg == 17) {
opcodes.Undefined(Reg::Arm64Core(reg));
} else {
opcodes.SameValue(Reg::Arm64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 8 || reg >= 16) {
opcodes.Undefined(Reg::Arm64Fp(reg));
} else {
opcodes.SameValue(Reg::Arm64Fp(reg));
}
}
auto return_reg = Reg::Arm64Core(30); // R30(LR).
WriteCIE(is64bit, return_reg, opcodes, buffer);
return;
}
case InstructionSet::kMips:
case InstructionSet::kMips64: {
dwarf::DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP).
// core registers.
for (int reg = 1; reg < 26; reg++) {
if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*.
opcodes.Undefined(Reg::MipsCore(reg));
} else {
opcodes.SameValue(Reg::MipsCore(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 24) {
opcodes.Undefined(Reg::Mips64Fp(reg));
} else {
opcodes.SameValue(Reg::Mips64Fp(reg));
}
}
auto return_reg = Reg::MipsCore(31); // R31(RA).
WriteCIE(is64bit, return_reg, opcodes, buffer);
return;
}
case InstructionSet::kX86: {
// FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
constexpr bool generate_opcodes_for_x86_fp = false;
dwarf::DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP).
opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP).
// core registers.
for (int reg = 0; reg < 8; reg++) {
if (reg <= 3) {
opcodes.Undefined(Reg::X86Core(reg));
} else if (reg == 4) {
// Stack pointer.
} else {
opcodes.SameValue(Reg::X86Core(reg));
}
}
// fp registers.
if (generate_opcodes_for_x86_fp) {
for (int reg = 0; reg < 8; reg++) {
opcodes.Undefined(Reg::X86Fp(reg));
}
}
auto return_reg = Reg::X86Core(8); // R8(EIP).
WriteCIE(is64bit, return_reg, opcodes, buffer);
return;
}
case InstructionSet::kX86_64: {
dwarf::DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP).
opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP).
// core registers.
for (int reg = 0; reg < 16; reg++) {
if (reg == 4) {
// Stack pointer.
} else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP.
opcodes.Undefined(Reg::X86_64Core(reg));
} else {
opcodes.SameValue(Reg::X86_64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 16; reg++) {
if (reg < 12) {
opcodes.Undefined(Reg::X86_64Fp(reg));
} else {
opcodes.SameValue(Reg::X86_64Fp(reg));
}
}
auto return_reg = Reg::X86_64Core(16); // R16(RIP).
WriteCIE(is64bit, return_reg, opcodes, buffer);
return;
}
case InstructionSet::kNone:
break;
}
LOG(FATAL) << "Cannot write CIE frame for ISA " << isa;
UNREACHABLE();
}
template<typename ElfTypes>
void WriteCFISection(ElfBuilder<ElfTypes>* builder,
const ArrayRef<const MethodDebugInfo>& method_infos) {
typedef typename ElfTypes::Addr Elf_Addr;
// The methods can be written in any order.
// Let's therefore sort them in the lexicographical order of the opcodes.
// This has no effect on its own. However, if the final .debug_frame section is
// compressed it reduces the size since similar opcodes sequences are grouped.
std::vector<const MethodDebugInfo*> sorted_method_infos;
sorted_method_infos.reserve(method_infos.size());
for (size_t i = 0; i < method_infos.size(); i++) {
if (!method_infos[i].cfi.empty() && !method_infos[i].deduped) {
sorted_method_infos.push_back(&method_infos[i]);
}
}
if (sorted_method_infos.empty()) {
return;
}
std::stable_sort(
sorted_method_infos.begin(),
sorted_method_infos.end(),
[](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) {
ArrayRef<const uint8_t> l = lhs->cfi;
ArrayRef<const uint8_t> r = rhs->cfi;
return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
});
std::vector<uint32_t> binary_search_table;
if (kWriteDebugFrameHdr) {
binary_search_table.reserve(2 * sorted_method_infos.size());
}
// Write .debug_frame section.
auto* cfi_section = builder->GetDebugFrame();
{
cfi_section->Start();
const bool is64bit = Is64BitInstructionSet(builder->GetIsa());
std::vector<uint8_t> buffer; // Small temporary buffer.
WriteCIE(builder->GetIsa(), &buffer);
cfi_section->WriteFully(buffer.data(), buffer.size());
buffer.clear();
for (const MethodDebugInfo* mi : sorted_method_infos) {
DCHECK(!mi->deduped);
DCHECK(!mi->cfi.empty());
const Elf_Addr code_address = mi->code_address +
(mi->is_code_address_text_relative ? builder->GetText()->GetAddress() : 0);
if (kWriteDebugFrameHdr) {
binary_search_table.push_back(dchecked_integral_cast<uint32_t>(code_address));
binary_search_table.push_back(cfi_section->GetPosition());
}
dwarf::WriteFDE(is64bit,
/* cie_pointer= */ 0,
code_address,
mi->code_size,
mi->cfi,
&buffer);
cfi_section->WriteFully(buffer.data(), buffer.size());
buffer.clear();
}
cfi_section->End();
}
if (kWriteDebugFrameHdr && method_infos.size() > kMinDebugFrameHdrEntries) {
std::sort(binary_search_table.begin(), binary_search_table.end());
// Custom Android section. It is very similar to the official .eh_frame_hdr format.
std::vector<uint8_t> header_buffer;
dwarf::Writer<> header(&header_buffer);
header.PushUint8(1); // Version.
header.PushUint8(dwarf::DW_EH_PE_omit); // Encoding of .eh_frame pointer - none.
header.PushUint8(dwarf::DW_EH_PE_udata4); // Encoding of binary search table size.
header.PushUint8(dwarf::DW_EH_PE_udata4); // Encoding of binary search table data.
header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2));
auto* header_section = builder->GetDebugFrameHdr();
header_section->Start();
header_section->WriteFully(header_buffer.data(), header_buffer.size());
header_section->WriteFully(binary_search_table.data(), binary_search_table.size());
header_section->End();
}
}
} // namespace debug
} // namespace art
#endif // ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_