blob: 4a7831fd62742c72d774fcb510bd7efa93fbe40e [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_ART_METHOD_H_
#define ART_RUNTIME_MIRROR_ART_METHOD_H_
#include "dex_file.h"
#include "gc_root.h"
#include "invoke_type.h"
#include "modifiers.h"
#include "object.h"
#include "object_callbacks.h"
#include "quick/quick_method_frame_info.h"
#include "read_barrier_option.h"
#include "stack_map.h"
namespace art {
struct ArtMethodOffsets;
struct ConstructorMethodOffsets;
union JValue;
class MethodHelper;
class ScopedObjectAccessAlreadyRunnable;
class StringPiece;
class ShadowFrame;
namespace mirror {
typedef void (EntryPointFromInterpreter)(Thread* self, MethodHelper* mh,
const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result);
// C++ mirror of java.lang.reflect.ArtMethod.
class MANAGED ArtMethod FINAL : public Object {
public:
// Size of java.lang.reflect.ArtMethod.class.
static uint32_t ClassSize();
static ArtMethod* FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa,
jobject jlr_method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Class* GetDeclaringClass() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDeclaringClass(Class *new_declaring_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DeclaringClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, declaring_class_));
}
ALWAYS_INLINE uint32_t GetAccessFlags() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetAccessFlags(uint32_t new_access_flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(ArtMethod, access_flags_), new_access_flags);
}
// Approximate what kind of method call would be used for this method.
InvokeType GetInvokeType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns true if the method is declared public.
bool IsPublic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPublic) != 0;
}
// Returns true if the method is declared private.
bool IsPrivate() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPrivate) != 0;
}
// Returns true if the method is declared static.
bool IsStatic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccStatic) != 0;
}
// Returns true if the method is a constructor.
bool IsConstructor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccConstructor) != 0;
}
// Returns true if the method is a class initializer.
bool IsClassInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return IsConstructor() && IsStatic();
}
// Returns true if the method is static, private, or a constructor.
bool IsDirect() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return IsDirect(GetAccessFlags());
}
static bool IsDirect(uint32_t access_flags) {
return (access_flags & (kAccStatic | kAccPrivate | kAccConstructor)) != 0;
}
// Returns true if the method is declared synchronized.
bool IsSynchronized() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized;
return (GetAccessFlags() & synchonized) != 0;
}
bool IsFinal() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccFinal) != 0;
}
bool IsMiranda() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccMiranda) != 0;
}
bool IsNative() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccNative) != 0;
}
bool IsFastNative() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t mask = kAccFastNative | kAccNative;
return (GetAccessFlags() & mask) == mask;
}
bool IsAbstract() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccAbstract) != 0;
}
bool IsSynthetic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccSynthetic) != 0;
}
bool IsProxyMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsPreverified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPreverified) != 0;
}
void SetPreverified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(!IsPreverified());
SetAccessFlags(GetAccessFlags() | kAccPreverified);
}
bool IsOptimized() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Temporary solution for detecting if a method has been optimized: the compiler
// does not create a GC map. Instead, the vmap table contains the stack map
// (as in stack_map.h).
return (GetEntryPointFromQuickCompiledCode() != nullptr)
&& (GetQuickOatCodePointer() != nullptr)
&& (GetNativeGcMap() == nullptr);
}
bool IsPortableCompiled() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPortableCompiled) != 0;
}
void SetIsPortableCompiled() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(!IsPortableCompiled());
SetAccessFlags(GetAccessFlags() | kAccPortableCompiled);
}
void ClearIsPortableCompiled() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(IsPortableCompiled());
SetAccessFlags(GetAccessFlags() & ~kAccPortableCompiled);
}
bool CheckIncompatibleClassChange(InvokeType type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint16_t GetMethodIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Doesn't do erroneous / unresolved class checks.
uint16_t GetMethodIndexDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t GetVtableIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetMethodIndex();
}
void SetMethodIndex(uint16_t new_method_index) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(ArtMethod, method_index_), new_method_index);
}
static MemberOffset MethodIndexOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, method_index_);
}
uint32_t GetCodeItemOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetField32(OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_code_item_offset_));
}
void SetCodeItemOffset(uint32_t new_code_off) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_code_item_offset_), new_code_off);
}
// Number of 32bit registers that would be required to hold all the arguments
static size_t NumArgRegisters(const StringPiece& shorty);
ALWAYS_INLINE uint32_t GetDexMethodIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDexMethodIndex(uint32_t new_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_method_index_), new_idx);
}
ObjectArray<String>* GetDexCacheStrings() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDexCacheStrings(ObjectArray<String>* new_dex_cache_strings)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DexCacheStringsOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_cache_strings_);
}
static MemberOffset DexCacheResolvedMethodsOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_cache_resolved_methods_);
}
static MemberOffset DexCacheResolvedTypesOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_cache_resolved_types_);
}
ALWAYS_INLINE ArtMethod* GetDexCacheResolvedMethod(uint16_t method_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE void SetDexCacheResolvedMethod(uint16_t method_idx, ArtMethod* new_method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE void SetDexCacheResolvedMethods(ObjectArray<ArtMethod>* new_dex_cache_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool HasDexCacheResolvedMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool HasSameDexCacheResolvedMethods(ArtMethod* other) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool HasSameDexCacheResolvedMethods(ObjectArray<ArtMethod>* other_cache)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool kWithCheck = true>
Class* GetDexCacheResolvedType(uint32_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDexCacheResolvedTypes(ObjectArray<Class>* new_dex_cache_types)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool HasDexCacheResolvedTypes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool HasSameDexCacheResolvedTypes(ArtMethod* other) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool HasSameDexCacheResolvedTypes(ObjectArray<Class>* other_cache)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Find the method that this method overrides
ArtMethod* FindOverriddenMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
EntryPointFromInterpreter* GetEntryPointFromInterpreter()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
return GetEntryPointFromInterpreterPtrSize(sizeof(void*));
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
EntryPointFromInterpreter* GetEntryPointFromInterpreterPtrSize(size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldPtrWithSize<EntryPointFromInterpreter*, kVerifyFlags>(
EntryPointFromInterpreterOffset(pointer_size), pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetEntryPointFromInterpreter(EntryPointFromInterpreter* entry_point_from_interpreter)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
SetEntryPointFromInterpreterPtrSize(entry_point_from_interpreter, sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetEntryPointFromInterpreterPtrSize(EntryPointFromInterpreter* entry_point_from_interpreter,
size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
SetFieldPtrWithSize<false, true, kVerifyFlags>(
EntryPointFromInterpreterOffset(pointer_size), entry_point_from_interpreter, pointer_size);
}
ALWAYS_INLINE static MemberOffset EntryPointFromPortableCompiledCodeOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset() + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_portable_compiled_code_) / sizeof(void*) * pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
const void* GetEntryPointFromPortableCompiledCode()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
return GetEntryPointFromPortableCompiledCodePtrSize(sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ALWAYS_INLINE const void* GetEntryPointFromPortableCompiledCodePtrSize(size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldPtrWithSize<const void*, kVerifyFlags>(
EntryPointFromPortableCompiledCodeOffset(pointer_size), pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetEntryPointFromPortableCompiledCode(const void* entry_point_from_portable_compiled_code)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
return SetEntryPointFromPortableCompiledCodePtrSize(entry_point_from_portable_compiled_code,
sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetEntryPointFromPortableCompiledCodePtrSize(
const void* entry_point_from_portable_compiled_code, size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
SetFieldPtrWithSize<false, true, kVerifyFlags>(
EntryPointFromPortableCompiledCodeOffset(pointer_size),
entry_point_from_portable_compiled_code, pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
const void* GetEntryPointFromQuickCompiledCode() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
return GetEntryPointFromQuickCompiledCodePtrSize(sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ALWAYS_INLINE const void* GetEntryPointFromQuickCompiledCodePtrSize(size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldPtrWithSize<const void*, kVerifyFlags>(
EntryPointFromQuickCompiledCodeOffset(pointer_size), pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetEntryPointFromQuickCompiledCode(const void* entry_point_from_quick_compiled_code)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
SetEntryPointFromQuickCompiledCodePtrSize(entry_point_from_quick_compiled_code,
sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ALWAYS_INLINE void SetEntryPointFromQuickCompiledCodePtrSize(
const void* entry_point_from_quick_compiled_code, size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
SetFieldPtrWithSize<false, true, kVerifyFlags>(
EntryPointFromQuickCompiledCodeOffset(pointer_size), entry_point_from_quick_compiled_code,
pointer_size);
}
uint32_t GetCodeSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Check whether the given PC is within the quick compiled code associated with this method's
// quick entrypoint. This code isn't robust for instrumentation, etc. and is only used for
// debug purposes.
bool PcIsWithinQuickCode(uintptr_t pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uintptr_t code = reinterpret_cast<uintptr_t>(GetEntryPointFromQuickCompiledCode());
if (code == 0) {
return pc == 0;
}
/*
* During a stack walk, a return PC may point past-the-end of the code
* in the case that the last instruction is a call that isn't expected to
* return. Thus, we check <= code + GetCodeSize().
*
* NOTE: For Thumb both pc and code are offset by 1 indicating the Thumb state.
*/
return code <= pc && pc <= code + GetCodeSize();
}
void AssertPcIsWithinQuickCode(uintptr_t pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns true if the entrypoint points to the interpreter, as
// opposed to the compiled code, that is, this method will be
// interpretered on invocation.
bool IsEntrypointInterpreter() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t GetQuickOatCodeOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t GetPortableOatCodeOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetQuickOatCodeOffset(uint32_t code_offset) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetPortableOatCodeOffset(uint32_t code_offset) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE static const void* EntryPointToCodePointer(const void* entry_point) {
uintptr_t code = reinterpret_cast<uintptr_t>(entry_point);
// TODO: Make this Thumb2 specific. It is benign on other architectures as code is always at
// least 2 byte aligned.
code &= ~0x1;
return reinterpret_cast<const void*>(code);
}
// Actual entry point pointer to compiled oat code or nullptr if method has no compiled code.
const void* GetQuickOatEntryPoint() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Actual pointer to compiled oat code or nullptr.
const void* GetQuickOatCodePointer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return EntryPointToCodePointer(GetQuickOatEntryPoint());
}
// Callers should wrap the uint8_t* in a MappingTable instance for convenient access.
const uint8_t* GetMappingTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const uint8_t* GetMappingTable(const void* code_pointer)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Callers should wrap the uint8_t* in a VmapTable instance for convenient access.
const uint8_t* GetVmapTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const uint8_t* GetVmapTable(const void* code_pointer)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
StackMap GetStackMap(uint32_t native_pc_offset) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
CodeInfo GetOptimizedCodeInfo() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const uint8_t* GetNativeGcMap() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
return GetNativeGcMapPtrSize(sizeof(void*));
}
ALWAYS_INLINE const uint8_t* GetNativeGcMapPtrSize(size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldPtrWithSize<uint8_t*>(GcMapOffset(pointer_size), pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetNativeGcMap(const uint8_t* data) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
SetNativeGcMapPtrSize(data, sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ALWAYS_INLINE void SetNativeGcMapPtrSize(const uint8_t* data, size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
SetFieldPtrWithSize<false, true, kVerifyFlags>(GcMapOffset(pointer_size), data,
pointer_size);
}
// When building the oat need a convenient place to stuff the offset of the native GC map.
void SetOatNativeGcMapOffset(uint32_t gc_map_offset) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t GetOatNativeGcMapOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
template <bool kCheckFrameSize = true>
uint32_t GetFrameSizeInBytes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t result = GetQuickFrameInfo().FrameSizeInBytes();
if (kCheckFrameSize) {
DCHECK_LE(static_cast<size_t>(kStackAlignment), result);
}
return result;
}
QuickMethodFrameInfo GetQuickFrameInfo() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
QuickMethodFrameInfo GetQuickFrameInfo(const void* code_pointer)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
FrameOffset GetReturnPcOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetReturnPcOffset(GetFrameSizeInBytes());
}
FrameOffset GetReturnPcOffset(uint32_t frame_size_in_bytes)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK_EQ(frame_size_in_bytes, GetFrameSizeInBytes());
return FrameOffset(frame_size_in_bytes - sizeof(void*));
}
FrameOffset GetHandleScopeOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK_LT(sizeof(void*), GetFrameSizeInBytes());
return FrameOffset(sizeof(void*));
}
void RegisterNative(const void* native_method, bool is_fast)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void UnregisterNative() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset EntryPointFromInterpreterOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset() + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_interpreter_) / sizeof(void*) * pointer_size);
}
static MemberOffset EntryPointFromJniOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset() + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_jni_) / sizeof(void*) * pointer_size);
}
static MemberOffset EntryPointFromQuickCompiledCodeOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset() + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_quick_compiled_code_) / sizeof(void*) * pointer_size);
}
static MemberOffset GcMapOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset() + OFFSETOF_MEMBER(
PtrSizedFields, gc_map_) / sizeof(void*) * pointer_size);
}
void* GetEntryPointFromJni() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
return GetEntryPointFromJniPtrSize(sizeof(void*));
}
ALWAYS_INLINE void* GetEntryPointFromJniPtrSize(size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFieldPtrWithSize<void*>(EntryPointFromJniOffset(pointer_size), pointer_size);
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetEntryPointFromJni(const void* entrypoint) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CheckObjectSizeEqualsMirrorSize();
SetEntryPointFromJniPtrSize<kVerifyFlags>(entrypoint, sizeof(void*));
}
template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
ALWAYS_INLINE void SetEntryPointFromJniPtrSize(const void* entrypoint, size_t pointer_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
SetFieldPtrWithSize<false, true, kVerifyFlags>(
EntryPointFromJniOffset(pointer_size), entrypoint, pointer_size);
}
static MemberOffset GetMethodIndexOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, method_index_);
}
// Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal
// conventions for a method of managed code. Returns false for Proxy methods.
bool IsRuntimeMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Is this a hand crafted method used for something like describing callee saves?
bool IsCalleeSaveMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsResolutionMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsImtConflictMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsImtUnimplementedMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uintptr_t NativeQuickPcOffset(const uintptr_t pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
#ifdef NDEBUG
uintptr_t NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return pc - reinterpret_cast<uintptr_t>(quick_entry_point);
}
#else
uintptr_t NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
#endif
// Converts a native PC to a dex PC.
uint32_t ToDexPc(const uintptr_t pc, bool abort_on_failure = true)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Converts a dex PC to a native PC.
uintptr_t ToNativeQuickPc(const uint32_t dex_pc, bool abort_on_failure = true)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Find the catch block for the given exception type and dex_pc. When a catch block is found,
// indicates whether the found catch block is responsible for clearing the exception or whether
// a move-exception instruction is present.
static uint32_t FindCatchBlock(Handle<ArtMethod> h_this, Handle<Class> exception_type,
uint32_t dex_pc, bool* has_no_move_exception)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void SetClass(Class* java_lang_reflect_ArtMethod);
template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
static Class* GetJavaLangReflectArtMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void ResetClass();
static void VisitRoots(RootCallback* callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile* GetDexFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetDeclaringClassDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetShorty() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uint32_t unused_length;
return GetShorty(&unused_length);
}
const char* GetShorty(uint32_t* out_length) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const Signature GetSignature() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE const char* GetName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
mirror::String* GetNameAsString(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile::CodeItem* GetCodeItem() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsResolvedTypeIdx(uint16_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int32_t GetLineNumFromDexPC(uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile::ProtoId& GetPrototype() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile::TypeList* GetParameterTypeList() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetDeclaringClassSourceFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint16_t GetClassDefIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const DexFile::ClassDef& GetClassDef() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetReturnTypeDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const char* GetTypeDescriptorFromTypeIdx(uint16_t type_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// May cause thread suspension due to GetClassFromTypeIdx calling ResolveType this caused a large
// number of bugs at call sites.
mirror::Class* GetReturnType(bool resolve = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
mirror::ClassLoader* GetClassLoader() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
mirror::DexCache* GetDexCache() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE ArtMethod* GetInterfaceMethodIfProxy() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static size_t SizeWithoutPointerFields() {
return sizeof(ArtMethod) - sizeof(PtrSizedFields);
}
// Size of an instance of java.lang.reflect.ArtMethod not including its value array.
static size_t InstanceSize(size_t pointer_size) {
return SizeWithoutPointerFields() + (sizeof(PtrSizedFields) / sizeof(void*)) * pointer_size;
}
protected:
// Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses".
// The class we are a part of.
HeapReference<Class> declaring_class_;
// Short cuts to declaring_class_->dex_cache_ member for fast compiled code access.
HeapReference<ObjectArray<ArtMethod>> dex_cache_resolved_methods_;
// Short cuts to declaring_class_->dex_cache_ member for fast compiled code access.
HeapReference<ObjectArray<Class>> dex_cache_resolved_types_;
// Short cuts to declaring_class_->dex_cache_ member for fast compiled code access.
HeapReference<ObjectArray<String>> dex_cache_strings_;
// Access flags; low 16 bits are defined by spec.
uint32_t access_flags_;
/* Dex file fields. The defining dex file is available via declaring_class_->dex_cache_ */
// Offset to the CodeItem.
uint32_t dex_code_item_offset_;
// Index into method_ids of the dex file associated with this method.
uint32_t dex_method_index_;
/* End of dex file fields. */
// Entry within a dispatch table for this method. For static/direct methods the index is into
// the declaringClass.directMethods, for virtual methods the vtable and for interface methods the
// ifTable.
uint32_t method_index_;
// Add alignment word here if necessary.
// Must be the last fields in the method.
struct PACKED(4) PtrSizedFields {
// Method dispatch from the interpreter invokes this pointer which may cause a bridge into
// compiled code.
void* entry_point_from_interpreter_;
// Pointer to JNI function registered to this method, or a function to resolve the JNI function.
void* entry_point_from_jni_;
// Method dispatch from quick compiled code invokes this pointer which may cause bridging into
// portable compiled code or the interpreter.
void* entry_point_from_quick_compiled_code_;
// Pointer to a data structure created by the compiler and used by the garbage collector to
// determine which registers hold live references to objects within the heap. Keyed by native PC
// offsets for the quick compiler and dex PCs for the portable.
void* gc_map_;
// Method dispatch from portable compiled code invokes this pointer which may cause bridging
// into quick compiled code or the interpreter. Last to simplify entrypoint logic.
void* entry_point_from_portable_compiled_code_;
} ptr_sized_fields_;
static GcRoot<Class> java_lang_reflect_ArtMethod_;
private:
ALWAYS_INLINE void CheckObjectSizeEqualsMirrorSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE ObjectArray<ArtMethod>* GetDexCacheResolvedMethods()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ALWAYS_INLINE ObjectArray<Class>* GetDexCacheResolvedTypes()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static size_t PtrSizedFieldsOffset() {
return OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_);
}
friend struct art::ArtMethodOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(ArtMethod);
};
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_ART_METHOD_H_