blob: 300ffbe03d9e6a440564ecf6acdf7ff724c474c9 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "induction_var_analysis.h"
namespace art {
/**
* Returns true if instruction is invariant within the given loop.
*/
static bool IsLoopInvariant(HLoopInformation* loop, HInstruction* instruction) {
HLoopInformation* other_loop = instruction->GetBlock()->GetLoopInformation();
if (other_loop != loop) {
// If instruction does not occur in same loop, it is invariant
// if it appears in an outer loop (including no loop at all).
return other_loop == nullptr || loop->IsIn(*other_loop);
}
return false;
}
/**
* Returns true if instruction is proper entry-phi-operation for given loop
* (referred to as mu-operation in Gerlek's paper).
*/
static bool IsEntryPhi(HLoopInformation* loop, HInstruction* instruction) {
return
instruction->IsPhi() &&
instruction->InputCount() == 2 &&
instruction->GetBlock() == loop->GetHeader();
}
//
// Class methods.
//
HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
: HOptimization(graph, kInductionPassName),
global_depth_(0),
stack_(graph->GetArena()->Adapter()),
scc_(graph->GetArena()->Adapter()),
map_(std::less<HInstruction*>(), graph->GetArena()->Adapter()),
cycle_(std::less<HInstruction*>(), graph->GetArena()->Adapter()),
induction_(std::less<HLoopInformation*>(), graph->GetArena()->Adapter()) {
}
void HInductionVarAnalysis::Run() {
// Detects sequence variables (generalized induction variables) during an inner-loop-first
// traversal of all loops using Gerlek's algorithm. The order is only relevant if outer
// loops would use induction information of inner loops (not currently done).
for (HPostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) {
HBasicBlock* graph_block = it_graph.Current();
if (graph_block->IsLoopHeader()) {
VisitLoop(graph_block->GetLoopInformation());
}
}
}
void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
// Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
// algorithm. Due to the descendant-first nature, classification happens "on-demand".
global_depth_ = 0;
DCHECK(stack_.empty());
map_.clear();
for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
HBasicBlock* loop_block = it_loop.Current();
DCHECK(loop_block->IsInLoop());
if (loop_block->GetLoopInformation() != loop) {
continue; // Inner loops already visited.
}
// Visit phi-operations and instructions.
for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (!IsVisitedNode(instruction)) {
VisitNode(loop, instruction);
}
}
for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (!IsVisitedNode(instruction)) {
VisitNode(loop, instruction);
}
}
}
DCHECK(stack_.empty());
map_.clear();
}
void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
const uint32_t d1 = ++global_depth_;
map_.Put(instruction, NodeInfo(d1));
stack_.push_back(instruction);
// Visit all descendants.
uint32_t low = d1;
for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) {
low = std::min(low, VisitDescendant(loop, instruction->InputAt(i)));
}
// Lower or found SCC?
if (low < d1) {
map_.find(instruction)->second.depth = low;
} else {
scc_.clear();
cycle_.clear();
// Pop the stack to build the SCC for classification.
while (!stack_.empty()) {
HInstruction* x = stack_.back();
scc_.push_back(x);
stack_.pop_back();
map_.find(x)->second.done = true;
if (x == instruction) {
break;
}
}
// Classify the SCC.
if (scc_.size() == 1 && !IsEntryPhi(loop, scc_[0])) {
ClassifyTrivial(loop, scc_[0]);
} else {
ClassifyNonTrivial(loop);
}
scc_.clear();
cycle_.clear();
}
}
uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
// If the definition is either outside the loop (loop invariant entry value)
// or assigned in inner loop (inner exit value), the traversal stops.
HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
if (otherLoop != loop) {
return global_depth_;
}
// Inspect descendant node.
if (!IsVisitedNode(instruction)) {
VisitNode(loop, instruction);
return map_.find(instruction)->second.depth;
} else {
auto it = map_.find(instruction);
return it->second.done ? global_depth_ : it->second.depth;
}
}
void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
InductionInfo* info = nullptr;
if (instruction->IsPhi()) {
for (size_t i = 1, count = instruction->InputCount(); i < count; i++) {
info = TransferPhi(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(i)));
}
} else if (instruction->IsAdd()) {
info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)), kAdd);
} else if (instruction->IsSub()) {
info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)), kSub);
} else if (instruction->IsMul()) {
info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)));
} else if (instruction->IsShl()) {
info = TransferShl(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)),
instruction->InputAt(0)->GetType());
} else if (instruction->IsNeg()) {
info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
} else if (instruction->IsBoundsCheck()) {
info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through.
} else if (instruction->IsTypeConversion()) {
HTypeConversion* conversion = instruction->AsTypeConversion();
// TODO: accept different conversion scenarios.
if (conversion->GetResultType() == conversion->GetInputType()) {
info = LookupInfo(loop, conversion->GetInput());
}
}
// Successfully classified?
if (info != nullptr) {
AssignInfo(loop, instruction, info);
}
}
void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
const size_t size = scc_.size();
DCHECK_GE(size, 1u);
HInstruction* phi = scc_[size - 1];
if (!IsEntryPhi(loop, phi)) {
return;
}
HInstruction* external = phi->InputAt(0);
HInstruction* internal = phi->InputAt(1);
InductionInfo* initial = LookupInfo(loop, external);
if (initial == nullptr || initial->induction_class != kInvariant) {
return;
}
// Singleton entry-phi-operation may be a wrap-around induction.
if (size == 1) {
InductionInfo* update = LookupInfo(loop, internal);
if (update != nullptr) {
AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update));
}
return;
}
// Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
// temporary meaning to its nodes, seeded from the phi instruction and back.
for (size_t i = 0; i < size - 1; i++) {
HInstruction* instruction = scc_[i];
InductionInfo* update = nullptr;
if (instruction->IsPhi()) {
update = SolvePhi(loop, phi, instruction);
} else if (instruction->IsAdd()) {
update = SolveAddSub(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true);
} else if (instruction->IsSub()) {
update = SolveAddSub(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
}
if (update == nullptr) {
return;
}
cycle_.Put(instruction, update);
}
// Success if the internal link received a meaning.
auto it = cycle_.find(internal);
if (it != cycle_.end()) {
InductionInfo* induction = it->second;
switch (induction->induction_class) {
case kInvariant:
// Classify phi (last element in scc_) and then the rest of the cycle "on-demand".
// Statements are scanned in the Tarjan SCC order, with phi first.
AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial));
for (size_t i = 0; i < size - 1; i++) {
ClassifyTrivial(loop, scc_[i]);
}
break;
case kPeriodic:
// Classify all elements in the cycle with the found periodic induction while rotating
// each first element to the end. Lastly, phi (last element in scc_) is classified.
// Statements are scanned in the reverse Tarjan SCC order, with phi last.
for (size_t i = 2; i <= size; i++) {
AssignInfo(loop, scc_[size - i], induction);
induction = RotatePeriodicInduction(induction->op_b, induction->op_a);
}
AssignInfo(loop, phi, induction);
break;
default:
break;
}
}
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
InductionInfo* induction,
InductionInfo* last) {
// Rotates a periodic induction of the form
// (a, b, c, d, e)
// into
// (b, c, d, e, a)
// in preparation of assigning this to the previous variable in the sequence.
if (induction->induction_class == kInvariant) {
return CreateInduction(kPeriodic, induction, last);
}
return CreateInduction(kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last));
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(InductionInfo* a,
InductionInfo* b) {
// Transfer over a phi: if both inputs are identical, result is input.
if (InductionEqual(a, b)) {
return a;
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
InductionInfo* b,
InductionOp op) {
// Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic
// can be combined with an invariant to yield a similar result. Even two linear inputs can
// be combined. All other combinations fail, however.
if (a != nullptr && b != nullptr) {
if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return CreateInvariantOp(op, a, b);
} else if (a->induction_class == kLinear && b->induction_class == kLinear) {
return CreateInduction(
kLinear, TransferAddSub(a->op_a, b->op_a, op), TransferAddSub(a->op_b, b->op_b, op));
} else if (a->induction_class == kInvariant) {
InductionInfo* new_a = b->op_a;
InductionInfo* new_b = TransferAddSub(a, b->op_b, op);
if (b->induction_class != kLinear) {
DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic);
new_a = TransferAddSub(a, new_a, op);
} else if (op == kSub) { // Negation required.
new_a = TransferNeg(new_a);
}
return CreateInduction(b->induction_class, new_a, new_b);
} else if (b->induction_class == kInvariant) {
InductionInfo* new_a = a->op_a;
InductionInfo* new_b = TransferAddSub(a->op_b, b, op);
if (a->induction_class != kLinear) {
DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic);
new_a = TransferAddSub(new_a, b, op);
}
return CreateInduction(a->induction_class, new_a, new_b);
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
InductionInfo* b) {
// Transfer over a multiplication: any invariant, linear, wrap-around, or periodic
// can be multiplied with an invariant to yield a similar but multiplied result.
// Two non-invariant inputs cannot be multiplied, however.
if (a != nullptr && b != nullptr) {
if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return CreateInvariantOp(kMul, a, b);
} else if (a->induction_class == kInvariant) {
return CreateInduction(b->induction_class, TransferMul(a, b->op_a), TransferMul(a, b->op_b));
} else if (b->induction_class == kInvariant) {
return CreateInduction(a->induction_class, TransferMul(a->op_a, b), TransferMul(a->op_b, b));
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a,
InductionInfo* b,
Primitive::Type t) {
// Transfer over a shift left: treat shift by restricted constant as equivalent multiplication.
int64_t value = -1;
if (a != nullptr && IsIntAndGet(b, &value)) {
// Obtain the constant needed for the multiplication. This yields an existing instruction
// if the constants is already there. Otherwise, this has a side effect on the HIR.
// The restriction on the shift factor avoids generating a negative constant
// (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization
// for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification.
if (t == Primitive::kPrimInt && 0 <= value && value < 31) {
return TransferMul(a, CreateInvariantFetch(graph_->GetIntConstant(1 << value)));
} else if (t == Primitive::kPrimLong && 0 <= value && value < 63) {
return TransferMul(a, CreateInvariantFetch(graph_->GetLongConstant(1L << value)));
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
// Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input
// yields a similar but negated induction as result.
if (a != nullptr) {
if (a->induction_class == kInvariant) {
return CreateInvariantOp(kNeg, nullptr, a);
}
return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b));
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HLoopInformation* loop,
HInstruction* phi,
HInstruction* instruction) {
// Solve within a cycle over a phi: identical inputs are combined into that input as result.
const size_t count = instruction->InputCount();
DCHECK_GT(count, 0u);
auto ita = cycle_.find(instruction->InputAt(0));
if (ita != cycle_.end()) {
InductionInfo* a = ita->second;
for (size_t i = 1; i < count; i++) {
auto itb = cycle_.find(instruction->InputAt(i));
if (itb == cycle_.end() || !HInductionVarAnalysis::InductionEqual(a, itb->second)) {
return nullptr;
}
}
return a;
}
// Solve within a cycle over another entry-phi: add invariants into a periodic.
if (IsEntryPhi(loop, instruction)) {
InductionInfo* a = LookupInfo(loop, instruction->InputAt(0));
if (a != nullptr && a->induction_class == kInvariant) {
if (instruction->InputAt(1) == phi) {
InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
return CreateInduction(kPeriodic, a, initial);
}
auto it = cycle_.find(instruction->InputAt(1));
if (it != cycle_.end()) {
InductionInfo* b = it->second;
if (b->induction_class == kPeriodic) {
return CreateInduction(kPeriodic, a, b);
}
}
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop,
HInstruction* phi,
HInstruction* instruction,
HInstruction* x,
HInstruction* y,
InductionOp op,
bool is_first_call) {
// Solve within a cycle over an addition or subtraction: adding or subtracting an
// invariant value, seeded from phi, keeps adding to the stride of the induction.
InductionInfo* b = LookupInfo(loop, y);
if (b != nullptr && b->induction_class == kInvariant) {
if (x == phi) {
return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
}
auto it = cycle_.find(x);
if (it != cycle_.end()) {
InductionInfo* a = it->second;
if (a->induction_class == kInvariant) {
return CreateInvariantOp(op, a, b);
}
}
}
// Try some alternatives before failing.
if (op == kAdd) {
// Try the other way around for an addition if considered for first time.
if (is_first_call) {
return SolveAddSub(loop, phi, instruction, y, x, op, false);
}
} else if (op == kSub) {
// Solve within a tight cycle for a periodic idiom k = c - k;
if (y == phi && instruction == phi->InputAt(1)) {
InductionInfo* a = LookupInfo(loop, x);
if (a != nullptr && a->induction_class == kInvariant) {
InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial);
}
}
}
return nullptr;
}
void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
HInstruction* instruction,
InductionInfo* info) {
auto it = induction_.find(loop);
if (it == induction_.end()) {
it = induction_.Put(loop,
ArenaSafeMap<HInstruction*, InductionInfo*>(
std::less<HInstruction*>(), graph_->GetArena()->Adapter()));
}
it->second.Put(instruction, info);
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
HInstruction* instruction) {
auto it = induction_.find(loop);
if (it != induction_.end()) {
auto loop_it = it->second.find(instruction);
if (loop_it != it->second.end()) {
return loop_it->second;
}
}
if (IsLoopInvariant(loop, instruction)) {
InductionInfo* info = CreateInvariantFetch(instruction);
AssignInfo(loop, instruction, info);
return info;
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
InductionOp op,
InductionInfo* a,
InductionInfo* b) {
// Perform some light-weight simplifications during construction of a new invariant.
// This often safes memory and yields a more concise representation of the induction.
// More exhaustive simplifications are done by later phases once induction nodes are
// translated back into HIR code (e.g. by loop optimizations or BCE).
int64_t value = -1;
if (IsIntAndGet(a, &value)) {
if (value == 0) {
// Simplify 0 + b = b, 0 * b = 0.
if (op == kAdd) {
return b;
} else if (op == kMul) {
return a;
}
} else if (value == 1 && op == kMul) {
// Simplify 1 * b = b.
return b;
}
}
if (IsIntAndGet(b, &value)) {
if (value == 0) {
// Simplify a + 0 = a, a - 0 = a, a * 0 = 0, - 0 = 0.
if (op == kAdd || op == kSub) {
return a;
} else if (op == kMul || op == kNeg) {
return b;
}
} else if (value == 1 && (op == kMul || op == kDiv)) {
// Simplify a * 1 = a, a / 1 = a.
return a;
}
} else if (b->operation == kNeg) {
// Simplify a + (-b) = a - b, a - (-b) = a + b, - (-b) = b.
switch (op) {
case kAdd: op = kSub; b = b->op_b; break;
case kSub: op = kAdd; b = b->op_b; break;
case kNeg: return b->op_b;
default: break;
}
}
return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr);
}
bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
InductionInfo* info2) {
// Test structural equality only, without accounting for simplifications.
if (info1 != nullptr && info2 != nullptr) {
return
info1->induction_class == info2->induction_class &&
info1->operation == info2->operation &&
info1->fetch == info2->fetch &&
InductionEqual(info1->op_a, info2->op_a) &&
InductionEqual(info1->op_b, info2->op_b);
}
// Otherwise only two nullptrs are considered equal.
return info1 == info2;
}
bool HInductionVarAnalysis::IsIntAndGet(InductionInfo* info, int64_t* value) {
if (info != nullptr && info->induction_class == kInvariant && info->operation == kFetch) {
DCHECK(info->fetch);
if (info->fetch->IsIntConstant()) {
*value = info->fetch->AsIntConstant()->GetValue();
return true;
} else if (info->fetch->IsLongConstant()) {
*value = info->fetch->AsLongConstant()->GetValue();
return true;
}
}
return false;
}
std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
if (info != nullptr) {
if (info->induction_class == kInvariant) {
int64_t value = -1;
std::string inv = "(";
inv += InductionToString(info->op_a);
switch (info->operation) {
case kNop: inv += " @ "; break;
case kAdd: inv += " + "; break;
case kSub:
case kNeg: inv += " - "; break;
case kMul: inv += " * "; break;
case kDiv: inv += " / "; break;
case kFetch:
DCHECK(info->fetch);
if (IsIntAndGet(info, &value)) {
inv += std::to_string(value);
} else {
inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName();
}
break;
}
inv += InductionToString(info->op_b);
return inv + ")";
} else {
DCHECK(info->operation == kNop);
if (info->induction_class == kLinear) {
return "(" + InductionToString(info->op_a) + " * i + " +
InductionToString(info->op_b) + ")";
} else if (info->induction_class == kWrapAround) {
return "wrap(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + ")";
} else if (info->induction_class == kPeriodic) {
return "periodic(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + ")";
}
}
}
return "";
}
} // namespace art