| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "induction_var_analysis.h" |
| |
| namespace art { |
| |
| /** |
| * Returns true if instruction is invariant within the given loop. |
| */ |
| static bool IsLoopInvariant(HLoopInformation* loop, HInstruction* instruction) { |
| HLoopInformation* other_loop = instruction->GetBlock()->GetLoopInformation(); |
| if (other_loop != loop) { |
| // If instruction does not occur in same loop, it is invariant |
| // if it appears in an outer loop (including no loop at all). |
| return other_loop == nullptr || loop->IsIn(*other_loop); |
| } |
| return false; |
| } |
| |
| /** |
| * Returns true if instruction is proper entry-phi-operation for given loop |
| * (referred to as mu-operation in Gerlek's paper). |
| */ |
| static bool IsEntryPhi(HLoopInformation* loop, HInstruction* instruction) { |
| return |
| instruction->IsPhi() && |
| instruction->InputCount() == 2 && |
| instruction->GetBlock() == loop->GetHeader(); |
| } |
| |
| // |
| // Class methods. |
| // |
| |
| HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph) |
| : HOptimization(graph, kInductionPassName), |
| global_depth_(0), |
| stack_(graph->GetArena()->Adapter()), |
| scc_(graph->GetArena()->Adapter()), |
| map_(std::less<HInstruction*>(), graph->GetArena()->Adapter()), |
| cycle_(std::less<HInstruction*>(), graph->GetArena()->Adapter()), |
| induction_(std::less<HLoopInformation*>(), graph->GetArena()->Adapter()) { |
| } |
| |
| void HInductionVarAnalysis::Run() { |
| // Detects sequence variables (generalized induction variables) during an inner-loop-first |
| // traversal of all loops using Gerlek's algorithm. The order is only relevant if outer |
| // loops would use induction information of inner loops (not currently done). |
| for (HPostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) { |
| HBasicBlock* graph_block = it_graph.Current(); |
| if (graph_block->IsLoopHeader()) { |
| VisitLoop(graph_block->GetLoopInformation()); |
| } |
| } |
| } |
| |
| void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) { |
| // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's |
| // algorithm. Due to the descendant-first nature, classification happens "on-demand". |
| global_depth_ = 0; |
| DCHECK(stack_.empty()); |
| map_.clear(); |
| |
| for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) { |
| HBasicBlock* loop_block = it_loop.Current(); |
| DCHECK(loop_block->IsInLoop()); |
| if (loop_block->GetLoopInformation() != loop) { |
| continue; // Inner loops already visited. |
| } |
| // Visit phi-operations and instructions. |
| for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) { |
| HInstruction* instruction = it.Current(); |
| if (!IsVisitedNode(instruction)) { |
| VisitNode(loop, instruction); |
| } |
| } |
| for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* instruction = it.Current(); |
| if (!IsVisitedNode(instruction)) { |
| VisitNode(loop, instruction); |
| } |
| } |
| } |
| |
| DCHECK(stack_.empty()); |
| map_.clear(); |
| } |
| |
| void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) { |
| const uint32_t d1 = ++global_depth_; |
| map_.Put(instruction, NodeInfo(d1)); |
| stack_.push_back(instruction); |
| |
| // Visit all descendants. |
| uint32_t low = d1; |
| for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) { |
| low = std::min(low, VisitDescendant(loop, instruction->InputAt(i))); |
| } |
| |
| // Lower or found SCC? |
| if (low < d1) { |
| map_.find(instruction)->second.depth = low; |
| } else { |
| scc_.clear(); |
| cycle_.clear(); |
| |
| // Pop the stack to build the SCC for classification. |
| while (!stack_.empty()) { |
| HInstruction* x = stack_.back(); |
| scc_.push_back(x); |
| stack_.pop_back(); |
| map_.find(x)->second.done = true; |
| if (x == instruction) { |
| break; |
| } |
| } |
| |
| // Classify the SCC. |
| if (scc_.size() == 1 && !IsEntryPhi(loop, scc_[0])) { |
| ClassifyTrivial(loop, scc_[0]); |
| } else { |
| ClassifyNonTrivial(loop); |
| } |
| |
| scc_.clear(); |
| cycle_.clear(); |
| } |
| } |
| |
| uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) { |
| // If the definition is either outside the loop (loop invariant entry value) |
| // or assigned in inner loop (inner exit value), the traversal stops. |
| HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation(); |
| if (otherLoop != loop) { |
| return global_depth_; |
| } |
| |
| // Inspect descendant node. |
| if (!IsVisitedNode(instruction)) { |
| VisitNode(loop, instruction); |
| return map_.find(instruction)->second.depth; |
| } else { |
| auto it = map_.find(instruction); |
| return it->second.done ? global_depth_ : it->second.depth; |
| } |
| } |
| |
| void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) { |
| InductionInfo* info = nullptr; |
| if (instruction->IsPhi()) { |
| for (size_t i = 1, count = instruction->InputCount(); i < count; i++) { |
| info = TransferPhi(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(i))); |
| } |
| } else if (instruction->IsAdd()) { |
| info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1)), kAdd); |
| } else if (instruction->IsSub()) { |
| info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1)), kSub); |
| } else if (instruction->IsMul()) { |
| info = TransferMul(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1))); |
| } else if (instruction->IsShl()) { |
| info = TransferShl(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1)), |
| instruction->InputAt(0)->GetType()); |
| } else if (instruction->IsNeg()) { |
| info = TransferNeg(LookupInfo(loop, instruction->InputAt(0))); |
| } else if (instruction->IsBoundsCheck()) { |
| info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through. |
| } else if (instruction->IsTypeConversion()) { |
| HTypeConversion* conversion = instruction->AsTypeConversion(); |
| // TODO: accept different conversion scenarios. |
| if (conversion->GetResultType() == conversion->GetInputType()) { |
| info = LookupInfo(loop, conversion->GetInput()); |
| } |
| } |
| |
| // Successfully classified? |
| if (info != nullptr) { |
| AssignInfo(loop, instruction, info); |
| } |
| } |
| |
| void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { |
| const size_t size = scc_.size(); |
| DCHECK_GE(size, 1u); |
| HInstruction* phi = scc_[size - 1]; |
| if (!IsEntryPhi(loop, phi)) { |
| return; |
| } |
| HInstruction* external = phi->InputAt(0); |
| HInstruction* internal = phi->InputAt(1); |
| InductionInfo* initial = LookupInfo(loop, external); |
| if (initial == nullptr || initial->induction_class != kInvariant) { |
| return; |
| } |
| |
| // Singleton entry-phi-operation may be a wrap-around induction. |
| if (size == 1) { |
| InductionInfo* update = LookupInfo(loop, internal); |
| if (update != nullptr) { |
| AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update)); |
| } |
| return; |
| } |
| |
| // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns |
| // temporary meaning to its nodes, seeded from the phi instruction and back. |
| for (size_t i = 0; i < size - 1; i++) { |
| HInstruction* instruction = scc_[i]; |
| InductionInfo* update = nullptr; |
| if (instruction->IsPhi()) { |
| update = SolvePhi(loop, phi, instruction); |
| } else if (instruction->IsAdd()) { |
| update = SolveAddSub( |
| loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true); |
| } else if (instruction->IsSub()) { |
| update = SolveAddSub( |
| loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true); |
| } |
| if (update == nullptr) { |
| return; |
| } |
| cycle_.Put(instruction, update); |
| } |
| |
| // Success if the internal link received a meaning. |
| auto it = cycle_.find(internal); |
| if (it != cycle_.end()) { |
| InductionInfo* induction = it->second; |
| switch (induction->induction_class) { |
| case kInvariant: |
| // Classify phi (last element in scc_) and then the rest of the cycle "on-demand". |
| // Statements are scanned in the Tarjan SCC order, with phi first. |
| AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial)); |
| for (size_t i = 0; i < size - 1; i++) { |
| ClassifyTrivial(loop, scc_[i]); |
| } |
| break; |
| case kPeriodic: |
| // Classify all elements in the cycle with the found periodic induction while rotating |
| // each first element to the end. Lastly, phi (last element in scc_) is classified. |
| // Statements are scanned in the reverse Tarjan SCC order, with phi last. |
| for (size_t i = 2; i <= size; i++) { |
| AssignInfo(loop, scc_[size - i], induction); |
| induction = RotatePeriodicInduction(induction->op_b, induction->op_a); |
| } |
| AssignInfo(loop, phi, induction); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction( |
| InductionInfo* induction, |
| InductionInfo* last) { |
| // Rotates a periodic induction of the form |
| // (a, b, c, d, e) |
| // into |
| // (b, c, d, e, a) |
| // in preparation of assigning this to the previous variable in the sequence. |
| if (induction->induction_class == kInvariant) { |
| return CreateInduction(kPeriodic, induction, last); |
| } |
| return CreateInduction(kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last)); |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(InductionInfo* a, |
| InductionInfo* b) { |
| // Transfer over a phi: if both inputs are identical, result is input. |
| if (InductionEqual(a, b)) { |
| return a; |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a, |
| InductionInfo* b, |
| InductionOp op) { |
| // Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic |
| // can be combined with an invariant to yield a similar result. Even two linear inputs can |
| // be combined. All other combinations fail, however. |
| if (a != nullptr && b != nullptr) { |
| if (a->induction_class == kInvariant && b->induction_class == kInvariant) { |
| return CreateInvariantOp(op, a, b); |
| } else if (a->induction_class == kLinear && b->induction_class == kLinear) { |
| return CreateInduction( |
| kLinear, TransferAddSub(a->op_a, b->op_a, op), TransferAddSub(a->op_b, b->op_b, op)); |
| } else if (a->induction_class == kInvariant) { |
| InductionInfo* new_a = b->op_a; |
| InductionInfo* new_b = TransferAddSub(a, b->op_b, op); |
| if (b->induction_class != kLinear) { |
| DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic); |
| new_a = TransferAddSub(a, new_a, op); |
| } else if (op == kSub) { // Negation required. |
| new_a = TransferNeg(new_a); |
| } |
| return CreateInduction(b->induction_class, new_a, new_b); |
| } else if (b->induction_class == kInvariant) { |
| InductionInfo* new_a = a->op_a; |
| InductionInfo* new_b = TransferAddSub(a->op_b, b, op); |
| if (a->induction_class != kLinear) { |
| DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic); |
| new_a = TransferAddSub(new_a, b, op); |
| } |
| return CreateInduction(a->induction_class, new_a, new_b); |
| } |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a, |
| InductionInfo* b) { |
| // Transfer over a multiplication: any invariant, linear, wrap-around, or periodic |
| // can be multiplied with an invariant to yield a similar but multiplied result. |
| // Two non-invariant inputs cannot be multiplied, however. |
| if (a != nullptr && b != nullptr) { |
| if (a->induction_class == kInvariant && b->induction_class == kInvariant) { |
| return CreateInvariantOp(kMul, a, b); |
| } else if (a->induction_class == kInvariant) { |
| return CreateInduction(b->induction_class, TransferMul(a, b->op_a), TransferMul(a, b->op_b)); |
| } else if (b->induction_class == kInvariant) { |
| return CreateInduction(a->induction_class, TransferMul(a->op_a, b), TransferMul(a->op_b, b)); |
| } |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a, |
| InductionInfo* b, |
| Primitive::Type t) { |
| // Transfer over a shift left: treat shift by restricted constant as equivalent multiplication. |
| int64_t value = -1; |
| if (a != nullptr && IsIntAndGet(b, &value)) { |
| // Obtain the constant needed for the multiplication. This yields an existing instruction |
| // if the constants is already there. Otherwise, this has a side effect on the HIR. |
| // The restriction on the shift factor avoids generating a negative constant |
| // (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization |
| // for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification. |
| if (t == Primitive::kPrimInt && 0 <= value && value < 31) { |
| return TransferMul(a, CreateInvariantFetch(graph_->GetIntConstant(1 << value))); |
| } else if (t == Primitive::kPrimLong && 0 <= value && value < 63) { |
| return TransferMul(a, CreateInvariantFetch(graph_->GetLongConstant(1L << value))); |
| } |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) { |
| // Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input |
| // yields a similar but negated induction as result. |
| if (a != nullptr) { |
| if (a->induction_class == kInvariant) { |
| return CreateInvariantOp(kNeg, nullptr, a); |
| } |
| return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b)); |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HLoopInformation* loop, |
| HInstruction* phi, |
| HInstruction* instruction) { |
| // Solve within a cycle over a phi: identical inputs are combined into that input as result. |
| const size_t count = instruction->InputCount(); |
| DCHECK_GT(count, 0u); |
| auto ita = cycle_.find(instruction->InputAt(0)); |
| if (ita != cycle_.end()) { |
| InductionInfo* a = ita->second; |
| for (size_t i = 1; i < count; i++) { |
| auto itb = cycle_.find(instruction->InputAt(i)); |
| if (itb == cycle_.end() || !HInductionVarAnalysis::InductionEqual(a, itb->second)) { |
| return nullptr; |
| } |
| } |
| return a; |
| } |
| |
| // Solve within a cycle over another entry-phi: add invariants into a periodic. |
| if (IsEntryPhi(loop, instruction)) { |
| InductionInfo* a = LookupInfo(loop, instruction->InputAt(0)); |
| if (a != nullptr && a->induction_class == kInvariant) { |
| if (instruction->InputAt(1) == phi) { |
| InductionInfo* initial = LookupInfo(loop, phi->InputAt(0)); |
| return CreateInduction(kPeriodic, a, initial); |
| } |
| auto it = cycle_.find(instruction->InputAt(1)); |
| if (it != cycle_.end()) { |
| InductionInfo* b = it->second; |
| if (b->induction_class == kPeriodic) { |
| return CreateInduction(kPeriodic, a, b); |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop, |
| HInstruction* phi, |
| HInstruction* instruction, |
| HInstruction* x, |
| HInstruction* y, |
| InductionOp op, |
| bool is_first_call) { |
| // Solve within a cycle over an addition or subtraction: adding or subtracting an |
| // invariant value, seeded from phi, keeps adding to the stride of the induction. |
| InductionInfo* b = LookupInfo(loop, y); |
| if (b != nullptr && b->induction_class == kInvariant) { |
| if (x == phi) { |
| return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b); |
| } |
| auto it = cycle_.find(x); |
| if (it != cycle_.end()) { |
| InductionInfo* a = it->second; |
| if (a->induction_class == kInvariant) { |
| return CreateInvariantOp(op, a, b); |
| } |
| } |
| } |
| |
| // Try some alternatives before failing. |
| if (op == kAdd) { |
| // Try the other way around for an addition if considered for first time. |
| if (is_first_call) { |
| return SolveAddSub(loop, phi, instruction, y, x, op, false); |
| } |
| } else if (op == kSub) { |
| // Solve within a tight cycle for a periodic idiom k = c - k; |
| if (y == phi && instruction == phi->InputAt(1)) { |
| InductionInfo* a = LookupInfo(loop, x); |
| if (a != nullptr && a->induction_class == kInvariant) { |
| InductionInfo* initial = LookupInfo(loop, phi->InputAt(0)); |
| return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop, |
| HInstruction* instruction, |
| InductionInfo* info) { |
| auto it = induction_.find(loop); |
| if (it == induction_.end()) { |
| it = induction_.Put(loop, |
| ArenaSafeMap<HInstruction*, InductionInfo*>( |
| std::less<HInstruction*>(), graph_->GetArena()->Adapter())); |
| } |
| it->second.Put(instruction, info); |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop, |
| HInstruction* instruction) { |
| auto it = induction_.find(loop); |
| if (it != induction_.end()) { |
| auto loop_it = it->second.find(instruction); |
| if (loop_it != it->second.end()) { |
| return loop_it->second; |
| } |
| } |
| if (IsLoopInvariant(loop, instruction)) { |
| InductionInfo* info = CreateInvariantFetch(instruction); |
| AssignInfo(loop, instruction, info); |
| return info; |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant( |
| InductionOp op, |
| InductionInfo* a, |
| InductionInfo* b) { |
| // Perform some light-weight simplifications during construction of a new invariant. |
| // This often safes memory and yields a more concise representation of the induction. |
| // More exhaustive simplifications are done by later phases once induction nodes are |
| // translated back into HIR code (e.g. by loop optimizations or BCE). |
| int64_t value = -1; |
| if (IsIntAndGet(a, &value)) { |
| if (value == 0) { |
| // Simplify 0 + b = b, 0 * b = 0. |
| if (op == kAdd) { |
| return b; |
| } else if (op == kMul) { |
| return a; |
| } |
| } else if (value == 1 && op == kMul) { |
| // Simplify 1 * b = b. |
| return b; |
| } |
| } |
| if (IsIntAndGet(b, &value)) { |
| if (value == 0) { |
| // Simplify a + 0 = a, a - 0 = a, a * 0 = 0, - 0 = 0. |
| if (op == kAdd || op == kSub) { |
| return a; |
| } else if (op == kMul || op == kNeg) { |
| return b; |
| } |
| } else if (value == 1 && (op == kMul || op == kDiv)) { |
| // Simplify a * 1 = a, a / 1 = a. |
| return a; |
| } |
| } else if (b->operation == kNeg) { |
| // Simplify a + (-b) = a - b, a - (-b) = a + b, - (-b) = b. |
| switch (op) { |
| case kAdd: op = kSub; b = b->op_b; break; |
| case kSub: op = kAdd; b = b->op_b; break; |
| case kNeg: return b->op_b; |
| default: break; |
| } |
| } |
| return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr); |
| } |
| |
| bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1, |
| InductionInfo* info2) { |
| // Test structural equality only, without accounting for simplifications. |
| if (info1 != nullptr && info2 != nullptr) { |
| return |
| info1->induction_class == info2->induction_class && |
| info1->operation == info2->operation && |
| info1->fetch == info2->fetch && |
| InductionEqual(info1->op_a, info2->op_a) && |
| InductionEqual(info1->op_b, info2->op_b); |
| } |
| // Otherwise only two nullptrs are considered equal. |
| return info1 == info2; |
| } |
| |
| bool HInductionVarAnalysis::IsIntAndGet(InductionInfo* info, int64_t* value) { |
| if (info != nullptr && info->induction_class == kInvariant && info->operation == kFetch) { |
| DCHECK(info->fetch); |
| if (info->fetch->IsIntConstant()) { |
| *value = info->fetch->AsIntConstant()->GetValue(); |
| return true; |
| } else if (info->fetch->IsLongConstant()) { |
| *value = info->fetch->AsLongConstant()->GetValue(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) { |
| if (info != nullptr) { |
| if (info->induction_class == kInvariant) { |
| int64_t value = -1; |
| std::string inv = "("; |
| inv += InductionToString(info->op_a); |
| switch (info->operation) { |
| case kNop: inv += " @ "; break; |
| case kAdd: inv += " + "; break; |
| case kSub: |
| case kNeg: inv += " - "; break; |
| case kMul: inv += " * "; break; |
| case kDiv: inv += " / "; break; |
| case kFetch: |
| DCHECK(info->fetch); |
| if (IsIntAndGet(info, &value)) { |
| inv += std::to_string(value); |
| } else { |
| inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName(); |
| } |
| break; |
| } |
| inv += InductionToString(info->op_b); |
| return inv + ")"; |
| } else { |
| DCHECK(info->operation == kNop); |
| if (info->induction_class == kLinear) { |
| return "(" + InductionToString(info->op_a) + " * i + " + |
| InductionToString(info->op_b) + ")"; |
| } else if (info->induction_class == kWrapAround) { |
| return "wrap(" + InductionToString(info->op_a) + ", " + |
| InductionToString(info->op_b) + ")"; |
| } else if (info->induction_class == kPeriodic) { |
| return "periodic(" + InductionToString(info->op_a) + ", " + |
| InductionToString(info->op_b) + ")"; |
| } |
| } |
| } |
| return ""; |
| } |
| |
| } // namespace art |