blob: a12a58d48ffe85abafac1b785d528a0b3965ae46 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#include "interpreter.h"
#include <math.h>
#include <iostream>
#include <sstream>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/logging.h"
#include "base/macros.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "handle_scope-inl.h"
#include "mirror/class-inl.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "thread.h"
#include "well_known_classes.h"
using ::art::ArtMethod;
using ::art::mirror::Array;
using ::art::mirror::BooleanArray;
using ::art::mirror::ByteArray;
using ::art::mirror::CharArray;
using ::art::mirror::Class;
using ::art::mirror::ClassLoader;
using ::art::mirror::IntArray;
using ::art::mirror::LongArray;
using ::art::mirror::Object;
using ::art::mirror::ObjectArray;
using ::art::mirror::ShortArray;
using ::art::mirror::String;
using ::art::mirror::Throwable;
namespace art {
namespace interpreter {
// External references to both interpreter implementations.
template<bool do_access_check, bool transaction_active>
extern JValue ExecuteSwitchImpl(Thread* self, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame, JValue result_register);
template<bool do_access_check, bool transaction_active>
extern JValue ExecuteGotoImpl(Thread* self, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame, JValue result_register);
void ThrowNullPointerExceptionFromInterpreter()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static inline void DoMonitorEnter(Thread* self, Object* ref) NO_THREAD_SAFETY_ANALYSIS {
ref->MonitorEnter(self);
}
static inline void DoMonitorExit(Thread* self, Object* ref) NO_THREAD_SAFETY_ANALYSIS {
ref->MonitorExit(self);
}
void AbortTransactionF(Thread* self, const char* fmt, ...)
__attribute__((__format__(__printf__, 2, 3)))
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void AbortTransactionV(Thread* self, const char* fmt, va_list args)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void RecordArrayElementsInTransaction(mirror::Array* array, int32_t count)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Invokes the given method. This is part of the invocation support and is used by DoInvoke and
// DoInvokeVirtualQuick functions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result);
// Invokes the given lambda closure. This is part of the invocation support and is used by
// DoLambdaInvoke functions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range, bool do_assignability_check>
bool DoLambdaCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result);
// Validates that the art method corresponding to a lambda method target
// is semantically valid:
//
// Must be ACC_STATIC and ACC_LAMBDA. Must be a concrete managed implementation
// (i.e. not native, not proxy, not abstract, ...).
//
// If the validation fails, return false and raise an exception.
static inline bool IsValidLambdaTargetOrThrow(ArtMethod* called_method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
bool success = false;
if (UNLIKELY(called_method == nullptr)) {
// The shadow frame should already be pushed, so we don't need to update it.
} else if (UNLIKELY(called_method->IsAbstract())) {
ThrowAbstractMethodError(called_method);
// TODO(iam): Also handle the case when the method is non-static, what error do we throw?
// TODO(iam): Also make sure that ACC_LAMBDA is set.
} else if (UNLIKELY(called_method->GetCodeItem() == nullptr)) {
// Method could be native, proxy method, etc. Lambda targets have to be concrete impls,
// so don't allow this.
} else {
success = true;
}
return success;
}
// Write out the 'ArtMethod*' into vreg and vreg+1
static inline void WriteLambdaClosureIntoVRegs(ShadowFrame& shadow_frame,
const ArtMethod& called_method,
uint32_t vreg) {
// Split the method into a lo and hi 32 bits so we can encode them into 2 virtual registers.
uint32_t called_method_lo = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(&called_method));
uint32_t called_method_hi = static_cast<uint32_t>(reinterpret_cast<uint64_t>(&called_method)
>> BitSizeOf<uint32_t>());
// Use uint64_t instead of uintptr_t to allow shifting past the max on 32-bit.
static_assert(sizeof(uint64_t) >= sizeof(uintptr_t), "Impossible");
DCHECK_NE(called_method_lo | called_method_hi, 0u);
shadow_frame.SetVReg(vreg, called_method_lo);
shadow_frame.SetVReg(vreg + 1, called_method_hi);
}
// Handles create-lambda instructions.
// Returns true on success, otherwise throws an exception and returns false.
// (Exceptions are thrown by creating a new exception and then being put in the thread TLS)
//
// As a work-in-progress implementation, this shoves the ArtMethod object corresponding
// to the target dex method index into the target register vA and vA + 1.
template<bool do_access_check>
static inline bool DoCreateLambda(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst) {
/*
* create-lambda is opcode 0x21c
* - vA is the target register where the closure will be stored into
* (also stores into vA + 1)
* - vB is the method index which will be the target for a later invoke-lambda
*/
const uint32_t method_idx = inst->VRegB_21c();
mirror::Object* receiver = nullptr; // Always static. (see 'kStatic')
ArtMethod* sf_method = shadow_frame.GetMethod();
ArtMethod* const called_method = FindMethodFromCode<kStatic, do_access_check>(
method_idx, &receiver, &sf_method, self);
uint32_t vregA = inst->VRegA_21c();
if (UNLIKELY(!IsValidLambdaTargetOrThrow(called_method))) {
CHECK(self->IsExceptionPending());
shadow_frame.SetVReg(vregA, 0u);
shadow_frame.SetVReg(vregA + 1, 0u);
return false;
}
WriteLambdaClosureIntoVRegs(shadow_frame, *called_method, vregA);
return true;
}
// Reads out the 'ArtMethod*' stored inside of vreg and vreg+1
//
// Validates that the art method points to a valid lambda function, otherwise throws
// an exception and returns null.
// (Exceptions are thrown by creating a new exception and then being put in the thread TLS)
static inline ArtMethod* ReadLambdaClosureFromVRegsOrThrow(ShadowFrame& shadow_frame,
uint32_t vreg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// TODO(iam): Introduce a closure abstraction that will contain the captured variables
// instead of just an ArtMethod.
// This is temporarily using 2 vregs because a native ArtMethod can be up to 64-bit,
// but once proper variable capture is implemented it will only use 1 vreg.
uint32_t vc_value_lo = shadow_frame.GetVReg(vreg);
uint32_t vc_value_hi = shadow_frame.GetVReg(vreg + 1);
uint64_t vc_value_ptr = (static_cast<uint64_t>(vc_value_hi) << BitSizeOf<uint32_t>())
| vc_value_lo;
// Use uint64_t instead of uintptr_t to allow left-shifting past the max on 32-bit.
static_assert(sizeof(uint64_t) >= sizeof(uintptr_t), "Impossible");
ArtMethod* const called_method = reinterpret_cast<ArtMethod* const>(vc_value_ptr);
// Guard against the user passing a null closure, which is odd but (sadly) semantically valid.
if (UNLIKELY(called_method == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return nullptr;
} else if (UNLIKELY(!IsValidLambdaTargetOrThrow(called_method))) {
return nullptr;
}
return called_method;
}
template<bool do_access_check>
static inline bool DoInvokeLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data, JValue* result) {
/*
* invoke-lambda is opcode 0x25
*
* - vC is the closure register (both vC and vC + 1 will be used to store the closure).
* - vB is the number of additional registers up to |{vD,vE,vF,vG}| (4)
* - the rest of the registers are always var-args
*
* - reading var-args for 0x25 gets us vD,vE,vF,vG (but not vB)
*/
uint32_t vC = inst->VRegC_25x();
ArtMethod* const called_method = ReadLambdaClosureFromVRegsOrThrow(shadow_frame, vC);
// Failed lambda target runtime check, an exception was raised.
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
}
// Invoke a non-range lambda
return DoLambdaCall<false, do_access_check>(called_method, self, shadow_frame, inst, inst_data,
result);
}
// Handles invoke-XXX/range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<InvokeType type, bool is_range, bool do_access_check>
static inline bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data, JValue* result) {
const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
Object* receiver = (type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC);
ArtMethod* sf_method = shadow_frame.GetMethod();
ArtMethod* const called_method = FindMethodFromCode<type, do_access_check>(
method_idx, &receiver, &sf_method, self);
// The shadow frame should already be pushed, so we don't need to update it.
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
} else if (UNLIKELY(called_method->IsAbstract())) {
ThrowAbstractMethodError(called_method);
result->SetJ(0);
return false;
} else {
return DoCall<is_range, do_access_check>(called_method, self, shadow_frame, inst, inst_data,
result);
}
}
// Handles invoke-virtual-quick and invoke-virtual-quick-range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range>
static inline bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data,
JValue* result) {
const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
Object* const receiver = shadow_frame.GetVRegReference(vregC);
if (UNLIKELY(receiver == nullptr)) {
// We lost the reference to the method index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
const uint32_t vtable_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
CHECK(receiver->GetClass()->ShouldHaveEmbeddedImtAndVTable());
ArtMethod* const called_method = receiver->GetClass()->GetEmbeddedVTableEntry(
vtable_idx, sizeof(void*));
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
} else if (UNLIKELY(called_method->IsAbstract())) {
ThrowAbstractMethodError(called_method);
result->SetJ(0);
return false;
} else {
// No need to check since we've been quickened.
return DoCall<is_range, false>(called_method, self, shadow_frame, inst, inst_data, result);
}
}
// Handles iget-XXX and sget-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Handles iput-XXX and sput-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Handles iput-quick, iput-wide-quick and iput-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type, bool transaction_active>
bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the
// java.lang.String class is initialized.
static inline String* ResolveString(Thread* self, ShadowFrame& shadow_frame, uint32_t string_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Class* java_lang_string_class = String::GetJavaLangString();
if (UNLIKELY(!java_lang_string_class->IsInitialized())) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(java_lang_string_class));
if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
}
ArtMethod* method = shadow_frame.GetMethod();
mirror::Class* declaring_class = method->GetDeclaringClass();
mirror::String* s = declaring_class->GetDexCacheStrings()->Get(string_idx);
if (UNLIKELY(s == nullptr)) {
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(declaring_class->GetDexCache()));
s = Runtime::Current()->GetClassLinker()->ResolveString(*method->GetDexFile(), string_idx,
dex_cache);
}
return s;
}
// Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, kMinInt);
} else {
shadow_frame.SetVReg(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, 0);
} else {
shadow_frame.SetVReg(result_reg, dividend % divisor);
}
return true;
}
// Handles div-long and div-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg,
int64_t dividend, int64_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, kMinLong);
} else {
shadow_frame.SetVRegLong(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-long and rem-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int64_t dividend, int64_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, 0);
} else {
shadow_frame.SetVRegLong(result_reg, dividend % divisor);
}
return true;
}
// Handles filled-new-array and filled-new-array-range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result);
// Handles packed-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
uint16_t size = switch_data[1];
if (size == 0) {
// Empty packed switch, move forward by 3 (size of PACKED_SWITCH).
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK(IsAligned<4>(keys));
int32_t first_key = keys[0];
const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]);
DCHECK(IsAligned<4>(targets));
int32_t index = test_val - first_key;
if (index >= 0 && index < size) {
return targets[index];
} else {
// No corresponding value: move forward by 3 (size of PACKED_SWITCH).
return 3;
}
}
// Handles sparse-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
uint16_t size = switch_data[1];
// Return length of SPARSE_SWITCH if size is 0.
if (size == 0) {
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK(IsAligned<4>(keys));
const int32_t* entries = keys + size;
DCHECK(IsAligned<4>(entries));
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
int32_t foundVal = keys[mid];
if (test_val < foundVal) {
hi = mid - 1;
} else if (test_val > foundVal) {
lo = mid + 1;
} else {
return entries[mid];
}
}
// No corresponding value: move forward by 3 (size of SPARSE_SWITCH).
return 3;
}
template <bool _do_check>
static inline bool DoBoxLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
/*
* box-lambda vA, vB /// opcode 0xf8, format 22x
* - vA is the target register where the Object representation of the closure will be stored into
* - vB is a closure (made by create-lambda)
* (also reads vB + 1)
*/
uint32_t vreg_target_object = inst->VRegA_22x(inst_data);
uint32_t vreg_source_closure = inst->VRegB_22x();
ArtMethod* const closure_method = ReadLambdaClosureFromVRegsOrThrow(shadow_frame,
vreg_source_closure);
// Failed lambda target runtime check, an exception was raised.
if (UNLIKELY(closure_method == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
// Convert the ArtMethod into a java.lang.reflect.Method which will serve
// as the temporary 'boxed' version of the lambda. This is good enough
// to check all the basic object identities that a boxed lambda must retain.
// TODO: Boxing an innate lambda (i.e. made with create-lambda) should make a proxy class
// TODO: Boxing a learned lambda (i.e. made with unbox-lambda) should return the original object
// TODO: Repeated boxing should return the same object reference
mirror::Method* method_as_object =
mirror::Method::CreateFromArtMethod(self, closure_method);
if (UNLIKELY(method_as_object == nullptr)) {
// Most likely an OOM has occurred.
CHECK(self->IsExceptionPending());
return false;
}
shadow_frame.SetVRegReference(vreg_target_object, method_as_object);
return true;
}
template <bool _do_check> SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
static inline bool DoUnboxLambda(Thread* self ATTRIBUTE_UNUSED,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data) {
/*
* unbox-lambda vA, vB, [type id] /// opcode 0xf9, format 22c
* - vA is the target register where the closure will be written into
* (also writes vA + 1)
* - vB is the Object representation of the closure (made by box-lambda)
*/
uint32_t vreg_target_closure = inst->VRegA_22c(inst_data);
uint32_t vreg_source_object = inst->VRegB_22c();
// Raise NullPointerException if object is null
mirror::Object* boxed_closure_object = shadow_frame.GetVRegReference(vreg_source_object);
if (UNLIKELY(boxed_closure_object == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return false;
}
// Raise ClassCastException if object is not instanceof java.lang.reflect.Method
if (UNLIKELY(!boxed_closure_object->InstanceOf(mirror::Method::StaticClass()))) {
ThrowClassCastException(mirror::Method::StaticClass(), boxed_closure_object->GetClass());
return false;
}
// TODO(iam): We must check that the closure object extends/implements the type
// specified in [type id]. This is not currently implemented since it's always a Method.
// If we got this far, the inputs are valid.
// Write out the java.lang.reflect.Method's embedded ArtMethod* into the vreg target.
mirror::AbstractMethod* boxed_closure_as_method =
down_cast<mirror::AbstractMethod*>(boxed_closure_object);
ArtMethod* unboxed_closure = boxed_closure_as_method->GetArtMethod();
DCHECK(unboxed_closure != nullptr);
WriteLambdaClosureIntoVRegs(shadow_frame, *unboxed_closure, vreg_target_closure);
return true;
}
uint32_t FindNextInstructionFollowingException(Thread* self, ShadowFrame& shadow_frame,
uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame)
__attribute__((cold))
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst,
const uint32_t dex_pc)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
constexpr bool kTracing = false;
if (kTracing) {
#define TRACE_LOG std::cerr
std::ostringstream oss;
oss << PrettyMethod(shadow_frame.GetMethod())
<< StringPrintf("\n0x%x: ", dex_pc)
<< inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n";
for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) {
uint32_t raw_value = shadow_frame.GetVReg(i);
Object* ref_value = shadow_frame.GetVRegReference(i);
oss << StringPrintf(" vreg%u=0x%08X", i, raw_value);
if (ref_value != nullptr) {
if (ref_value->GetClass()->IsStringClass() &&
ref_value->AsString()->GetValue() != nullptr) {
oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\"";
} else {
oss << "/" << PrettyTypeOf(ref_value);
}
}
}
TRACE_LOG << oss.str() << "\n";
#undef TRACE_LOG
}
}
static inline bool IsBackwardBranch(int32_t branch_offset) {
return branch_offset <= 0;
}
// Explicitly instantiate all DoInvoke functions.
#define EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, _is_range, _do_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoInvoke<_type, _is_range, _do_check>(Thread* self, ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
#define EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(_type) \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, false); \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, true); \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, false); \
EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, true);
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kStatic) // invoke-static/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kDirect) // invoke-direct/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kVirtual) // invoke-virtual/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kSuper) // invoke-super/range.
EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kInterface) // invoke-interface/range.
#undef EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_INVOKE_TEMPLATE_DECL
// Explicitly instantiate all DoInvokeVirtualQuick functions.
#define EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(_is_range) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoInvokeVirtualQuick<_is_range>(Thread* self, ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(false); // invoke-virtual-quick.
EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(true); // invoke-virtual-quick-range.
#undef EXPLICIT_INSTANTIATION_DO_INVOKE_VIRTUAL_QUICK
// Explicitly instantiate all DoCreateLambda functions.
#define EXPLICIT_DO_CREATE_LAMBDA_DECL(_do_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoCreateLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, \
const Instruction* inst)
EXPLICIT_DO_CREATE_LAMBDA_DECL(false); // create-lambda
EXPLICIT_DO_CREATE_LAMBDA_DECL(true); // create-lambda
#undef EXPLICIT_DO_CREATE_LAMBDA_DECL
// Explicitly instantiate all DoInvokeLambda functions.
#define EXPLICIT_DO_INVOKE_LAMBDA_DECL(_do_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoInvokeLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data, JValue* result);
EXPLICIT_DO_INVOKE_LAMBDA_DECL(false); // invoke-lambda
EXPLICIT_DO_INVOKE_LAMBDA_DECL(true); // invoke-lambda
#undef EXPLICIT_DO_INVOKE_LAMBDA_DECL
// Explicitly instantiate all DoBoxLambda functions.
#define EXPLICIT_DO_BOX_LAMBDA_DECL(_do_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoBoxLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data);
EXPLICIT_DO_BOX_LAMBDA_DECL(false); // box-lambda
EXPLICIT_DO_BOX_LAMBDA_DECL(true); // box-lambda
#undef EXPLICIT_DO_BOX_LAMBDA_DECL
// Explicitly instantiate all DoUnBoxLambda functions.
#define EXPLICIT_DO_UNBOX_LAMBDA_DECL(_do_check) \
template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
bool DoUnboxLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data);
EXPLICIT_DO_UNBOX_LAMBDA_DECL(false); // unbox-lambda
EXPLICIT_DO_UNBOX_LAMBDA_DECL(true); // unbox-lambda
#undef EXPLICIT_DO_BOX_LAMBDA_DECL
} // namespace interpreter
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_