blob: 61a1becac1d638db8d460b003764f82493aa68cc [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_x86.h"
#include "base/logging.h"
#include "dex/mir_graph.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/dataflow_iterator-inl.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/reg_storage_eq.h"
#include "driver/compiler_driver.h"
#include "x86_lir.h"
namespace art {
/* This file contains codegen for the X86 ISA */
LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
int opcode;
/* must be both DOUBLE or both not DOUBLE */
DCHECK(r_dest.IsFloat() || r_src.IsFloat());
DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
if (r_dest.IsDouble()) {
opcode = kX86MovsdRR;
} else {
if (r_dest.IsSingle()) {
if (r_src.IsSingle()) {
opcode = kX86MovssRR;
} else { // Fpr <- Gpr
opcode = kX86MovdxrRR;
}
} else { // Gpr <- Fpr
DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
opcode = kX86MovdrxRR;
}
}
DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
if (r_dest == r_src) {
res->flags.is_nop = true;
}
return res;
}
bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
UNUSED(value);
return true;
}
bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
return value == 0;
}
bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
UNUSED(value);
return true;
}
bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
return value == 0;
}
/*
* Load a immediate using a shortcut if possible; otherwise
* grab from the per-translation literal pool. If target is
* a high register, build constant into a low register and copy.
*
* No additional register clobbering operation performed. Use this version when
* 1) r_dest is freshly returned from AllocTemp or
* 2) The codegen is under fixed register usage
*/
LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
RegStorage r_dest_save = r_dest;
if (r_dest.IsFloat()) {
if (value == 0) {
return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
}
r_dest = AllocTemp();
}
LIR *res;
if (value == 0) {
res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
} else {
// Note, there is no byte immediate form of a 32 bit immediate move.
// 64-bit immediate is not supported by LIR structure
res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
}
if (r_dest_save.IsFloat()) {
NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
FreeTemp(r_dest);
}
return res;
}
LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
res->target = target;
return res;
}
LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
X86ConditionEncoding(cc));
branch->target = target;
return branch;
}
LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
X86OpCode opcode = kX86Bkpt;
switch (op) {
case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break;
case kOpBlx: opcode = kX86CallR; break;
default:
LOG(FATAL) << "Bad case in OpReg " << op;
}
return NewLIR1(opcode, r_dest_src.GetReg());
}
LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
X86OpCode opcode = kX86Bkpt;
bool byte_imm = IS_SIMM8(value);
DCHECK(!r_dest_src1.IsFloat());
if (r_dest_src1.Is64Bit()) {
switch (op) {
case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
case kOpLsl: opcode = kX86Sal64RI; break;
case kOpLsr: opcode = kX86Shr64RI; break;
case kOpAsr: opcode = kX86Sar64RI; break;
case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
default:
LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
}
} else {
switch (op) {
case kOpLsl: opcode = kX86Sal32RI; break;
case kOpLsr: opcode = kX86Shr32RI; break;
case kOpAsr: opcode = kX86Sar32RI; break;
case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break;
case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
// case kOpSbb: opcode = kX86Sbb32RI; break;
case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
case kOpMov:
/*
* Moving the constant zero into register can be specialized as an xor of the register.
* However, that sets eflags while the move does not. For that reason here, always do
* the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
*/
opcode = kX86Mov32RI;
break;
case kOpMul:
opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
case kOp2Byte:
opcode = kX86Mov32RI;
value = static_cast<int8_t>(value);
break;
case kOp2Short:
opcode = kX86Mov32RI;
value = static_cast<int16_t>(value);
break;
case kOp2Char:
opcode = kX86Mov32RI;
value = static_cast<uint16_t>(value);
break;
case kOpNeg:
opcode = kX86Mov32RI;
value = -value;
break;
default:
LOG(FATAL) << "Bad case in OpRegImm " << op;
}
}
return NewLIR2(opcode, r_dest_src1.GetReg(), value);
}
LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
bool is64Bit = r_dest_src1.Is64Bit();
X86OpCode opcode = kX86Nop;
bool src2_must_be_cx = false;
switch (op) {
// X86 unary opcodes
case kOpMvn:
OpRegCopy(r_dest_src1, r_src2);
return OpReg(kOpNot, r_dest_src1);
case kOpNeg:
OpRegCopy(r_dest_src1, r_src2);
return OpReg(kOpNeg, r_dest_src1);
case kOpRev:
OpRegCopy(r_dest_src1, r_src2);
return OpReg(kOpRev, r_dest_src1);
case kOpRevsh:
OpRegCopy(r_dest_src1, r_src2);
OpReg(kOpRev, r_dest_src1);
return OpRegImm(kOpAsr, r_dest_src1, 16);
// X86 binary opcodes
case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
case kOpOr: opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
case kOp2Byte:
// TODO: there are several instances of this check. A utility function perhaps?
// TODO: Similar to Arm's reg < 8 check. Perhaps add attribute checks to RegStorage?
// Use shifts instead of a byte operand if the source can't be byte accessed.
if (r_src2.GetRegNum() >= rs_rX86_SP_32.GetRegNum()) {
NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
is64Bit ? 56 : 24);
} else {
opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
}
break;
case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
default:
LOG(FATAL) << "Bad case in OpRegReg " << op;
break;
}
CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
}
LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
DCHECK(!r_base.IsFloat());
X86OpCode opcode = kX86Nop;
int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
switch (move_type) {
case kMov8GP:
CHECK(!r_dest.IsFloat());
opcode = kX86Mov8RM;
break;
case kMov16GP:
CHECK(!r_dest.IsFloat());
opcode = kX86Mov16RM;
break;
case kMov32GP:
CHECK(!r_dest.IsFloat());
opcode = kX86Mov32RM;
break;
case kMov32FP:
CHECK(r_dest.IsFloat());
opcode = kX86MovssRM;
break;
case kMov64FP:
CHECK(r_dest.IsFloat());
opcode = kX86MovsdRM;
break;
case kMovU128FP:
CHECK(r_dest.IsFloat());
opcode = kX86MovupsRM;
break;
case kMovA128FP:
CHECK(r_dest.IsFloat());
opcode = kX86MovapsRM;
break;
case kMovLo128FP:
CHECK(r_dest.IsFloat());
opcode = kX86MovlpsRM;
break;
case kMovHi128FP:
CHECK(r_dest.IsFloat());
opcode = kX86MovhpsRM;
break;
case kMov64GP:
case kMovLo64FP:
case kMovHi64FP:
default:
LOG(FATAL) << "Bad case in OpMovRegMem";
break;
}
return NewLIR3(opcode, dest, r_base.GetReg(), offset);
}
LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
DCHECK(!r_base.IsFloat());
int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
X86OpCode opcode = kX86Nop;
switch (move_type) {
case kMov8GP:
CHECK(!r_src.IsFloat());
opcode = kX86Mov8MR;
break;
case kMov16GP:
CHECK(!r_src.IsFloat());
opcode = kX86Mov16MR;
break;
case kMov32GP:
CHECK(!r_src.IsFloat());
opcode = kX86Mov32MR;
break;
case kMov32FP:
CHECK(r_src.IsFloat());
opcode = kX86MovssMR;
break;
case kMov64FP:
CHECK(r_src.IsFloat());
opcode = kX86MovsdMR;
break;
case kMovU128FP:
CHECK(r_src.IsFloat());
opcode = kX86MovupsMR;
break;
case kMovA128FP:
CHECK(r_src.IsFloat());
opcode = kX86MovapsMR;
break;
case kMovLo128FP:
CHECK(r_src.IsFloat());
opcode = kX86MovlpsMR;
break;
case kMovHi128FP:
CHECK(r_src.IsFloat());
opcode = kX86MovhpsMR;
break;
case kMov64GP:
case kMovLo64FP:
case kMovHi64FP:
default:
LOG(FATAL) << "Bad case in OpMovMemReg";
break;
}
return NewLIR3(opcode, r_base.GetReg(), offset, src);
}
LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
// The only conditional reg to reg operation supported is Cmov
DCHECK_EQ(op, kOpCmov);
DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(),
r_src.GetReg(), X86ConditionEncoding(cc));
}
LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
bool is64Bit = r_dest.Is64Bit();
X86OpCode opcode = kX86Nop;
switch (op) {
// X86 binary opcodes
case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
case kOp2Byte: opcode = kX86Movsx8RM; break;
case kOp2Short: opcode = kX86Movsx16RM; break;
case kOp2Char: opcode = kX86Movzx16RM; break;
case kOpMul:
default:
LOG(FATAL) << "Bad case in OpRegMem " << op;
break;
}
LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
}
return l;
}
LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
DCHECK_NE(rl_dest.location, kLocPhysReg);
int displacement = SRegOffset(rl_dest.s_reg_low);
bool is64Bit = rl_dest.wide != 0;
X86OpCode opcode = kX86Nop;
switch (op) {
case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
case kOpOr: opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
default:
LOG(FATAL) << "Bad case in OpMemReg " << op;
break;
}
LIR *l = NewLIR3(opcode, rs_rX86_SP_32.GetReg(), displacement, r_value);
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
}
return l;
}
LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
DCHECK_NE(rl_value.location, kLocPhysReg);
bool is64Bit = r_dest.Is64Bit();
int displacement = SRegOffset(rl_value.s_reg_low);
X86OpCode opcode = kX86Nop;
switch (op) {
case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
default:
LOG(FATAL) << "Bad case in OpRegMem " << op;
break;
}
LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP_32.GetReg(), displacement);
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
}
return l;
}
LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
RegStorage r_src2) {
bool is64Bit = r_dest.Is64Bit();
if (r_dest != r_src1 && r_dest != r_src2) {
if (op == kOpAdd) { // lea special case, except can't encode rbp as base
if (r_src1 == r_src2) {
OpRegCopy(r_dest, r_src1);
return OpRegImm(kOpLsl, r_dest, 1);
} else if (r_src1 != rs_rBP) {
return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
0 /* scale */, 0 /* disp */);
} else {
return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
0 /* scale */, 0 /* disp */);
}
} else {
OpRegCopy(r_dest, r_src1);
return OpRegReg(op, r_dest, r_src2);
}
} else if (r_dest == r_src1) {
return OpRegReg(op, r_dest, r_src2);
} else { // r_dest == r_src2
switch (op) {
case kOpSub: // non-commutative
OpReg(kOpNeg, r_dest);
op = kOpAdd;
break;
case kOpSbc:
case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
RegStorage t_reg = AllocTemp();
OpRegCopy(t_reg, r_src1);
OpRegReg(op, t_reg, r_src2);
LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
AppendLIR(res);
FreeTemp(t_reg);
return res;
}
case kOpAdd: // commutative
case kOpOr:
case kOpAdc:
case kOpAnd:
case kOpXor:
case kOpMul:
break;
default:
LOG(FATAL) << "Bad case in OpRegRegReg " << op;
}
return OpRegReg(op, r_dest, r_src1);
}
}
LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
if (op == kOpMul && !cu_->target64) {
X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
} else if (op == kOpAnd && !cu_->target64) {
if (value == 0xFF && r_src.Low4()) {
return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
} else if (value == 0xFFFF) {
return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
}
}
if (r_dest != r_src) {
if ((false) && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case
// TODO: fix bug in LEA encoding when disp == 0
return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r5sib_no_base /* base */,
r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
} else if (op == kOpAdd) { // lea add special case
return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
r_src.GetReg() /* base */, rs_rX86_SP_32.GetReg()/*r4sib_no_index*/ /* index */,
0 /* scale */, value /* disp */);
}
OpRegCopy(r_dest, r_src);
}
return OpRegImm(op, r_dest, value);
}
LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
DCHECK_EQ(kX86, cu_->instruction_set);
X86OpCode opcode = kX86Bkpt;
switch (op) {
case kOpBlx: opcode = kX86CallT; break;
case kOpBx: opcode = kX86JmpT; break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
return NewLIR1(opcode, thread_offset.Int32Value());
}
LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
DCHECK_EQ(kX86_64, cu_->instruction_set);
X86OpCode opcode = kX86Bkpt;
switch (op) {
case kOpBlx: opcode = kX86CallT; break;
case kOpBx: opcode = kX86JmpT; break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
return NewLIR1(opcode, thread_offset.Int32Value());
}
LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
X86OpCode opcode = kX86Bkpt;
switch (op) {
case kOpBlx: opcode = kX86CallM; break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
return NewLIR2(opcode, r_base.GetReg(), disp);
}
LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
int32_t val_lo = Low32Bits(value);
int32_t val_hi = High32Bits(value);
int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
LIR *res;
bool is_fp = r_dest.IsFloat();
// TODO: clean this up once we fully recognize 64-bit storage containers.
if (is_fp) {
DCHECK(r_dest.IsDouble());
if (value == 0) {
return NewLIR2(kX86XorpdRR, low_reg_val, low_reg_val);
} else if (pc_rel_base_reg_.Valid() || cu_->target64) {
// We will load the value from the literal area.
LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
if (data_target == nullptr) {
data_target = AddWideData(&literal_list_, val_lo, val_hi);
}
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that
// will force 4 byte offset. We will fix this up in the assembler
// later to have the right value.
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
if (cu_->target64) {
res = NewLIR3(kX86MovsdRM, low_reg_val, kRIPReg, 256 /* bogus */);
} else {
// Get the PC to a register and get the anchor.
LIR* anchor;
RegStorage r_pc = GetPcAndAnchor(&anchor);
res = LoadBaseDisp(r_pc, kDummy32BitOffset, RegStorage::FloatSolo64(low_reg_val),
kDouble, kNotVolatile);
res->operands[4] = WrapPointer(anchor);
if (IsTemp(r_pc)) {
FreeTemp(r_pc);
}
}
res->target = data_target;
res->flags.fixup = kFixupLoad;
} else {
if (r_dest.IsPair()) {
if (val_lo == 0) {
res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
} else {
res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
}
if (val_hi != 0) {
RegStorage r_dest_hi = AllocTempDouble();
LoadConstantNoClobber(r_dest_hi, val_hi);
NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
FreeTemp(r_dest_hi);
}
} else {
RegStorage r_temp = AllocTypedTempWide(false, kCoreReg);
res = LoadConstantWide(r_temp, value);
OpRegCopyWide(r_dest, r_temp);
FreeTemp(r_temp);
}
}
} else {
if (r_dest.IsPair()) {
res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
} else {
if (value == 0) {
res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
} else if (value >= INT_MIN && value <= INT_MAX) {
res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo);
} else {
res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo);
}
}
}
return res;
}
LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
int displacement, RegStorage r_dest, OpSize size) {
LIR *load = nullptr;
LIR *load2 = nullptr;
bool is_array = r_index.Valid();
bool pair = r_dest.IsPair();
bool is64bit = ((size == k64) || (size == kDouble));
X86OpCode opcode = kX86Nop;
switch (size) {
case k64:
case kDouble:
if (r_dest.IsFloat()) {
opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
} else if (!pair) {
opcode = is_array ? kX86Mov64RA : kX86Mov64RM;
} else {
opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
}
// TODO: double store is to unaligned address
DCHECK_EQ((displacement & 0x3), 0);
break;
case kWord:
if (cu_->target64) {
opcode = is_array ? kX86Mov64RA : kX86Mov64RM;
CHECK_EQ(is_array, false);
CHECK_EQ(r_dest.IsFloat(), false);
break;
}
FALLTHROUGH_INTENDED; // else fall-through to k32 case
case k32:
case kSingle:
case kReference: // TODO: update for reference decompression on 64-bit targets.
opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
if (r_dest.IsFloat()) {
opcode = is_array ? kX86MovssRA : kX86MovssRM;
DCHECK(r_dest.IsFloat());
}
DCHECK_EQ((displacement & 0x3), 0);
break;
case kUnsignedHalf:
opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
DCHECK_EQ((displacement & 0x1), 0);
break;
case kSignedHalf:
opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
DCHECK_EQ((displacement & 0x1), 0);
break;
case kUnsignedByte:
opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
break;
case kSignedByte:
opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
break;
default:
LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
}
if (!is_array) {
if (!pair) {
load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
} else {
DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here.
if (r_base == r_dest.GetLow()) {
load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
displacement + HIWORD_OFFSET);
load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
} else {
load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
displacement + HIWORD_OFFSET);
}
}
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
true /* is_load */, is64bit);
if (pair) {
AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, is64bit);
}
}
} else {
if (!pair) {
load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET);
} else {
DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here.
if (r_base == r_dest.GetLow()) {
if (r_dest.GetHigh() == r_index) {
// We can't use either register for the first load.
RegStorage temp = AllocTemp();
load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + HIWORD_OFFSET);
load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET);
OpRegCopy(r_dest.GetHigh(), temp);
FreeTemp(temp);
} else {
load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + HIWORD_OFFSET);
load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET);
}
} else {
if (r_dest.GetLow() == r_index) {
// We can't use either register for the first load.
RegStorage temp = AllocTemp();
load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET);
load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + HIWORD_OFFSET);
OpRegCopy(r_dest.GetLow(), temp);
FreeTemp(temp);
} else {
load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET);
load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
displacement + HIWORD_OFFSET);
}
}
}
}
// Always return first load generated as this might cause a fault if base is null.
return load;
}
/* Load value from base + scaled index. */
LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
int scale, OpSize size) {
return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
}
LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size, VolatileKind is_volatile) {
// LoadBaseDisp() will emit correct insn for atomic load on x86
// assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
size);
if (UNLIKELY(is_volatile == kVolatile)) {
GenMemBarrier(kLoadAny); // Only a scheduling barrier.
}
return load;
}
LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
int displacement, RegStorage r_src, OpSize size,
int opt_flags) {
LIR *store = nullptr;
LIR *store2 = nullptr;
bool is_array = r_index.Valid();
bool pair = r_src.IsPair();
bool is64bit = (size == k64) || (size == kDouble);
bool consider_non_temporal = false;
X86OpCode opcode = kX86Nop;
switch (size) {
case k64:
consider_non_temporal = true;
FALLTHROUGH_INTENDED;
case kDouble:
if (r_src.IsFloat()) {
opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
} else if (!pair) {
opcode = is_array ? kX86Mov64AR : kX86Mov64MR;
} else {
opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
}
// TODO: double store is to unaligned address
DCHECK_EQ((displacement & 0x3), 0);
break;
case kWord:
if (cu_->target64) {
opcode = is_array ? kX86Mov64AR : kX86Mov64MR;
CHECK_EQ(is_array, false);
CHECK_EQ(r_src.IsFloat(), false);
consider_non_temporal = true;
break;
}
FALLTHROUGH_INTENDED; // else fall-through to k32 case
case k32:
case kSingle:
case kReference:
opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
if (r_src.IsFloat()) {
opcode = is_array ? kX86MovssAR : kX86MovssMR;
DCHECK(r_src.IsSingle());
}
DCHECK_EQ((displacement & 0x3), 0);
consider_non_temporal = true;
break;
case kUnsignedHalf:
case kSignedHalf:
opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
DCHECK_EQ((displacement & 0x1), 0);
break;
case kUnsignedByte:
case kSignedByte:
opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
break;
default:
LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
}
// Handle non temporal hint here.
if (consider_non_temporal && ((opt_flags & MIR_STORE_NON_TEMPORAL) != 0)) {
switch (opcode) {
// We currently only handle 32/64 bit moves here.
case kX86Mov64AR:
opcode = kX86Movnti64AR;
break;
case kX86Mov64MR:
opcode = kX86Movnti64MR;
break;
case kX86Mov32AR:
opcode = kX86Movnti32AR;
break;
case kX86Mov32MR:
opcode = kX86Movnti32MR;
break;
default:
// Do nothing here.
break;
}
}
if (!is_array) {
if (!pair) {
store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
} else {
DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here.
store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
}
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
false /* is_load */, is64bit);
if (pair) {
AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, is64bit);
}
}
} else {
if (!pair) {
store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET, r_src.GetReg());
} else {
DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here.
store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
displacement + LOWORD_OFFSET, r_src.GetLowReg());
store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
displacement + HIWORD_OFFSET, r_src.GetHighReg());
}
}
return store;
}
/* store value base base + scaled index. */
LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
int scale, OpSize size) {
return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
}
LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
VolatileKind is_volatile) {
if (UNLIKELY(is_volatile == kVolatile)) {
GenMemBarrier(kAnyStore); // Only a scheduling barrier.
}
// StoreBaseDisp() will emit correct insn for atomic store on x86
// assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
// x86 only allows registers EAX-EDX to be used as byte registers, if the input src is not
// valid, allocate a temp.
bool allocated_temp = false;
if (size == kUnsignedByte || size == kSignedByte) {
if (!cu_->target64 && !r_src.Low4()) {
RegStorage r_input = r_src;
r_src = AllocateByteRegister();
OpRegCopy(r_src, r_input);
allocated_temp = true;
}
}
LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
if (UNLIKELY(is_volatile == kVolatile)) {
// A volatile load might follow the volatile store so insert a StoreLoad barrier.
// This does require a fence, even on x86.
GenMemBarrier(kAnyAny);
}
if (allocated_temp) {
FreeTemp(r_src);
}
return store;
}
LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
int offset, int check_value, LIR* target, LIR** compare) {
UNUSED(temp_reg); // Comparison performed directly with memory.
LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(),
offset, check_value);
if (compare != nullptr) {
*compare = inst;
}
LIR* branch = OpCondBranch(cond, target);
return branch;
}
void X86Mir2Lir::AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) {
if (cu_->target64) {
Mir2Lir::AnalyzeMIR(core_counts, mir, weight);
return;
}
int opcode = mir->dalvikInsn.opcode;
bool uses_pc_rel_load = false;
switch (opcode) {
// Instructions referencing doubles.
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
case Instruction::NEG_DOUBLE:
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR:
case kMirOpFusedCmplDouble:
case kMirOpFusedCmpgDouble:
uses_pc_rel_load = AnalyzeFPInstruction(opcode, mir);
break;
// Packed switch needs the PC-relative pointer if it's large.
case Instruction::PACKED_SWITCH:
if (mir_graph_->GetTable(mir, mir->dalvikInsn.vB)[1] > kSmallSwitchThreshold) {
uses_pc_rel_load = true;
}
break;
case kMirOpConstVector:
uses_pc_rel_load = true;
break;
case kMirOpPackedMultiply:
case kMirOpPackedShiftLeft:
case kMirOpPackedSignedShiftRight:
case kMirOpPackedUnsignedShiftRight:
{
// Byte emulation requires constants from the literal pool.
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
if (opsize == kSignedByte || opsize == kUnsignedByte) {
uses_pc_rel_load = true;
}
}
break;
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_STATIC_RANGE:
if (mir_graph_->GetMethodLoweringInfo(mir).IsIntrinsic()) {
uses_pc_rel_load = AnalyzeInvokeStaticIntrinsic(mir);
break;
}
FALLTHROUGH_INTENDED;
default:
Mir2Lir::AnalyzeMIR(core_counts, mir, weight);
break;
}
if (uses_pc_rel_load) {
DCHECK(pc_rel_temp_ != nullptr);
core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count += weight;
}
}
bool X86Mir2Lir::AnalyzeFPInstruction(int opcode, MIR* mir) {
DCHECK(!cu_->target64);
// Look at all the uses, and see if they are double constants.
uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
int next_sreg = 0;
if (attrs & DF_UA) {
if (attrs & DF_A_WIDE) {
if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
return true;
}
next_sreg += 2;
} else {
next_sreg++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_B_WIDE) {
if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
return true;
}
next_sreg += 2;
} else {
next_sreg++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_C_WIDE) {
if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
return true;
}
}
}
return false;
}
inline bool X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
// If this is a double literal, we will want it in the literal pool on 32b platforms.
DCHECK(!cu_->target64);
return use.is_const;
}
bool X86Mir2Lir::AnalyzeInvokeStaticIntrinsic(MIR* mir) {
// 64 bit RIP addressing doesn't need this analysis.
DCHECK(!cu_->target64);
// Retrieve the type of the intrinsic.
MethodReference method_ref = mir_graph_->GetMethodLoweringInfo(mir).GetTargetMethod();
DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
DexFileMethodInliner* method_inliner =
cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(method_ref.dex_file);
InlineMethod method;
bool is_intrinsic = method_inliner->IsIntrinsic(method_ref.dex_method_index, &method);
DCHECK(is_intrinsic);
switch (method.opcode) {
case kIntrinsicAbsDouble:
case kIntrinsicMinMaxDouble:
return true;
default:
return false;
}
}
RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc) {
loc = UpdateLoc(loc);
if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
if (GetRegInfo(loc.reg)->IsTemp()) {
Clobber(loc.reg);
FreeTemp(loc.reg);
loc.reg = RegStorage::InvalidReg();
loc.location = kLocDalvikFrame;
}
}
DCHECK(CheckCorePoolSanity());
return loc;
}
RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc) {
loc = UpdateLocWide(loc);
if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
if (GetRegInfo(loc.reg)->IsTemp()) {
Clobber(loc.reg);
FreeTemp(loc.reg);
loc.reg = RegStorage::InvalidReg();
loc.location = kLocDalvikFrame;
}
}
DCHECK(CheckCorePoolSanity());
return loc;
}
LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
UNUSED(r_tgt); // Call to absolute memory location doesn't need a temporary target register.
if (cu_->target64) {
return OpThreadMem(op, GetThreadOffset<8>(trampoline));
} else {
return OpThreadMem(op, GetThreadOffset<4>(trampoline));
}
}
void X86Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) {
// Start with the default counts.
Mir2Lir::CountRefs(core_counts, fp_counts, num_regs);
if (pc_rel_temp_ != nullptr) {
// Now, if the dex cache array base temp is used only once outside any loops (weight = 1),
// avoid the promotion, otherwise boost the weight by factor 2 because the full PC-relative
// load sequence is 3 instructions long and by promoting the PC base we save 2 instructions
// per use.
int p_map_idx = SRegToPMap(pc_rel_temp_->s_reg_low);
if (core_counts[p_map_idx].count == 1) {
core_counts[p_map_idx].count = 0;
} else {
core_counts[p_map_idx].count *= 2;
}
}
}
void X86Mir2Lir::DoPromotion() {
if (!cu_->target64) {
pc_rel_temp_ = mir_graph_->GetNewCompilerTemp(kCompilerTempBackend, false);
}
Mir2Lir::DoPromotion();
if (pc_rel_temp_ != nullptr) {
// Now, if the dex cache array base temp is promoted, remember the register but
// always remove the temp's stack location to avoid unnecessarily bloating the stack.
pc_rel_base_reg_ = mir_graph_->reg_location_[pc_rel_temp_->s_reg_low].reg;
DCHECK(!pc_rel_base_reg_.Valid() || !pc_rel_base_reg_.IsFloat());
mir_graph_->RemoveLastCompilerTemp(kCompilerTempBackend, false, pc_rel_temp_);
pc_rel_temp_ = nullptr;
}
}
} // namespace art