blob: 1099303f7d853a1bc829e3e5b93f56cbe81b2afc [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the Mips ISA */
#include "codegen_mips.h"
#include "base/logging.h"
#include "dex/mir_graph.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "mips_lir.h"
#include "mirror/array-inl.h"
namespace art {
/*
* Compare two 64-bit values
* x = y return 0
* x < y return -1
* x > y return 1
*
* Mips32 implementation
* slt t0, x.hi, y.hi; # (x.hi < y.hi) ? 1:0
* sgt t1, x.hi, y.hi; # (y.hi > x.hi) ? 1:0
* subu res, t0, t1 # res = -1:1:0 for [ < > = ]
* bnez res, finish
* sltu t0, x.lo, y.lo
* sgtu r1, x.lo, y.lo
* subu res, t0, t1
* finish:
*
* Mips64 implementation
* slt temp, x, y; # (x < y) ? 1:0
* slt res, y, x; # (x > y) ? 1:0
* subu res, res, temp; # res = -1:1:0 for [ < > = ]
*
*/
void MipsMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
if (cu_->target64) {
RegStorage temp = AllocTempWide();
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
NewLIR3(kMipsSlt, temp.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
NewLIR3(kMipsSlt, rl_result.reg.GetReg(), rl_src2.reg.GetReg(), rl_src1.reg.GetReg());
NewLIR3(kMipsSubu, rl_result.reg.GetReg(), rl_result.reg.GetReg(), temp.GetReg());
FreeTemp(temp);
StoreValue(rl_dest, rl_result);
} else {
RegStorage t0 = AllocTemp();
RegStorage t1 = AllocTemp();
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
NewLIR3(kMipsSlt, t0.GetReg(), rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg());
NewLIR3(kMipsSlt, t1.GetReg(), rl_src2.reg.GetHighReg(), rl_src1.reg.GetHighReg());
NewLIR3(kMipsSubu, rl_result.reg.GetReg(), t1.GetReg(), t0.GetReg());
LIR* branch = OpCmpImmBranch(kCondNe, rl_result.reg, 0, nullptr);
NewLIR3(kMipsSltu, t0.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg());
NewLIR3(kMipsSltu, t1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetLowReg());
NewLIR3(kMipsSubu, rl_result.reg.GetReg(), t1.GetReg(), t0.GetReg());
FreeTemp(t0);
FreeTemp(t1);
LIR* target = NewLIR0(kPseudoTargetLabel);
branch->target = target;
StoreValue(rl_dest, rl_result);
}
}
LIR* MipsMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
LIR* branch;
MipsOpCode slt_op;
MipsOpCode br_op;
bool cmp_zero = false;
bool swapped = false;
switch (cond) {
case kCondEq:
br_op = kMipsBeq;
cmp_zero = true;
break;
case kCondNe:
br_op = kMipsBne;
cmp_zero = true;
break;
case kCondUlt:
slt_op = kMipsSltu;
br_op = kMipsBnez;
break;
case kCondUge:
slt_op = kMipsSltu;
br_op = kMipsBeqz;
break;
case kCondGe:
slt_op = kMipsSlt;
br_op = kMipsBeqz;
break;
case kCondGt:
slt_op = kMipsSlt;
br_op = kMipsBnez;
swapped = true;
break;
case kCondLe:
slt_op = kMipsSlt;
br_op = kMipsBeqz;
swapped = true;
break;
case kCondLt:
slt_op = kMipsSlt;
br_op = kMipsBnez;
break;
case kCondHi: // Gtu
slt_op = kMipsSltu;
br_op = kMipsBnez;
swapped = true;
break;
default:
LOG(FATAL) << "No support for ConditionCode: " << cond;
return nullptr;
}
if (cmp_zero) {
branch = NewLIR2(br_op, src1.GetReg(), src2.GetReg());
} else {
RegStorage t_reg = AllocTemp();
if (swapped) {
NewLIR3(slt_op, t_reg.GetReg(), src2.GetReg(), src1.GetReg());
} else {
NewLIR3(slt_op, t_reg.GetReg(), src1.GetReg(), src2.GetReg());
}
branch = NewLIR1(br_op, t_reg.GetReg());
FreeTemp(t_reg);
}
branch->target = target;
return branch;
}
LIR* MipsMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) {
LIR* branch;
if (check_value != 0) {
// TUNING: handle s16 & kCondLt/Mi case using slti.
RegStorage t_reg = AllocTemp();
LoadConstant(t_reg, check_value);
branch = OpCmpBranch(cond, reg, t_reg, target);
FreeTemp(t_reg);
return branch;
}
MipsOpCode opc;
switch (cond) {
case kCondEq: opc = kMipsBeqz; break;
case kCondGe: opc = kMipsBgez; break;
case kCondGt: opc = kMipsBgtz; break;
case kCondLe: opc = kMipsBlez; break;
// case KCondMi:
case kCondLt: opc = kMipsBltz; break;
case kCondNe: opc = kMipsBnez; break;
default:
// Tuning: use slti when applicable
RegStorage t_reg = AllocTemp();
LoadConstant(t_reg, check_value);
branch = OpCmpBranch(cond, reg, t_reg, target);
FreeTemp(t_reg);
return branch;
}
branch = NewLIR1(opc, reg.GetReg());
branch->target = target;
return branch;
}
LIR* MipsMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
LIR* res;
MipsOpCode opcode;
if (!cu_->target64) {
// If src or dest is a pair, we'll be using low reg.
if (r_dest.IsPair()) {
r_dest = r_dest.GetLow();
}
if (r_src.IsPair()) {
r_src = r_src.GetLow();
}
} else {
DCHECK(!r_dest.IsPair() && !r_src.IsPair());
}
if (r_dest.IsFloat() || r_src.IsFloat())
return OpFpRegCopy(r_dest, r_src);
if (cu_->target64) {
// TODO: Check that r_src and r_dest are both 32 or both 64 bits length on Mips64.
if (r_dest.Is64Bit() || r_src.Is64Bit()) {
opcode = kMipsMove;
} else {
opcode = kMipsSll;
}
} else {
opcode = kMipsMove;
}
res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
res->flags.is_nop = true;
}
return res;
}
void MipsMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
if (r_dest != r_src) {
LIR *res = OpRegCopyNoInsert(r_dest, r_src);
AppendLIR(res);
}
}
void MipsMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
if (cu_->target64) {
OpRegCopy(r_dest, r_src);
return;
}
if (r_dest != r_src) {
bool dest_fp = r_dest.IsFloat();
bool src_fp = r_src.IsFloat();
if (dest_fp) {
if (src_fp) {
// Here if both src and dest are fp registers. OpRegCopy will choose the right copy
// (solo or pair).
OpRegCopy(r_dest, r_src);
} else {
// note the operands are swapped for the mtc1 and mthc1 instr.
// Here if dest is fp reg and src is core reg.
if (fpuIs32Bit_) {
NewLIR2(kMipsMtc1, r_src.GetLowReg(), r_dest.GetLowReg());
NewLIR2(kMipsMtc1, r_src.GetHighReg(), r_dest.GetHighReg());
} else {
r_dest = Fp64ToSolo32(r_dest);
NewLIR2(kMipsMtc1, r_src.GetLowReg(), r_dest.GetReg());
NewLIR2(kMipsMthc1, r_src.GetHighReg(), r_dest.GetReg());
}
}
} else {
if (src_fp) {
// Here if dest is core reg and src is fp reg.
if (fpuIs32Bit_) {
NewLIR2(kMipsMfc1, r_dest.GetLowReg(), r_src.GetLowReg());
NewLIR2(kMipsMfc1, r_dest.GetHighReg(), r_src.GetHighReg());
} else {
r_src = Fp64ToSolo32(r_src);
NewLIR2(kMipsMfc1, r_dest.GetLowReg(), r_src.GetReg());
NewLIR2(kMipsMfhc1, r_dest.GetHighReg(), r_src.GetReg());
}
} else {
// Here if both src and dest are core registers.
// Handle overlap
if (r_src.GetHighReg() != r_dest.GetLowReg()) {
OpRegCopy(r_dest.GetLow(), r_src.GetLow());
OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
} else if (r_src.GetLowReg() != r_dest.GetHighReg()) {
OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
OpRegCopy(r_dest.GetLow(), r_src.GetLow());
} else {
RegStorage r_tmp = AllocTemp();
OpRegCopy(r_tmp, r_src.GetHigh());
OpRegCopy(r_dest.GetLow(), r_src.GetLow());
OpRegCopy(r_dest.GetHigh(), r_tmp);
FreeTemp(r_tmp);
}
}
}
}
}
void MipsMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
int32_t true_val, int32_t false_val, RegStorage rs_dest,
RegisterClass dest_reg_class) {
UNUSED(dest_reg_class);
// Implement as a branch-over.
// TODO: Conditional move?
LoadConstant(rs_dest, true_val);
LIR* ne_branchover = OpCmpBranch(code, left_op, right_op, nullptr);
LoadConstant(rs_dest, false_val);
LIR* target_label = NewLIR0(kPseudoTargetLabel);
ne_branchover->target = target_label;
}
void MipsMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
UNUSED(bb, mir);
UNIMPLEMENTED(FATAL) << "Need codegen for select";
}
void MipsMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
UNUSED(bb, mir);
UNIMPLEMENTED(FATAL) << "Need codegen for fused long cmp branch";
}
RegLocation MipsMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2,
bool is_div) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (isaIsR6_) {
NewLIR3(is_div ? kMipsR6Div : kMipsR6Mod, rl_result.reg.GetReg(), reg1.GetReg(), reg2.GetReg());
} else {
NewLIR2(kMipsR2Div, reg1.GetReg(), reg2.GetReg());
NewLIR1(is_div ? kMipsR2Mflo : kMipsR2Mfhi, rl_result.reg.GetReg());
}
return rl_result;
}
RegLocation MipsMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) {
RegStorage t_reg = AllocTemp();
// lit is guarantee to be a 16-bit constant
if (IsUint<16>(lit)) {
NewLIR3(kMipsOri, t_reg.GetReg(), rZERO, lit);
} else {
// Addiu will sign extend the entire width (32 or 64) of the register.
NewLIR3(kMipsAddiu, t_reg.GetReg(), rZERO, lit);
}
RegLocation rl_result = GenDivRem(rl_dest, reg1, t_reg, is_div);
FreeTemp(t_reg);
return rl_result;
}
RegLocation MipsMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
bool is_div, int flags) {
UNUSED(rl_dest, rl_src1, rl_src2, is_div, flags);
LOG(FATAL) << "Unexpected use of GenDivRem for Mips";
UNREACHABLE();
}
RegLocation MipsMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
bool is_div) {
UNUSED(rl_dest, rl_src1, lit, is_div);
LOG(FATAL) << "Unexpected use of GenDivRemLit for Mips";
UNREACHABLE();
}
bool MipsMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
UNUSED(info, is_long, is_object);
return false;
}
bool MipsMir2Lir::GenInlinedAbsFloat(CallInfo* info) {
UNUSED(info);
// TODO: add Mips implementation.
return false;
}
bool MipsMir2Lir::GenInlinedAbsDouble(CallInfo* info) {
UNUSED(info);
// TODO: add Mips implementation.
return false;
}
bool MipsMir2Lir::GenInlinedSqrt(CallInfo* info) {
UNUSED(info);
return false;
}
bool MipsMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
if (size != kSignedByte) {
// MIPS supports only aligned access. Defer unaligned access to JNI implementation.
return false;
}
RegLocation rl_src_address = info->args[0]; // Long address.
if (!cu_->target64) {
rl_src_address = NarrowRegLoc(rl_src_address); // Ignore high half in info->args[1].
}
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_address;
if (cu_->target64) {
rl_address = LoadValueWide(rl_src_address, kCoreReg);
} else {
rl_address = LoadValue(rl_src_address, kCoreReg);
}
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
DCHECK(size == kSignedByte);
LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
StoreValue(rl_dest, rl_result);
return true;
}
bool MipsMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
if (size != kSignedByte) {
// MIPS supports only aligned access. Defer unaligned access to JNI implementation.
return false;
}
RegLocation rl_src_address = info->args[0]; // Long address.
if (!cu_->target64) {
rl_src_address = NarrowRegLoc(rl_src_address); // Ignore high half in info->args[1].
}
RegLocation rl_src_value = info->args[2]; // [size] value.
RegLocation rl_address;
if (cu_->target64) {
rl_address = LoadValueWide(rl_src_address, kCoreReg);
} else {
rl_address = LoadValue(rl_src_address, kCoreReg);
}
DCHECK(size == kSignedByte);
RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
return true;
}
void MipsMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
UNUSED(reg, target);
LOG(FATAL) << "Unexpected use of OpPcRelLoad for Mips";
UNREACHABLE();
}
LIR* MipsMir2Lir::OpVldm(RegStorage r_base, int count) {
UNUSED(r_base, count);
LOG(FATAL) << "Unexpected use of OpVldm for Mips";
UNREACHABLE();
}
LIR* MipsMir2Lir::OpVstm(RegStorage r_base, int count) {
UNUSED(r_base, count);
LOG(FATAL) << "Unexpected use of OpVstm for Mips";
UNREACHABLE();
}
void MipsMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
int first_bit, int second_bit) {
UNUSED(lit);
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
FreeTemp(t_reg);
if (first_bit != 0) {
OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
}
}
void MipsMir2Lir::GenDivZeroCheckWide(RegStorage reg) {
if (cu_->target64) {
GenDivZeroCheck(reg);
} else {
DCHECK(reg.IsPair()); // TODO: support k64BitSolo.
RegStorage t_reg = AllocTemp();
OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
GenDivZeroCheck(t_reg);
FreeTemp(t_reg);
}
}
// Test suspend flag, return target of taken suspend branch.
LIR* MipsMir2Lir::OpTestSuspend(LIR* target) {
OpRegImm(kOpSub, TargetPtrReg(kSuspend), 1);
return OpCmpImmBranch((target == nullptr) ? kCondEq : kCondNe, TargetPtrReg(kSuspend), 0, target);
}
// Decrement register and branch on condition.
LIR* MipsMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
OpRegImm(kOpSub, reg, 1);
return OpCmpImmBranch(c_code, reg, 0, target);
}
bool MipsMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) {
UNUSED(dalvik_opcode, is_div, rl_src, rl_dest, lit);
LOG(FATAL) << "Unexpected use of smallLiteralDive in Mips";
UNREACHABLE();
}
bool MipsMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
UNUSED(rl_src, rl_dest, lit);
LOG(FATAL) << "Unexpected use of easyMultiply in Mips";
UNREACHABLE();
}
LIR* MipsMir2Lir::OpIT(ConditionCode cond, const char* guide) {
UNUSED(cond, guide);
LOG(FATAL) << "Unexpected use of OpIT in Mips";
UNREACHABLE();
}
void MipsMir2Lir::OpEndIT(LIR* it) {
UNUSED(it);
LOG(FATAL) << "Unexpected use of OpEndIT in Mips";
}
void MipsMir2Lir::GenAddLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
/*
* [v1 v0] = [a1 a0] + [a3 a2];
* addu v0,a2,a0
* addu t1,a3,a1
* sltu v1,v0,a2
* addu v1,v1,t1
*/
OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src2.reg.GetLow(), rl_src1.reg.GetLow());
RegStorage t_reg = AllocTemp();
OpRegRegReg(kOpAdd, t_reg, rl_src2.reg.GetHigh(), rl_src1.reg.GetHigh());
NewLIR3(kMipsSltu, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
rl_src2.reg.GetLowReg());
OpRegRegReg(kOpAdd, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), t_reg);
FreeTemp(t_reg);
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenSubLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
/*
* [v1 v0] = [a1 a0] - [a3 a2];
* sltu t1,a0,a2
* subu v0,a0,a2
* subu v1,a1,a3
* subu v1,v1,t1
*/
RegStorage t_reg = AllocTemp();
NewLIR3(kMipsSltu, t_reg.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg());
OpRegRegReg(kOpSub, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(kOpSub, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
OpRegRegReg(kOpSub, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), t_reg);
FreeTemp(t_reg);
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, int flags) {
if (cu_->target64) {
switch (opcode) {
case Instruction::NOT_LONG:
GenNotLong(rl_dest, rl_src2);
return;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
GenLongOp(kOpAdd, rl_dest, rl_src1, rl_src2);
return;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
GenLongOp(kOpSub, rl_dest, rl_src1, rl_src2);
return;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
GenMulLong(rl_dest, rl_src1, rl_src2);
return;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true, flags);
return;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false, flags);
return;
case Instruction::AND_LONG:
case Instruction::AND_LONG_2ADDR:
GenLongOp(kOpAnd, rl_dest, rl_src1, rl_src2);
return;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
GenLongOp(kOpOr, rl_dest, rl_src1, rl_src2);
return;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
GenLongOp(kOpXor, rl_dest, rl_src1, rl_src2);
return;
case Instruction::NEG_LONG:
GenNegLong(rl_dest, rl_src2);
return;
default:
LOG(FATAL) << "Invalid long arith op";
return;
}
} else {
switch (opcode) {
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
GenAddLong(rl_dest, rl_src1, rl_src2);
return;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
GenSubLong(rl_dest, rl_src1, rl_src2);
return;
case Instruction::NEG_LONG:
GenNegLong(rl_dest, rl_src2);
return;
default:
break;
}
// Fallback for all other ops.
Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags);
}
}
void MipsMir2Lir::GenLongOp(OpKind op, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegReg(kOpMvn, rl_result.reg, rl_src.reg);
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenMulLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
NewLIR3(kMips64Dmul, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenDivRemLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div, int flags) {
UNUSED(opcode);
// TODO: Implement easy div/rem?
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheckWide(rl_src2.reg);
}
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
NewLIR3(is_div ? kMips64Ddiv : kMips64Dmod, rl_result.reg.GetReg(), rl_src1.reg.GetReg(),
rl_src2.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result;
if (cu_->target64) {
rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
StoreValueWide(rl_dest, rl_result);
} else {
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// [v1 v0] = -[a1 a0]
// negu v0,a0
// negu v1,a1
// sltu t1,r_zero
// subu v1,v1,t1
OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_src.reg.GetLow());
OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
RegStorage t_reg = AllocTemp();
NewLIR3(kMipsSltu, t_reg.GetReg(), rZERO, rl_result.reg.GetLowReg());
OpRegRegReg(kOpSub, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), t_reg);
FreeTemp(t_reg);
StoreValueWide(rl_dest, rl_result);
}
}
/*
* Generate array load
*/
void MipsMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_dest, int scale) {
RegisterClass reg_class = RegClassBySize(size);
int len_offset = mirror::Array::LengthOffset().Int32Value();
int data_offset;
RegLocation rl_result;
rl_array = LoadValue(rl_array, kRefReg);
rl_index = LoadValue(rl_index, kCoreReg);
// FIXME: need to add support for rl_index.is_const.
if (size == k64 || size == kDouble) {
data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
// Null object?
GenNullCheck(rl_array.reg, opt_flags);
RegStorage reg_ptr = (cu_->target64) ? AllocTempRef() : AllocTemp();
bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
RegStorage reg_len;
if (needs_range_check) {
reg_len = AllocTemp();
// Get len.
Load32Disp(rl_array.reg, len_offset, reg_len);
MarkPossibleNullPointerException(opt_flags);
} else {
ForceImplicitNullCheck(rl_array.reg, opt_flags, false);
}
// reg_ptr -> array data.
OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
FreeTemp(rl_array.reg);
if ((size == k64) || (size == kDouble)) {
if (scale) {
RegStorage r_new_index = AllocTemp();
OpRegRegImm(kOpLsl, r_new_index, rl_index.reg, scale);
OpRegReg(kOpAdd, reg_ptr, r_new_index);
FreeTemp(r_new_index);
} else {
OpRegReg(kOpAdd, reg_ptr, rl_index.reg);
}
FreeTemp(rl_index.reg);
rl_result = EvalLoc(rl_dest, reg_class, true);
if (needs_range_check) {
GenArrayBoundsCheck(rl_index.reg, reg_len);
FreeTemp(reg_len);
}
LoadBaseDisp(reg_ptr, 0, rl_result.reg, size, kNotVolatile);
FreeTemp(reg_ptr);
StoreValueWide(rl_dest, rl_result);
} else {
rl_result = EvalLoc(rl_dest, reg_class, true);
if (needs_range_check) {
GenArrayBoundsCheck(rl_index.reg, reg_len);
FreeTemp(reg_len);
}
if (cu_->target64) {
if (rl_result.ref) {
LoadBaseIndexed(reg_ptr, As64BitReg(rl_index.reg), As32BitReg(rl_result.reg), scale,
kReference);
} else {
LoadBaseIndexed(reg_ptr, As64BitReg(rl_index.reg), rl_result.reg, scale, size);
}
} else {
LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size);
}
FreeTemp(reg_ptr);
StoreValue(rl_dest, rl_result);
}
}
/*
* Generate array store
*
*/
void MipsMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
RegisterClass reg_class = RegClassBySize(size);
int len_offset = mirror::Array::LengthOffset().Int32Value();
int data_offset;
if (size == k64 || size == kDouble) {
data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
rl_array = LoadValue(rl_array, kRefReg);
rl_index = LoadValue(rl_index, kCoreReg);
// FIXME: need to add support for rl_index.is_const.
RegStorage reg_ptr;
bool allocated_reg_ptr_temp = false;
if (IsTemp(rl_array.reg) && !card_mark) {
Clobber(rl_array.reg);
reg_ptr = rl_array.reg;
} else {
reg_ptr = AllocTemp();
OpRegCopy(reg_ptr, rl_array.reg);
allocated_reg_ptr_temp = true;
}
// Null object?
GenNullCheck(rl_array.reg, opt_flags);
bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
RegStorage reg_len;
if (needs_range_check) {
reg_len = AllocTemp();
// NOTE: max live temps(4) here.
// Get len.
Load32Disp(rl_array.reg, len_offset, reg_len);
MarkPossibleNullPointerException(opt_flags);
} else {
ForceImplicitNullCheck(rl_array.reg, opt_flags, false);
}
// reg_ptr -> array data.
OpRegImm(kOpAdd, reg_ptr, data_offset);
// At this point, reg_ptr points to array, 2 live temps.
if ((size == k64) || (size == kDouble)) {
// TUNING: specific wide routine that can handle fp regs.
if (scale) {
RegStorage r_new_index = AllocTemp();
OpRegRegImm(kOpLsl, r_new_index, rl_index.reg, scale);
OpRegReg(kOpAdd, reg_ptr, r_new_index);
FreeTemp(r_new_index);
} else {
OpRegReg(kOpAdd, reg_ptr, rl_index.reg);
}
rl_src = LoadValueWide(rl_src, reg_class);
if (needs_range_check) {
GenArrayBoundsCheck(rl_index.reg, reg_len);
FreeTemp(reg_len);
}
StoreBaseDisp(reg_ptr, 0, rl_src.reg, size, kNotVolatile);
} else {
rl_src = LoadValue(rl_src, reg_class);
if (needs_range_check) {
GenArrayBoundsCheck(rl_index.reg, reg_len);
FreeTemp(reg_len);
}
StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size);
}
if (allocated_reg_ptr_temp) {
FreeTemp(reg_ptr);
}
if (card_mark) {
MarkGCCard(opt_flags, rl_src.reg, rl_array.reg);
}
}
void MipsMir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_shift) {
if (!cu_->target64) {
Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
return;
}
OpKind op = kOpBkpt;
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
op = kOpLsl;
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
op = kOpAsr;
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
op = kOpLsr;
break;
default:
LOG(FATAL) << "Unexpected case: " << opcode;
}
rl_shift = LoadValue(rl_shift, kCoreReg);
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, As64BitReg(rl_shift.reg));
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift, int flags) {
UNUSED(flags);
if (!cu_->target64) {
// Default implementation is just to ignore the constant case.
GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
return;
}
OpKind op = kOpBkpt;
// Per spec, we only care about low 6 bits of shift amount.
int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
if (shift_amount == 0) {
StoreValueWide(rl_dest, rl_src1);
return;
}
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
op = kOpLsl;
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
op = kOpAsr;
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
op = kOpLsr;
break;
default:
LOG(FATAL) << "Unexpected case";
}
OpRegRegImm(op, rl_result.reg, rl_src1.reg, shift_amount);
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2, int flags) {
// Default - bail to non-const handler.
GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags);
}
void MipsMir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
if (!cu_->target64) {
Mir2Lir::GenIntToLong(rl_dest, rl_src);
return;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
NewLIR3(kMipsSll, rl_result.reg.GetReg(), As64BitReg(rl_src.reg).GetReg(), 0);
StoreValueWide(rl_dest, rl_result);
}
void MipsMir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
RegLocation rl_src, RegisterClass reg_class) {
FlushAllRegs(); // Send everything to home location.
CallRuntimeHelperRegLocation(trampoline, rl_src, false);
if (rl_dest.wide) {
RegLocation rl_result;
rl_result = GetReturnWide(reg_class);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result;
rl_result = GetReturn(reg_class);
StoreValue(rl_dest, rl_result);
}
}
} // namespace art