blob: 0247564a8cd0457b6be19e7b1ef74301a60085ed [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "space_bitmap-inl.h"
#include "android-base/stringprintf.h"
#include "art_field-inl.h"
#include "dex/dex_file-inl.h"
#include "mem_map.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"
namespace art {
namespace gc {
namespace accounting {
using android::base::StringPrintf;
template<size_t kAlignment>
size_t SpaceBitmap<kAlignment>::ComputeBitmapSize(uint64_t capacity) {
// Number of space (heap) bytes covered by one bitmap word.
// (Word size in bytes = `sizeof(intptr_t)`, which is expected to be
// 4 on a 32-bit architecture and 8 on a 64-bit one.)
const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT;
// Calculate the number of words required to cover a space (heap)
// having a size of `capacity` bytes.
return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t);
}
template<size_t kAlignment>
size_t SpaceBitmap<kAlignment>::ComputeHeapSize(uint64_t bitmap_bytes) {
return bitmap_bytes * kBitsPerByte * kAlignment;
}
template<size_t kAlignment>
SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::CreateFromMemMap(
const std::string& name, MemMap* mem_map, uint8_t* heap_begin, size_t heap_capacity) {
CHECK(mem_map != nullptr);
uintptr_t* bitmap_begin = reinterpret_cast<uintptr_t*>(mem_map->Begin());
const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
return new SpaceBitmap(name, mem_map, bitmap_begin, bitmap_size, heap_begin, heap_capacity);
}
template<size_t kAlignment>
SpaceBitmap<kAlignment>::SpaceBitmap(const std::string& name,
MemMap* mem_map,
uintptr_t* bitmap_begin,
size_t bitmap_size,
const void* heap_begin,
size_t heap_capacity)
: mem_map_(mem_map),
bitmap_begin_(reinterpret_cast<Atomic<uintptr_t>*>(bitmap_begin)),
bitmap_size_(bitmap_size),
heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)),
heap_limit_(reinterpret_cast<uintptr_t>(heap_begin) + heap_capacity),
name_(name) {
CHECK(bitmap_begin_ != nullptr);
CHECK_NE(bitmap_size, 0U);
}
template<size_t kAlignment>
SpaceBitmap<kAlignment>::~SpaceBitmap() {}
template<size_t kAlignment>
SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::Create(
const std::string& name, uint8_t* heap_begin, size_t heap_capacity) {
// Round up since `heap_capacity` is not necessarily a multiple of `kAlignment * kBitsPerIntPtrT`
// (we represent one word as an `intptr_t`).
const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
std::string error_msg;
std::unique_ptr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), nullptr, bitmap_size,
PROT_READ | PROT_WRITE, false, false,
&error_msg));
if (UNLIKELY(mem_map.get() == nullptr)) {
LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg;
return nullptr;
}
return CreateFromMemMap(name, mem_map.release(), heap_begin, heap_capacity);
}
template<size_t kAlignment>
void SpaceBitmap<kAlignment>::SetHeapLimit(uintptr_t new_end) {
DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment);
size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t);
if (new_size < bitmap_size_) {
bitmap_size_ = new_size;
}
heap_limit_ = new_end;
// Not sure if doing this trim is necessary, since nothing past the end of the heap capacity
// should be marked.
}
template<size_t kAlignment>
std::string SpaceBitmap<kAlignment>::Dump() const {
return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast<void*>(HeapBegin()),
reinterpret_cast<void*>(HeapLimit()));
}
template<size_t kAlignment>
void SpaceBitmap<kAlignment>::Clear() {
if (bitmap_begin_ != nullptr) {
mem_map_->MadviseDontNeedAndZero();
}
}
template<size_t kAlignment>
void SpaceBitmap<kAlignment>::ClearRange(const mirror::Object* begin, const mirror::Object* end) {
uintptr_t begin_offset = reinterpret_cast<uintptr_t>(begin) - heap_begin_;
uintptr_t end_offset = reinterpret_cast<uintptr_t>(end) - heap_begin_;
// Align begin and end to bitmap word boundaries.
while (begin_offset < end_offset && OffsetBitIndex(begin_offset) != 0) {
Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + begin_offset));
begin_offset += kAlignment;
}
while (begin_offset < end_offset && OffsetBitIndex(end_offset) != 0) {
end_offset -= kAlignment;
Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + end_offset));
}
// Bitmap word boundaries.
const uintptr_t start_index = OffsetToIndex(begin_offset);
const uintptr_t end_index = OffsetToIndex(end_offset);
ZeroAndReleasePages(reinterpret_cast<uint8_t*>(&bitmap_begin_[start_index]),
(end_index - start_index) * sizeof(*bitmap_begin_));
}
template<size_t kAlignment>
void SpaceBitmap<kAlignment>::CopyFrom(SpaceBitmap* source_bitmap) {
DCHECK_EQ(Size(), source_bitmap->Size());
const size_t count = source_bitmap->Size() / sizeof(intptr_t);
Atomic<uintptr_t>* const src = source_bitmap->Begin();
Atomic<uintptr_t>* const dest = Begin();
for (size_t i = 0; i < count; ++i) {
dest[i].StoreRelaxed(src[i].LoadRelaxed());
}
}
template<size_t kAlignment>
void SpaceBitmap<kAlignment>::SweepWalk(const SpaceBitmap<kAlignment>& live_bitmap,
const SpaceBitmap<kAlignment>& mark_bitmap,
uintptr_t sweep_begin, uintptr_t sweep_end,
SpaceBitmap::SweepCallback* callback, void* arg) {
CHECK(live_bitmap.bitmap_begin_ != nullptr);
CHECK(mark_bitmap.bitmap_begin_ != nullptr);
CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_);
CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_);
CHECK(callback != nullptr);
CHECK_LE(sweep_begin, sweep_end);
CHECK_GE(sweep_begin, live_bitmap.heap_begin_);
if (sweep_end <= sweep_begin) {
return;
}
// TODO: rewrite the callbacks to accept a std::vector<mirror::Object*> rather than a mirror::Object**?
constexpr size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT;
#ifdef __LP64__
// Heap-allocate for smaller stack frame.
std::unique_ptr<mirror::Object*[]> pointer_buf_ptr(new mirror::Object*[buffer_size]);
mirror::Object** pointer_buf = pointer_buf_ptr.get();
#else
// Stack-allocate buffer as it's small enough.
mirror::Object* pointer_buf[buffer_size];
#endif
mirror::Object** pb = &pointer_buf[0];
size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_);
size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1);
CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t));
Atomic<uintptr_t>* live = live_bitmap.bitmap_begin_;
Atomic<uintptr_t>* mark = mark_bitmap.bitmap_begin_;
for (size_t i = start; i <= end; i++) {
uintptr_t garbage = live[i].LoadRelaxed() & ~mark[i].LoadRelaxed();
if (UNLIKELY(garbage != 0)) {
uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_;
do {
const size_t shift = CTZ(garbage);
garbage ^= (static_cast<uintptr_t>(1)) << shift;
*pb++ = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment);
} while (garbage != 0);
// Make sure that there are always enough slots available for an
// entire word of one bits.
if (pb >= &pointer_buf[buffer_size - kBitsPerIntPtrT]) {
(*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg);
pb = &pointer_buf[0];
}
}
}
if (pb > &pointer_buf[0]) {
(*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg);
}
}
template class SpaceBitmap<kObjectAlignment>;
template class SpaceBitmap<kPageSize>;
} // namespace accounting
} // namespace gc
} // namespace art