| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "utf.h" |
| |
| #include <map> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| #include "utf-inl.h" |
| |
| namespace art { |
| |
| class UtfTest : public testing::Test {}; |
| |
| TEST_F(UtfTest, GetLeadingUtf16Char) { |
| EXPECT_EQ(0xffff, GetLeadingUtf16Char(0xeeeeffff)); |
| } |
| |
| TEST_F(UtfTest, GetTrailingUtf16Char) { |
| EXPECT_EQ(0xffff, GetTrailingUtf16Char(0xffffeeee)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(0x0000aaaa)); |
| } |
| |
| #define EXPECT_ARRAY_POSITION(expected, end, start) \ |
| EXPECT_EQ(static_cast<uintptr_t>(expected), \ |
| reinterpret_cast<uintptr_t>(end) - reinterpret_cast<uintptr_t>(start)); |
| |
| // A test string containing one, two, three and four byte UTF-8 sequences. |
| static const uint8_t kAllSequences[] = { |
| 0x24, |
| 0xc2, 0xa2, |
| 0xe2, 0x82, 0xac, |
| 0xf0, 0x9f, 0x8f, 0xa0, |
| 0x00 |
| }; |
| |
| // A test string that contains a UTF-8 encoding of a surrogate pair |
| // (code point = U+10400). |
| static const uint8_t kSurrogateEncoding[] = { |
| 0xed, 0xa0, 0x81, |
| 0xed, 0xb0, 0x80, |
| 0x00 |
| }; |
| |
| TEST_F(UtfTest, GetUtf16FromUtf8) { |
| const char* const start = reinterpret_cast<const char*>(kAllSequences); |
| const char* ptr = start; |
| uint32_t pair = 0; |
| |
| // Single byte sequence. |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0x24, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(1, ptr, start); |
| |
| // Two byte sequence. |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0xa2, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(3, ptr, start); |
| |
| // Three byte sequence. |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0x20ac, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(6, ptr, start); |
| |
| // Four byte sequence |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0xd83c, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0xdfe0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(10, ptr, start); |
| |
| // Null terminator. |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(11, ptr, start); |
| } |
| |
| TEST_F(UtfTest, GetUtf16FromUtf8_SurrogatesPassThrough) { |
| const char* const start = reinterpret_cast<const char *>(kSurrogateEncoding); |
| const char* ptr = start; |
| uint32_t pair = 0; |
| |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0xd801, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(3, ptr, start); |
| |
| pair = GetUtf16FromUtf8(&ptr); |
| EXPECT_EQ(0xdc00, GetLeadingUtf16Char(pair)); |
| EXPECT_EQ(0, GetTrailingUtf16Char(pair)); |
| EXPECT_ARRAY_POSITION(6, ptr, start); |
| } |
| |
| TEST_F(UtfTest, CountModifiedUtf8Chars) { |
| EXPECT_EQ(5u, CountModifiedUtf8Chars(reinterpret_cast<const char *>(kAllSequences))); |
| EXPECT_EQ(2u, CountModifiedUtf8Chars(reinterpret_cast<const char *>(kSurrogateEncoding))); |
| } |
| |
| static void AssertConversion(const std::vector<uint16_t>& input, |
| const std::vector<uint8_t>& expected) { |
| ASSERT_EQ(expected.size(), CountUtf8Bytes(&input[0], input.size())); |
| |
| std::vector<uint8_t> output(expected.size()); |
| ConvertUtf16ToModifiedUtf8(reinterpret_cast<char*>(&output[0]), expected.size(), |
| &input[0], input.size()); |
| EXPECT_EQ(expected, output); |
| } |
| |
| TEST_F(UtfTest, CountAndConvertUtf8Bytes) { |
| // Surrogate pairs will be converted into 4 byte sequences. |
| AssertConversion({ 0xd801, 0xdc00 }, { 0xf0, 0x90, 0x90, 0x80 }); |
| |
| // Three byte encodings that are below & above the leading surrogate |
| // range respectively. |
| AssertConversion({ 0xdef0 }, { 0xed, 0xbb, 0xb0 }); |
| AssertConversion({ 0xdcff }, { 0xed, 0xb3, 0xbf }); |
| // Two byte encoding. |
| AssertConversion({ 0x0101 }, { 0xc4, 0x81 }); |
| |
| // Two byte special case : 0 must use an overlong encoding. |
| AssertConversion({ 0x0101, 0x0000 }, { 0xc4, 0x81, 0xc0, 0x80 }); |
| |
| // One byte encoding. |
| AssertConversion({ 'h', 'e', 'l', 'l', 'o' }, { 0x68, 0x65, 0x6c, 0x6c, 0x6f }); |
| |
| AssertConversion({ |
| 0xd802, 0xdc02, // Surrogate pair. |
| 0xdef0, 0xdcff, // Three byte encodings. |
| 0x0101, 0x0000, // Two byte encodings. |
| 'p' , 'p' // One byte encoding. |
| }, { |
| 0xf0, 0x90, 0xa0, 0x82, |
| 0xed, 0xbb, 0xb0, 0xed, 0xb3, 0xbf, |
| 0xc4, 0x81, 0xc0, 0x80, |
| 0x70, 0x70 |
| }); |
| } |
| |
| TEST_F(UtfTest, CountAndConvertUtf8Bytes_UnpairedSurrogate) { |
| // Unpaired trailing surrogate at the end of input. |
| AssertConversion({ 'h', 'e', 0xd801 }, { 'h', 'e', 0xed, 0xa0, 0x81 }); |
| // Unpaired (or incorrectly paired) surrogates in the middle of the input. |
| const std::map<std::vector<uint16_t>, std::vector<uint8_t>> prefixes { |
| {{ 'h' }, { 'h' }}, |
| {{ 0 }, { 0xc0, 0x80 }}, |
| {{ 0x81 }, { 0xc2, 0x81 }}, |
| {{ 0x801 }, { 0xe0, 0xa0, 0x81 }}, |
| }; |
| const std::map<std::vector<uint16_t>, std::vector<uint8_t>> suffixes { |
| {{ 'e' }, { 'e' }}, |
| {{ 0 }, { 0xc0, 0x80 }}, |
| {{ 0x7ff }, { 0xdf, 0xbf }}, |
| {{ 0xffff }, { 0xef, 0xbf, 0xbf }}, |
| }; |
| const std::map<std::vector<uint16_t>, std::vector<uint8_t>> tests { |
| {{ 0xd801 }, { 0xed, 0xa0, 0x81 }}, |
| {{ 0xdc00 }, { 0xed, 0xb0, 0x80 }}, |
| {{ 0xd801, 0xd801 }, { 0xed, 0xa0, 0x81, 0xed, 0xa0, 0x81 }}, |
| {{ 0xdc00, 0xdc00 }, { 0xed, 0xb0, 0x80, 0xed, 0xb0, 0x80 }}, |
| }; |
| for (const auto& prefix : prefixes) { |
| const std::vector<uint16_t>& prefix_in = prefix.first; |
| const std::vector<uint8_t>& prefix_out = prefix.second; |
| for (const auto& test : tests) { |
| const std::vector<uint16_t>& test_in = test.first; |
| const std::vector<uint8_t>& test_out = test.second; |
| for (const auto& suffix : suffixes) { |
| const std::vector<uint16_t>& suffix_in = suffix.first; |
| const std::vector<uint8_t>& suffix_out = suffix.second; |
| std::vector<uint16_t> in = prefix_in; |
| in.insert(in.end(), test_in.begin(), test_in.end()); |
| in.insert(in.end(), suffix_in.begin(), suffix_in.end()); |
| std::vector<uint8_t> out = prefix_out; |
| out.insert(out.end(), test_out.begin(), test_out.end()); |
| out.insert(out.end(), suffix_out.begin(), suffix_out.end()); |
| AssertConversion(in, out); |
| } |
| } |
| } |
| } |
| |
| // Old versions of functions, here to compare answers with optimized versions. |
| |
| size_t CountModifiedUtf8Chars_reference(const char* utf8) { |
| size_t len = 0; |
| int ic; |
| while ((ic = *utf8++) != '\0') { |
| len++; |
| if ((ic & 0x80) == 0) { |
| // one-byte encoding |
| continue; |
| } |
| // two- or three-byte encoding |
| utf8++; |
| if ((ic & 0x20) == 0) { |
| // two-byte encoding |
| continue; |
| } |
| utf8++; |
| if ((ic & 0x10) == 0) { |
| // three-byte encoding |
| continue; |
| } |
| |
| // four-byte encoding: needs to be converted into a surrogate |
| // pair. |
| utf8++; |
| len++; |
| } |
| return len; |
| } |
| |
| static size_t CountUtf8Bytes_reference(const uint16_t* chars, size_t char_count) { |
| size_t result = 0; |
| while (char_count--) { |
| const uint16_t ch = *chars++; |
| if (ch > 0 && ch <= 0x7f) { |
| ++result; |
| } else if (ch >= 0xd800 && ch <= 0xdbff) { |
| if (char_count > 0) { |
| const uint16_t ch2 = *chars; |
| // If we find a properly paired surrogate, we emit it as a 4 byte |
| // UTF sequence. If we find an unpaired leading or trailing surrogate, |
| // we emit it as a 3 byte sequence like would have done earlier. |
| if (ch2 >= 0xdc00 && ch2 <= 0xdfff) { |
| chars++; |
| char_count--; |
| |
| result += 4; |
| } else { |
| result += 3; |
| } |
| } else { |
| // This implies we found an unpaired trailing surrogate at the end |
| // of a string. |
| result += 3; |
| } |
| } else if (ch > 0x7ff) { |
| result += 3; |
| } else { |
| result += 2; |
| } |
| } |
| return result; |
| } |
| |
| static void ConvertUtf16ToModifiedUtf8_reference(char* utf8_out, const uint16_t* utf16_in, |
| size_t char_count) { |
| while (char_count--) { |
| const uint16_t ch = *utf16_in++; |
| if (ch > 0 && ch <= 0x7f) { |
| *utf8_out++ = ch; |
| } else { |
| // Char_count == 0 here implies we've encountered an unpaired |
| // surrogate and we have no choice but to encode it as 3-byte UTF |
| // sequence. Note that unpaired surrogates can occur as a part of |
| // "normal" operation. |
| if ((ch >= 0xd800 && ch <= 0xdbff) && (char_count > 0)) { |
| const uint16_t ch2 = *utf16_in; |
| |
| // Check if the other half of the pair is within the expected |
| // range. If it isn't, we will have to emit both "halves" as |
| // separate 3 byte sequences. |
| if (ch2 >= 0xdc00 && ch2 <= 0xdfff) { |
| utf16_in++; |
| char_count--; |
| const uint32_t code_point = (ch << 10) + ch2 - 0x035fdc00; |
| *utf8_out++ = (code_point >> 18) | 0xf0; |
| *utf8_out++ = ((code_point >> 12) & 0x3f) | 0x80; |
| *utf8_out++ = ((code_point >> 6) & 0x3f) | 0x80; |
| *utf8_out++ = (code_point & 0x3f) | 0x80; |
| continue; |
| } |
| } |
| |
| if (ch > 0x07ff) { |
| // Three byte encoding. |
| *utf8_out++ = (ch >> 12) | 0xe0; |
| *utf8_out++ = ((ch >> 6) & 0x3f) | 0x80; |
| *utf8_out++ = (ch & 0x3f) | 0x80; |
| } else /*(ch > 0x7f || ch == 0)*/ { |
| // Two byte encoding. |
| *utf8_out++ = (ch >> 6) | 0xc0; |
| *utf8_out++ = (ch & 0x3f) | 0x80; |
| } |
| } |
| } |
| } |
| |
| // Exhaustive test of converting a single code point to UTF-16, then UTF-8, and back again. |
| |
| static void codePointToSurrogatePair(uint32_t code_point, uint16_t &first, uint16_t &second) { |
| first = (code_point >> 10) + 0xd7c0; |
| second = (code_point & 0x03ff) + 0xdc00; |
| } |
| |
| static void testConversions(uint16_t *buf, int char_count) { |
| char bytes_test[8] = { 0 }, bytes_reference[8] = { 0 }; |
| uint16_t out_buf_test[4] = { 0 }, out_buf_reference[4] = { 0 }; |
| int byte_count_test, byte_count_reference; |
| int char_count_test, char_count_reference; |
| |
| // Calculate the number of utf-8 bytes for the utf-16 chars. |
| byte_count_reference = CountUtf8Bytes_reference(buf, char_count); |
| byte_count_test = CountUtf8Bytes(buf, char_count); |
| EXPECT_EQ(byte_count_reference, byte_count_test); |
| |
| // Convert the utf-16 string to utf-8 bytes. |
| ConvertUtf16ToModifiedUtf8_reference(bytes_reference, buf, char_count); |
| ConvertUtf16ToModifiedUtf8(bytes_test, byte_count_test, buf, char_count); |
| for (int i = 0; i < byte_count_test; ++i) { |
| EXPECT_EQ(bytes_reference[i], bytes_test[i]); |
| } |
| |
| // Calculate the number of utf-16 chars from the utf-8 bytes. |
| bytes_reference[byte_count_reference] = 0; // Reference function needs null termination. |
| char_count_reference = CountModifiedUtf8Chars_reference(bytes_reference); |
| char_count_test = CountModifiedUtf8Chars(bytes_test, byte_count_test); |
| EXPECT_EQ(char_count, char_count_reference); |
| EXPECT_EQ(char_count, char_count_test); |
| |
| // Convert the utf-8 bytes back to utf-16 chars. |
| // Does not need copied _reference version of the function because the original |
| // function with the old API is retained for debug/testing code. |
| ConvertModifiedUtf8ToUtf16(out_buf_reference, bytes_reference); |
| ConvertModifiedUtf8ToUtf16(out_buf_test, char_count_test, bytes_test, byte_count_test); |
| for (int i = 0; i < char_count_test; ++i) { |
| EXPECT_EQ(buf[i], out_buf_reference[i]); |
| EXPECT_EQ(buf[i], out_buf_test[i]); |
| } |
| } |
| |
| TEST_F(UtfTest, ExhaustiveBidirectionalCodePointCheck) { |
| for (int codePoint = 0; codePoint <= 0x10ffff; ++codePoint) { |
| uint16_t buf[4] = { 0 }; |
| if (codePoint <= 0xffff) { |
| if (codePoint >= 0xd800 && codePoint <= 0xdfff) { |
| // According to the Unicode standard, no character will ever |
| // be assigned to these code points, and they cannot be encoded |
| // into either utf-16 or utf-8. |
| continue; |
| } |
| buf[0] = 'h'; |
| buf[1] = codePoint; |
| buf[2] = 'e'; |
| testConversions(buf, 2); |
| testConversions(buf, 3); |
| testConversions(buf + 1, 1); |
| testConversions(buf + 1, 2); |
| } else { |
| buf[0] = 'h'; |
| codePointToSurrogatePair(codePoint, buf[1], buf[2]); |
| buf[3] = 'e'; |
| testConversions(buf, 2); |
| testConversions(buf, 3); |
| testConversions(buf, 4); |
| testConversions(buf + 1, 1); |
| testConversions(buf + 1, 2); |
| testConversions(buf + 1, 3); |
| } |
| } |
| } |
| |
| TEST_F(UtfTest, NonAscii) { |
| const char kNonAsciiCharacter = '\x80'; |
| const char input[] = { kNonAsciiCharacter, '\0' }; |
| uint32_t hash = ComputeModifiedUtf8Hash(input); |
| EXPECT_EQ(static_cast<uint8_t>(kNonAsciiCharacter), hash); |
| } |
| |
| } // namespace art |