blob: 88075ba36888d5fc8c4aeedc3f12d9437339bcdf [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "barrier.h"
#include <string>
#include "base/atomic.h"
#include "common_runtime_test.h"
#include "mirror/object_array-inl.h"
#include "thread-current-inl.h"
#include "thread_pool.h"
namespace art {
class CheckWaitTask : public Task {
public:
CheckWaitTask(Barrier* barrier, AtomicInteger* count1, AtomicInteger* count2)
: barrier_(barrier),
count1_(count1),
count2_(count2) {}
void Run(Thread* self) {
LOG(INFO) << "Before barrier" << *self;
++*count1_;
barrier_->Wait(self);
++*count2_;
LOG(INFO) << "After barrier" << *self;
}
virtual void Finalize() {
delete this;
}
private:
Barrier* const barrier_;
AtomicInteger* const count1_;
AtomicInteger* const count2_;
};
class BarrierTest : public CommonRuntimeTest {
public:
static int32_t num_threads;
};
int32_t BarrierTest::num_threads = 4;
// Check that barrier wait and barrier increment work.
TEST_F(BarrierTest, CheckWait) {
Thread* self = Thread::Current();
ThreadPool thread_pool("Barrier test thread pool", num_threads);
Barrier barrier(num_threads + 1); // One extra Wait() in main thread.
Barrier timeout_barrier(0); // Only used for sleeping on timeout.
AtomicInteger count1(0);
AtomicInteger count2(0);
for (int32_t i = 0; i < num_threads; ++i) {
thread_pool.AddTask(self, new CheckWaitTask(&barrier, &count1, &count2));
}
thread_pool.StartWorkers(self);
while (count1.load(std::memory_order_relaxed) != num_threads) {
timeout_barrier.Increment(self, 1, 100); // sleep 100 msecs
}
// Count 2 should still be zero since no thread should have gone past the barrier.
EXPECT_EQ(0, count2.load(std::memory_order_relaxed));
// Perform one additional Wait(), allowing pool threads to proceed.
barrier.Wait(self);
// Wait for all the threads to finish.
thread_pool.Wait(self, true, false);
// Both counts should be equal to num_threads now.
EXPECT_EQ(count1.load(std::memory_order_relaxed), num_threads);
EXPECT_EQ(count2.load(std::memory_order_relaxed), num_threads);
timeout_barrier.Init(self, 0); // Reset to zero for destruction.
}
class CheckPassTask : public Task {
public:
CheckPassTask(Barrier* barrier, AtomicInteger* count, size_t subtasks)
: barrier_(barrier),
count_(count),
subtasks_(subtasks) {}
void Run(Thread* self) {
for (size_t i = 0; i < subtasks_; ++i) {
++*count_;
// Pass through to next subtask.
barrier_->Pass(self);
}
}
void Finalize() {
delete this;
}
private:
Barrier* const barrier_;
AtomicInteger* const count_;
const size_t subtasks_;
};
// Check that barrier pass through works.
TEST_F(BarrierTest, CheckPass) {
Thread* self = Thread::Current();
ThreadPool thread_pool("Barrier test thread pool", num_threads);
Barrier barrier(0);
AtomicInteger count(0);
const int32_t num_tasks = num_threads * 4;
const int32_t num_sub_tasks = 128;
for (int32_t i = 0; i < num_tasks; ++i) {
thread_pool.AddTask(self, new CheckPassTask(&barrier, &count, num_sub_tasks));
}
thread_pool.StartWorkers(self);
const int32_t expected_total_tasks = num_sub_tasks * num_tasks;
// Wait for all the tasks to complete using the barrier.
barrier.Increment(self, expected_total_tasks);
// The total number of completed tasks should be equal to expected_total_tasks.
EXPECT_EQ(count.load(std::memory_order_relaxed), expected_total_tasks);
}
} // namespace art