| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cstdarg> |
| #include <inttypes.h> |
| #include <string> |
| |
| #include "arch/instruction_set_features.h" |
| #include "backend_x86.h" |
| #include "codegen_x86.h" |
| #include "dex/compiler_internals.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "dex/reg_storage_eq.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/art_method.h" |
| #include "mirror/string.h" |
| #include "oat.h" |
| #include "x86_lir.h" |
| #include "utils/dwarf_cfi.h" |
| |
| namespace art { |
| |
| static constexpr RegStorage core_regs_arr_32[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, |
| }; |
| static constexpr RegStorage core_regs_arr_64[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, |
| rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15 |
| }; |
| static constexpr RegStorage core_regs_arr_64q[] = { |
| rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q, |
| rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q |
| }; |
| static constexpr RegStorage sp_regs_arr_32[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| }; |
| static constexpr RegStorage sp_regs_arr_64[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 |
| }; |
| static constexpr RegStorage dp_regs_arr_32[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| }; |
| static constexpr RegStorage dp_regs_arr_64[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 |
| }; |
| static constexpr RegStorage xp_regs_arr_32[] = { |
| rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, |
| }; |
| static constexpr RegStorage xp_regs_arr_64[] = { |
| rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, |
| rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15 |
| }; |
| static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32}; |
| static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32}; |
| static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64}; |
| static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX}; |
| static constexpr RegStorage core_temps_arr_64[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI, |
| rs_r8, rs_r9, rs_r10, rs_r11 |
| }; |
| |
| // How to add register to be available for promotion: |
| // 1) Remove register from array defining temp |
| // 2) Update ClobberCallerSave |
| // 3) Update JNI compiler ABI: |
| // 3.1) add reg in JniCallingConvention method |
| // 3.2) update CoreSpillMask/FpSpillMask |
| // 4) Update entrypoints |
| // 4.1) Update constants in asm_support_x86_64.h for new frame size |
| // 4.2) Remove entry in SmashCallerSaves |
| // 4.3) Update jni_entrypoints to spill/unspill new callee save reg |
| // 4.4) Update quick_entrypoints to spill/unspill new callee save reg |
| // 5) Update runtime ABI |
| // 5.1) Update quick_method_frame_info with new required spills |
| // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms |
| // Note that you cannot use register corresponding to incoming args |
| // according to ABI and QCG needs one additional XMM temp for |
| // bulk copy in preparation to call. |
| static constexpr RegStorage core_temps_arr_64q[] = { |
| rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q, |
| rs_r8q, rs_r9q, rs_r10q, rs_r11q |
| }; |
| static constexpr RegStorage sp_temps_arr_32[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| }; |
| static constexpr RegStorage sp_temps_arr_64[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| rs_fr8, rs_fr9, rs_fr10, rs_fr11 |
| }; |
| static constexpr RegStorage dp_temps_arr_32[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| }; |
| static constexpr RegStorage dp_temps_arr_64[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| rs_dr8, rs_dr9, rs_dr10, rs_dr11 |
| }; |
| |
| static constexpr RegStorage xp_temps_arr_32[] = { |
| rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, |
| }; |
| static constexpr RegStorage xp_temps_arr_64[] = { |
| rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, |
| rs_xr8, rs_xr9, rs_xr10, rs_xr11 |
| }; |
| |
| static constexpr ArrayRef<const RegStorage> empty_pool; |
| static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q); |
| static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q); |
| static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64); |
| static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q); |
| static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64); |
| static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64); |
| |
| static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64); |
| |
| RegLocation X86Mir2Lir::LocCReturn() { |
| return x86_loc_c_return; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnRef() { |
| return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnWide() { |
| return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnFloat() { |
| return x86_loc_c_return_float; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnDouble() { |
| return x86_loc_c_return_double; |
| } |
| |
| // 32-bit reg storage locations for 32-bit targets. |
| static const RegStorage RegStorage32FromSpecialTargetRegister_Target32[] { |
| RegStorage::InvalidReg(), // kSelf - Thread pointer. |
| RegStorage::InvalidReg(), // kSuspend - Used to reduce suspend checks for some targets. |
| RegStorage::InvalidReg(), // kLr - no register as the return address is pushed on entry. |
| RegStorage::InvalidReg(), // kPc - not exposed on X86 see kX86StartOfMethod. |
| rs_rX86_SP_32, // kSp |
| rs_rAX, // kArg0 |
| rs_rCX, // kArg1 |
| rs_rDX, // kArg2 |
| rs_rBX, // kArg3 |
| RegStorage::InvalidReg(), // kArg4 |
| RegStorage::InvalidReg(), // kArg5 |
| RegStorage::InvalidReg(), // kArg6 |
| RegStorage::InvalidReg(), // kArg7 |
| rs_fr0, // kFArg0 |
| rs_fr1, // kFArg1 |
| rs_fr2, // kFArg2 |
| rs_fr3, // kFArg3 |
| RegStorage::InvalidReg(), // kFArg4 |
| RegStorage::InvalidReg(), // kFArg5 |
| RegStorage::InvalidReg(), // kFArg6 |
| RegStorage::InvalidReg(), // kFArg7 |
| RegStorage::InvalidReg(), // kFArg8 |
| RegStorage::InvalidReg(), // kFArg9 |
| RegStorage::InvalidReg(), // kFArg10 |
| RegStorage::InvalidReg(), // kFArg11 |
| RegStorage::InvalidReg(), // kFArg12 |
| RegStorage::InvalidReg(), // kFArg13 |
| RegStorage::InvalidReg(), // kFArg14 |
| RegStorage::InvalidReg(), // kFArg15 |
| rs_rAX, // kRet0 |
| rs_rDX, // kRet1 |
| rs_rAX, // kInvokeTgt |
| rs_rAX, // kHiddenArg - used to hold the method index before copying to fr0. |
| rs_fr7, // kHiddenFpArg |
| rs_rCX, // kCount |
| }; |
| |
| // 32-bit reg storage locations for 64-bit targets. |
| static const RegStorage RegStorage32FromSpecialTargetRegister_Target64[] { |
| RegStorage::InvalidReg(), // kSelf - Thread pointer. |
| RegStorage::InvalidReg(), // kSuspend - Used to reduce suspend checks for some targets. |
| RegStorage::InvalidReg(), // kLr - no register as the return address is pushed on entry. |
| RegStorage(kRIPReg), // kPc |
| rs_rX86_SP_32, // kSp |
| rs_rDI, // kArg0 |
| rs_rSI, // kArg1 |
| rs_rDX, // kArg2 |
| rs_rCX, // kArg3 |
| rs_r8, // kArg4 |
| rs_r9, // kArg5 |
| RegStorage::InvalidReg(), // kArg6 |
| RegStorage::InvalidReg(), // kArg7 |
| rs_fr0, // kFArg0 |
| rs_fr1, // kFArg1 |
| rs_fr2, // kFArg2 |
| rs_fr3, // kFArg3 |
| rs_fr4, // kFArg4 |
| rs_fr5, // kFArg5 |
| rs_fr6, // kFArg6 |
| rs_fr7, // kFArg7 |
| RegStorage::InvalidReg(), // kFArg8 |
| RegStorage::InvalidReg(), // kFArg9 |
| RegStorage::InvalidReg(), // kFArg10 |
| RegStorage::InvalidReg(), // kFArg11 |
| RegStorage::InvalidReg(), // kFArg12 |
| RegStorage::InvalidReg(), // kFArg13 |
| RegStorage::InvalidReg(), // kFArg14 |
| RegStorage::InvalidReg(), // kFArg15 |
| rs_rAX, // kRet0 |
| rs_rDX, // kRet1 |
| rs_rAX, // kInvokeTgt |
| rs_rAX, // kHiddenArg |
| RegStorage::InvalidReg(), // kHiddenFpArg |
| rs_rCX, // kCount |
| }; |
| static_assert(arraysize(RegStorage32FromSpecialTargetRegister_Target32) == |
| arraysize(RegStorage32FromSpecialTargetRegister_Target64), |
| "Mismatch in RegStorage array sizes"); |
| |
| // Return a target-dependent special register for 32-bit. |
| RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) const { |
| DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target32[kCount], rs_rCX); |
| DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target64[kCount], rs_rCX); |
| DCHECK_LT(reg, arraysize(RegStorage32FromSpecialTargetRegister_Target32)); |
| return cu_->target64 ? RegStorage32FromSpecialTargetRegister_Target64[reg] |
| : RegStorage32FromSpecialTargetRegister_Target32[reg]; |
| } |
| |
| RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { |
| UNUSED(reg); |
| LOG(FATAL) << "Do not use this function!!!"; |
| UNREACHABLE(); |
| } |
| |
| /* |
| * Decode the register id. |
| */ |
| ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const { |
| /* Double registers in x86 are just a single FP register. This is always just a single bit. */ |
| return ResourceMask::Bit( |
| /* FP register starts at bit position 16 */ |
| ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum()); |
| } |
| |
| ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const { |
| return kEncodeNone; |
| } |
| |
| void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags, |
| ResourceMask* use_mask, ResourceMask* def_mask) { |
| DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); |
| DCHECK(!lir->flags.use_def_invalid); |
| |
| // X86-specific resource map setup here. |
| if (flags & REG_USE_SP) { |
| use_mask->SetBit(kX86RegSP); |
| } |
| |
| if (flags & REG_DEF_SP) { |
| def_mask->SetBit(kX86RegSP); |
| } |
| |
| if (flags & REG_DEFA) { |
| SetupRegMask(def_mask, rs_rAX.GetReg()); |
| } |
| |
| if (flags & REG_DEFD) { |
| SetupRegMask(def_mask, rs_rDX.GetReg()); |
| } |
| if (flags & REG_USEA) { |
| SetupRegMask(use_mask, rs_rAX.GetReg()); |
| } |
| |
| if (flags & REG_USEC) { |
| SetupRegMask(use_mask, rs_rCX.GetReg()); |
| } |
| |
| if (flags & REG_USED) { |
| SetupRegMask(use_mask, rs_rDX.GetReg()); |
| } |
| |
| if (flags & REG_USEB) { |
| SetupRegMask(use_mask, rs_rBX.GetReg()); |
| } |
| |
| // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI. |
| if (lir->opcode == kX86RepneScasw) { |
| SetupRegMask(use_mask, rs_rAX.GetReg()); |
| SetupRegMask(use_mask, rs_rCX.GetReg()); |
| SetupRegMask(use_mask, rs_rDI.GetReg()); |
| SetupRegMask(def_mask, rs_rDI.GetReg()); |
| } |
| |
| if (flags & USE_FP_STACK) { |
| use_mask->SetBit(kX86FPStack); |
| def_mask->SetBit(kX86FPStack); |
| } |
| } |
| |
| /* For dumping instructions */ |
| static const char* x86RegName[] = { |
| "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| }; |
| |
| static const char* x86CondName[] = { |
| "O", |
| "NO", |
| "B/NAE/C", |
| "NB/AE/NC", |
| "Z/EQ", |
| "NZ/NE", |
| "BE/NA", |
| "NBE/A", |
| "S", |
| "NS", |
| "P/PE", |
| "NP/PO", |
| "L/NGE", |
| "NL/GE", |
| "LE/NG", |
| "NLE/G" |
| }; |
| |
| /* |
| * Interpret a format string and build a string no longer than size |
| * See format key in Assemble.cc. |
| */ |
| std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { |
| std::string buf; |
| size_t i = 0; |
| size_t fmt_len = strlen(fmt); |
| while (i < fmt_len) { |
| if (fmt[i] != '!') { |
| buf += fmt[i]; |
| i++; |
| } else { |
| i++; |
| DCHECK_LT(i, fmt_len); |
| char operand_number_ch = fmt[i]; |
| i++; |
| if (operand_number_ch == '!') { |
| buf += "!"; |
| } else { |
| int operand_number = operand_number_ch - '0'; |
| DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. |
| DCHECK_LT(i, fmt_len); |
| int operand = lir->operands[operand_number]; |
| switch (fmt[i]) { |
| case 'c': |
| DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName)); |
| buf += x86CondName[operand]; |
| break; |
| case 'd': |
| buf += StringPrintf("%d", operand); |
| break; |
| case 'q': { |
| int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 | |
| static_cast<uint32_t>(lir->operands[operand_number+1])); |
| buf +=StringPrintf("%" PRId64, value); |
| break; |
| } |
| case 'p': { |
| EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand)); |
| buf += StringPrintf("0x%08x", tab_rec->offset); |
| break; |
| } |
| case 'r': |
| if (RegStorage::IsFloat(operand)) { |
| int fp_reg = RegStorage::RegNum(operand); |
| buf += StringPrintf("xmm%d", fp_reg); |
| } else { |
| int reg_num = RegStorage::RegNum(operand); |
| DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName)); |
| buf += x86RegName[reg_num]; |
| } |
| break; |
| case 't': |
| buf += StringPrintf("0x%08" PRIxPTR " (L%p)", |
| reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand, |
| lir->target); |
| break; |
| default: |
| buf += StringPrintf("DecodeError '%c'", fmt[i]); |
| break; |
| } |
| i++; |
| } |
| } |
| } |
| return buf; |
| } |
| |
| void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) { |
| char buf[256]; |
| buf[0] = 0; |
| |
| if (mask.Equals(kEncodeAll)) { |
| strcpy(buf, "all"); |
| } else { |
| char num[8]; |
| int i; |
| |
| for (i = 0; i < kX86RegEnd; i++) { |
| if (mask.HasBit(i)) { |
| snprintf(num, arraysize(num), "%d ", i); |
| strcat(buf, num); |
| } |
| } |
| |
| if (mask.HasBit(ResourceMask::kCCode)) { |
| strcat(buf, "cc "); |
| } |
| /* Memory bits */ |
| if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) { |
| snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", |
| DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info), |
| (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : ""); |
| } |
| if (mask.HasBit(ResourceMask::kLiteral)) { |
| strcat(buf, "lit "); |
| } |
| |
| if (mask.HasBit(ResourceMask::kHeapRef)) { |
| strcat(buf, "heap "); |
| } |
| if (mask.HasBit(ResourceMask::kMustNotAlias)) { |
| strcat(buf, "noalias "); |
| } |
| } |
| if (buf[0]) { |
| LOG(INFO) << prefix << ": " << buf; |
| } |
| } |
| |
| void X86Mir2Lir::AdjustSpillMask() { |
| // Adjustment for LR spilling, x86 has no LR so nothing to do here |
| core_spill_mask_ |= (1 << rs_rRET.GetRegNum()); |
| num_core_spills_++; |
| } |
| |
| RegStorage X86Mir2Lir::AllocateByteRegister() { |
| RegStorage reg = AllocTypedTemp(false, kCoreReg); |
| if (!cu_->target64) { |
| DCHECK_LT(reg.GetRegNum(), rs_rX86_SP_32.GetRegNum()); |
| } |
| return reg; |
| } |
| |
| RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) { |
| return GetRegInfo(reg)->Master()->GetReg(); |
| } |
| |
| bool X86Mir2Lir::IsByteRegister(RegStorage reg) const { |
| return cu_->target64 || reg.GetRegNum() < rs_rX86_SP_32.GetRegNum(); |
| } |
| |
| /* Clobber all regs that might be used by an external C call */ |
| void X86Mir2Lir::ClobberCallerSave() { |
| if (cu_->target64) { |
| Clobber(rs_rAX); |
| Clobber(rs_rCX); |
| Clobber(rs_rDX); |
| Clobber(rs_rSI); |
| Clobber(rs_rDI); |
| |
| Clobber(rs_r8); |
| Clobber(rs_r9); |
| Clobber(rs_r10); |
| Clobber(rs_r11); |
| |
| Clobber(rs_fr8); |
| Clobber(rs_fr9); |
| Clobber(rs_fr10); |
| Clobber(rs_fr11); |
| } else { |
| Clobber(rs_rAX); |
| Clobber(rs_rCX); |
| Clobber(rs_rDX); |
| Clobber(rs_rBX); |
| } |
| |
| Clobber(rs_fr0); |
| Clobber(rs_fr1); |
| Clobber(rs_fr2); |
| Clobber(rs_fr3); |
| Clobber(rs_fr4); |
| Clobber(rs_fr5); |
| Clobber(rs_fr6); |
| Clobber(rs_fr7); |
| } |
| |
| RegLocation X86Mir2Lir::GetReturnWideAlt() { |
| RegLocation res = LocCReturnWide(); |
| DCHECK_EQ(res.reg.GetLowReg(), rs_rAX.GetReg()); |
| DCHECK_EQ(res.reg.GetHighReg(), rs_rDX.GetReg()); |
| Clobber(rs_rAX); |
| Clobber(rs_rDX); |
| MarkInUse(rs_rAX); |
| MarkInUse(rs_rDX); |
| MarkWide(res.reg); |
| return res; |
| } |
| |
| RegLocation X86Mir2Lir::GetReturnAlt() { |
| RegLocation res = LocCReturn(); |
| res.reg.SetReg(rs_rDX.GetReg()); |
| Clobber(rs_rDX); |
| MarkInUse(rs_rDX); |
| return res; |
| } |
| |
| /* To be used when explicitly managing register use */ |
| void X86Mir2Lir::LockCallTemps() { |
| LockTemp(TargetReg32(kArg0)); |
| LockTemp(TargetReg32(kArg1)); |
| LockTemp(TargetReg32(kArg2)); |
| LockTemp(TargetReg32(kArg3)); |
| LockTemp(TargetReg32(kFArg0)); |
| LockTemp(TargetReg32(kFArg1)); |
| LockTemp(TargetReg32(kFArg2)); |
| LockTemp(TargetReg32(kFArg3)); |
| if (cu_->target64) { |
| LockTemp(TargetReg32(kArg4)); |
| LockTemp(TargetReg32(kArg5)); |
| LockTemp(TargetReg32(kFArg4)); |
| LockTemp(TargetReg32(kFArg5)); |
| LockTemp(TargetReg32(kFArg6)); |
| LockTemp(TargetReg32(kFArg7)); |
| } |
| } |
| |
| /* To be used when explicitly managing register use */ |
| void X86Mir2Lir::FreeCallTemps() { |
| FreeTemp(TargetReg32(kArg0)); |
| FreeTemp(TargetReg32(kArg1)); |
| FreeTemp(TargetReg32(kArg2)); |
| FreeTemp(TargetReg32(kArg3)); |
| FreeTemp(TargetReg32(kHiddenArg)); |
| FreeTemp(TargetReg32(kFArg0)); |
| FreeTemp(TargetReg32(kFArg1)); |
| FreeTemp(TargetReg32(kFArg2)); |
| FreeTemp(TargetReg32(kFArg3)); |
| if (cu_->target64) { |
| FreeTemp(TargetReg32(kArg4)); |
| FreeTemp(TargetReg32(kArg5)); |
| FreeTemp(TargetReg32(kFArg4)); |
| FreeTemp(TargetReg32(kFArg5)); |
| FreeTemp(TargetReg32(kFArg6)); |
| FreeTemp(TargetReg32(kFArg7)); |
| } |
| } |
| |
| bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) { |
| switch (opcode) { |
| case kX86LockCmpxchgMR: |
| case kX86LockCmpxchgAR: |
| case kX86LockCmpxchg64M: |
| case kX86LockCmpxchg64A: |
| case kX86XchgMR: |
| case kX86Mfence: |
| // Atomic memory instructions provide full barrier. |
| return true; |
| default: |
| break; |
| } |
| |
| // Conservative if cannot prove it provides full barrier. |
| return false; |
| } |
| |
| bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { |
| if (!cu_->GetInstructionSetFeatures()->IsSmp()) { |
| return false; |
| } |
| // Start off with using the last LIR as the barrier. If it is not enough, then we will update it. |
| LIR* mem_barrier = last_lir_insn_; |
| |
| bool ret = false; |
| /* |
| * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. |
| * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. |
| * For those cases, all we need to ensure is that there is a scheduling barrier in place. |
| */ |
| if (barrier_kind == kAnyAny) { |
| // If no LIR exists already that can be used a barrier, then generate an mfence. |
| if (mem_barrier == nullptr) { |
| mem_barrier = NewLIR0(kX86Mfence); |
| ret = true; |
| } |
| |
| // If last instruction does not provide full barrier, then insert an mfence. |
| if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) { |
| mem_barrier = NewLIR0(kX86Mfence); |
| ret = true; |
| } |
| } else if (barrier_kind == kNTStoreStore) { |
| mem_barrier = NewLIR0(kX86Sfence); |
| ret = true; |
| } |
| |
| // Now ensure that a scheduling barrier is in place. |
| if (mem_barrier == nullptr) { |
| GenBarrier(); |
| } else { |
| // Mark as a scheduling barrier. |
| DCHECK(!mem_barrier->flags.use_def_invalid); |
| mem_barrier->u.m.def_mask = &kEncodeAll; |
| } |
| return ret; |
| } |
| |
| void X86Mir2Lir::CompilerInitializeRegAlloc() { |
| if (cu_->target64) { |
| reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64, |
| dp_regs_64, reserved_regs_64, reserved_regs_64q, |
| core_temps_64, core_temps_64q, |
| sp_temps_64, dp_temps_64)); |
| } else { |
| reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32, |
| dp_regs_32, reserved_regs_32, empty_pool, |
| core_temps_32, empty_pool, |
| sp_temps_32, dp_temps_32)); |
| } |
| |
| // Target-specific adjustments. |
| |
| // Add in XMM registers. |
| const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32; |
| for (RegStorage reg : *xp_regs) { |
| RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg)); |
| reginfo_map_[reg.GetReg()] = info; |
| } |
| const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32; |
| for (RegStorage reg : *xp_temps) { |
| RegisterInfo* xp_reg_info = GetRegInfo(reg); |
| xp_reg_info->SetIsTemp(true); |
| } |
| |
| // Special Handling for x86_64 RIP addressing. |
| if (cu_->target64) { |
| RegisterInfo* info = new (arena_) RegisterInfo(RegStorage(kRIPReg), kEncodeNone); |
| reginfo_map_[kRIPReg] = info; |
| } |
| |
| // Alias single precision xmm to double xmms. |
| // TODO: as needed, add larger vector sizes - alias all to the largest. |
| for (RegisterInfo* info : reg_pool_->sp_regs_) { |
| int sp_reg_num = info->GetReg().GetRegNum(); |
| RegStorage xp_reg = RegStorage::Solo128(sp_reg_num); |
| RegisterInfo* xp_reg_info = GetRegInfo(xp_reg); |
| // 128-bit xmm vector register's master storage should refer to itself. |
| DCHECK_EQ(xp_reg_info, xp_reg_info->Master()); |
| |
| // Redirect 32-bit vector's master storage to 128-bit vector. |
| info->SetMaster(xp_reg_info); |
| |
| RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num); |
| RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); |
| // Redirect 64-bit vector's master storage to 128-bit vector. |
| dp_reg_info->SetMaster(xp_reg_info); |
| // Singles should show a single 32-bit mask bit, at first referring to the low half. |
| DCHECK_EQ(info->StorageMask(), 0x1U); |
| } |
| |
| if (cu_->target64) { |
| // Alias 32bit W registers to corresponding 64bit X registers. |
| for (RegisterInfo* info : reg_pool_->core_regs_) { |
| int x_reg_num = info->GetReg().GetRegNum(); |
| RegStorage x_reg = RegStorage::Solo64(x_reg_num); |
| RegisterInfo* x_reg_info = GetRegInfo(x_reg); |
| // 64bit X register's master storage should refer to itself. |
| DCHECK_EQ(x_reg_info, x_reg_info->Master()); |
| // Redirect 32bit W master storage to 64bit X. |
| info->SetMaster(x_reg_info); |
| // 32bit W should show a single 32-bit mask bit, at first referring to the low half. |
| DCHECK_EQ(info->StorageMask(), 0x1U); |
| } |
| } |
| |
| // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. |
| // TODO: adjust for x86/hard float calling convention. |
| reg_pool_->next_core_reg_ = 2; |
| reg_pool_->next_sp_reg_ = 2; |
| reg_pool_->next_dp_reg_ = 1; |
| } |
| |
| int X86Mir2Lir::VectorRegisterSize() { |
| return 128; |
| } |
| |
| int X86Mir2Lir::NumReservableVectorRegisters(bool long_or_fp) { |
| int num_vector_temps = cu_->target64 ? xp_temps_64.size() : xp_temps_32.size(); |
| |
| // Leave a few temps for use by backend as scratch. |
| return long_or_fp ? num_vector_temps - 2 : num_vector_temps - 1; |
| } |
| |
| void X86Mir2Lir::SpillCoreRegs() { |
| if (num_core_spills_ == 0) { |
| return; |
| } |
| // Spill mask not including fake return address register |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = |
| frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); |
| OpSize size = cu_->target64 ? k64 : k32; |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| StoreBaseDisp(rs_rSP, offset, |
| cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg), |
| size, kNotVolatile); |
| offset += GetInstructionSetPointerSize(cu_->instruction_set); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::UnSpillCoreRegs() { |
| if (num_core_spills_ == 0) { |
| return; |
| } |
| // Spill mask not including fake return address register |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); |
| OpSize size = cu_->target64 ? k64 : k32; |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| LoadBaseDisp(rs_rSP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg), |
| size, kNotVolatile); |
| offset += GetInstructionSetPointerSize(cu_->instruction_set); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::SpillFPRegs() { |
| if (num_fp_spills_ == 0) { |
| return; |
| } |
| uint32_t mask = fp_spill_mask_; |
| int offset = frame_size_ - |
| (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| StoreBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile); |
| offset += sizeof(double); |
| } |
| } |
| } |
| void X86Mir2Lir::UnSpillFPRegs() { |
| if (num_fp_spills_ == 0) { |
| return; |
| } |
| uint32_t mask = fp_spill_mask_; |
| int offset = frame_size_ - |
| (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| LoadBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), |
| k64, kNotVolatile); |
| offset += sizeof(double); |
| } |
| } |
| } |
| |
| |
| bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { |
| return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); |
| } |
| |
| RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { |
| // Prefer XMM registers. Fixes a problem with iget/iput to a FP when cached temporary |
| // with same VR is a Core register. |
| if (size == kSingle || size == kDouble) { |
| return kFPReg; |
| } |
| |
| // X86_64 can handle any size. |
| if (cu_->target64) { |
| return RegClassBySize(size); |
| } |
| |
| if (UNLIKELY(is_volatile)) { |
| // On x86, atomic 64-bit load/store requires an fp register. |
| // Smaller aligned load/store is atomic for both core and fp registers. |
| if (size == k64 || size == kDouble) { |
| return kFPReg; |
| } |
| } |
| return RegClassBySize(size); |
| } |
| |
| X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) |
| : Mir2Lir(cu, mir_graph, arena), |
| in_to_reg_storage_x86_64_mapper_(this), in_to_reg_storage_x86_mapper_(this), |
| base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false), |
| method_address_insns_(arena->Adapter()), |
| class_type_address_insns_(arena->Adapter()), |
| call_method_insns_(arena->Adapter()), |
| stack_decrement_(nullptr), stack_increment_(nullptr), |
| const_vectors_(nullptr) { |
| method_address_insns_.reserve(100); |
| class_type_address_insns_.reserve(100); |
| call_method_insns_.reserve(100); |
| store_method_addr_used_ = false; |
| for (int i = 0; i < kX86Last; i++) { |
| DCHECK_EQ(X86Mir2Lir::EncodingMap[i].opcode, i) |
| << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name |
| << " is wrong: expecting " << i << ", seeing " |
| << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode); |
| } |
| } |
| |
| Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena) { |
| return new X86Mir2Lir(cu, mir_graph, arena); |
| } |
| |
| // Not used in x86(-64) |
| RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) { |
| UNUSED(trampoline); |
| LOG(FATAL) << "Unexpected use of LoadHelper in x86"; |
| UNREACHABLE(); |
| } |
| |
| LIR* X86Mir2Lir::CheckSuspendUsingLoad() { |
| // First load the pointer in fs:[suspend-trigger] into eax |
| // Then use a test instruction to indirect via that address. |
| if (cu_->target64) { |
| NewLIR2(kX86Mov64RT, rs_rAX.GetReg(), |
| Thread::ThreadSuspendTriggerOffset<8>().Int32Value()); |
| } else { |
| NewLIR2(kX86Mov32RT, rs_rAX.GetReg(), |
| Thread::ThreadSuspendTriggerOffset<4>().Int32Value()); |
| } |
| return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0); |
| } |
| |
| uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].flags; |
| } |
| |
| const char* X86Mir2Lir::GetTargetInstName(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].name; |
| } |
| |
| const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].fmt; |
| } |
| |
| void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { |
| // Can we do this directly to memory? |
| rl_dest = UpdateLocWide(rl_dest); |
| if ((rl_dest.location == kLocDalvikFrame) || |
| (rl_dest.location == kLocCompilerTemp)) { |
| int32_t val_lo = Low32Bits(value); |
| int32_t val_hi = High32Bits(value); |
| int r_base = rs_rX86_SP_32.GetReg(); |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo); |
| AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi); |
| AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| return; |
| } |
| |
| // Just use the standard code to do the generation. |
| Mir2Lir::GenConstWide(rl_dest, value); |
| } |
| |
| // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc |
| void X86Mir2Lir::DumpRegLocation(RegLocation loc) { |
| LOG(INFO) << "location: " << loc.location << ',' |
| << (loc.wide ? " w" : " ") |
| << (loc.defined ? " D" : " ") |
| << (loc.is_const ? " c" : " ") |
| << (loc.fp ? " F" : " ") |
| << (loc.core ? " C" : " ") |
| << (loc.ref ? " r" : " ") |
| << (loc.high_word ? " h" : " ") |
| << (loc.home ? " H" : " ") |
| << ", low: " << static_cast<int>(loc.reg.GetLowReg()) |
| << ", high: " << static_cast<int>(loc.reg.GetHighReg()) |
| << ", s_reg: " << loc.s_reg_low |
| << ", orig: " << loc.orig_sreg; |
| } |
| |
| void X86Mir2Lir::Materialize() { |
| // A good place to put the analysis before starting. |
| AnalyzeMIR(); |
| |
| // Now continue with regular code generation. |
| Mir2Lir::Materialize(); |
| } |
| |
| void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg) { |
| /* |
| * For x86, just generate a 32 bit move immediate instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); |
| uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); |
| |
| // Generate the move instruction with the unique pointer and save index, dex_file, and type. |
| LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, |
| TargetReg(symbolic_reg, kNotWide).GetReg(), |
| static_cast<int>(target_method_id_ptr), target_method_idx, |
| WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(move); |
| method_address_insns_.push_back(move); |
| } |
| |
| void X86Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx, |
| SpecialTargetRegister symbolic_reg) { |
| /* |
| * For x86, just generate a 32 bit move immediate instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| const DexFile::TypeId& id = dex_file.GetTypeId(type_idx); |
| uintptr_t ptr = reinterpret_cast<uintptr_t>(&id); |
| |
| // Generate the move instruction with the unique pointer and save index and type. |
| LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, |
| TargetReg(symbolic_reg, kNotWide).GetReg(), |
| static_cast<int>(ptr), type_idx, |
| WrapPointer(const_cast<DexFile*>(&dex_file))); |
| AppendLIR(move); |
| class_type_address_insns_.push_back(move); |
| } |
| |
| LIR* X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { |
| /* |
| * For x86, just generate a 32 bit call relative instruction, that will be filled |
| * in at 'link time'. |
| */ |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| |
| // Generate the call instruction with the unique pointer and save index, dex_file, and type. |
| // NOTE: Method deduplication takes linker patches into account, so we can just pass 0 |
| // as a placeholder for the offset. |
| LIR* call = RawLIR(current_dalvik_offset_, kX86CallI, 0, |
| target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(call); |
| call_method_insns_.push_back(call); |
| return call; |
| } |
| |
| static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) { |
| QuickEntrypointEnum trampoline; |
| switch (type) { |
| case kInterface: |
| trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck; |
| break; |
| case kDirect: |
| trampoline = kQuickInvokeDirectTrampolineWithAccessCheck; |
| break; |
| case kStatic: |
| trampoline = kQuickInvokeStaticTrampolineWithAccessCheck; |
| break; |
| case kSuper: |
| trampoline = kQuickInvokeSuperTrampolineWithAccessCheck; |
| break; |
| case kVirtual: |
| trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected invoke type"; |
| trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck; |
| } |
| return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline); |
| } |
| |
| LIR* X86Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) { |
| LIR* call_insn; |
| if (method_info.FastPath()) { |
| if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) { |
| // We can have the linker fixup a call relative. |
| call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType()); |
| } else { |
| call_insn = OpMem(kOpBlx, TargetReg(kArg0, kRef), |
| mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| cu_->target64 ? 8 : 4).Int32Value()); |
| } |
| } else { |
| call_insn = GenInvokeNoInlineCall(this, method_info.GetSharpType()); |
| } |
| return call_insn; |
| } |
| |
| void X86Mir2Lir::InstallLiteralPools() { |
| // These are handled differently for x86. |
| DCHECK(code_literal_list_ == nullptr); |
| DCHECK(method_literal_list_ == nullptr); |
| DCHECK(class_literal_list_ == nullptr); |
| |
| |
| if (const_vectors_ != nullptr) { |
| // Vector literals must be 16-byte aligned. The header that is placed |
| // in the code section causes misalignment so we take it into account. |
| // Otherwise, we are sure that for x86 method is aligned to 16. |
| DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u); |
| uint32_t bytes_to_fill = (0x10 - ((code_buffer_.size() + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF; |
| while (bytes_to_fill > 0) { |
| code_buffer_.push_back(0); |
| bytes_to_fill--; |
| } |
| |
| for (LIR *p = const_vectors_; p != nullptr; p = p->next) { |
| PushWord(&code_buffer_, p->operands[0]); |
| PushWord(&code_buffer_, p->operands[1]); |
| PushWord(&code_buffer_, p->operands[2]); |
| PushWord(&code_buffer_, p->operands[3]); |
| } |
| } |
| |
| // Handle the fixups for methods. |
| for (LIR* p : method_address_insns_) { |
| DCHECK_EQ(p->opcode, kX86Mov32RI); |
| uint32_t target_method_idx = p->operands[2]; |
| const DexFile* target_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3])); |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| patches_.push_back(LinkerPatch::MethodPatch(patch_offset, |
| target_dex_file, target_method_idx)); |
| } |
| |
| // Handle the fixups for class types. |
| for (LIR* p : class_type_address_insns_) { |
| DCHECK_EQ(p->opcode, kX86Mov32RI); |
| |
| const DexFile* class_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3])); |
| uint32_t target_type_idx = p->operands[2]; |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| patches_.push_back(LinkerPatch::TypePatch(patch_offset, |
| class_dex_file, target_type_idx)); |
| } |
| |
| // And now the PC-relative calls to methods. |
| patches_.reserve(call_method_insns_.size()); |
| for (LIR* p : call_method_insns_) { |
| DCHECK_EQ(p->opcode, kX86CallI); |
| uint32_t target_method_idx = p->operands[1]; |
| const DexFile* target_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2])); |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| patches_.push_back(LinkerPatch::RelativeCodePatch(patch_offset, |
| target_dex_file, target_method_idx)); |
| } |
| |
| // And do the normal processing. |
| Mir2Lir::InstallLiteralPools(); |
| } |
| |
| bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_srcPos = info->args[1]; |
| RegLocation rl_dst = info->args[2]; |
| RegLocation rl_dstPos = info->args[3]; |
| RegLocation rl_length = info->args[4]; |
| if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) { |
| return false; |
| } |
| if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) { |
| return false; |
| } |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers. |
| RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX; |
| LoadValueDirectFixed(rl_src, rs_rAX); |
| LoadValueDirectFixed(rl_dst, rs_rCX); |
| LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr); |
| LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr); |
| LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); |
| LoadValueDirectFixed(rl_length, rs_rDX); |
| // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path. |
| LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr); |
| LoadValueDirectFixed(rl_src, rs_rAX); |
| LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); |
| LIR* src_bad_len = nullptr; |
| LIR* src_bad_off = nullptr; |
| LIR* srcPos_negative = nullptr; |
| if (!rl_srcPos.is_const) { |
| LoadValueDirectFixed(rl_srcPos, tmp_reg); |
| srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); |
| // src_pos < src_len |
| src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); |
| // src_len - src_pos < copy_len |
| OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); |
| src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); |
| } else { |
| int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg); |
| if (pos_val == 0) { |
| src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); |
| } else { |
| // src_pos < src_len |
| src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); |
| // src_len - src_pos < copy_len |
| OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); |
| src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); |
| } |
| } |
| LIR* dstPos_negative = nullptr; |
| LIR* dst_bad_len = nullptr; |
| LIR* dst_bad_off = nullptr; |
| LoadValueDirectFixed(rl_dst, rs_rAX); |
| LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); |
| if (!rl_dstPos.is_const) { |
| LoadValueDirectFixed(rl_dstPos, tmp_reg); |
| dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); |
| // dst_pos < dst_len |
| dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); |
| // dst_len - dst_pos < copy_len |
| OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); |
| dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); |
| } else { |
| int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg); |
| if (pos_val == 0) { |
| dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); |
| } else { |
| // dst_pos < dst_len |
| dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); |
| // dst_len - dst_pos < copy_len |
| OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); |
| dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); |
| } |
| } |
| // Everything is checked now. |
| LoadValueDirectFixed(rl_src, rs_rAX); |
| LoadValueDirectFixed(rl_dst, tmp_reg); |
| LoadValueDirectFixed(rl_srcPos, rs_rCX); |
| NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(), |
| rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value()); |
| // RAX now holds the address of the first src element to be copied. |
| |
| LoadValueDirectFixed(rl_dstPos, rs_rCX); |
| NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(), |
| rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() ); |
| // RBX now holds the address of the first dst element to be copied. |
| |
| // Check if the number of elements to be copied is odd or even. If odd |
| // then copy the first element (so that the remaining number of elements |
| // is even). |
| LoadValueDirectFixed(rl_length, rs_rCX); |
| OpRegImm(kOpAnd, rs_rCX, 1); |
| LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); |
| OpRegImm(kOpSub, rs_rDX, 1); |
| LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf); |
| StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf); |
| |
| // Since the remaining number of elements is even, we will copy by |
| // two elements at a time. |
| LIR* beginLoop = NewLIR0(kPseudoTargetLabel); |
| LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr); |
| OpRegImm(kOpSub, rs_rDX, 2); |
| LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle); |
| StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle); |
| OpUnconditionalBranch(beginLoop); |
| LIR *check_failed = NewLIR0(kPseudoTargetLabel); |
| LIR* launchpad_branch = OpUnconditionalBranch(nullptr); |
| LIR *return_point = NewLIR0(kPseudoTargetLabel); |
| jmp_to_ret->target = return_point; |
| jmp_to_begin_loop->target = beginLoop; |
| src_dst_same->target = check_failed; |
| len_too_big->target = check_failed; |
| src_null_branch->target = check_failed; |
| if (srcPos_negative != nullptr) |
| srcPos_negative ->target = check_failed; |
| if (src_bad_off != nullptr) |
| src_bad_off->target = check_failed; |
| if (src_bad_len != nullptr) |
| src_bad_len->target = check_failed; |
| dst_null_branch->target = check_failed; |
| if (dstPos_negative != nullptr) |
| dstPos_negative->target = check_failed; |
| if (dst_bad_off != nullptr) |
| dst_bad_off->target = check_failed; |
| if (dst_bad_len != nullptr) |
| dst_bad_len->target = check_failed; |
| AddIntrinsicSlowPath(info, launchpad_branch, return_point); |
| ClobberCallerSave(); // We must clobber everything because slow path will return here |
| return true; |
| } |
| |
| |
| /* |
| * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff, |
| * otherwise bails to standard library code. |
| */ |
| bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_char = info->args[1]; |
| RegLocation rl_start; // Note: only present in III flavor or IndexOf. |
| // RBX is promotable in 64-bit mode. |
| RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX; |
| int start_value = -1; |
| |
| uint32_t char_value = |
| rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0; |
| |
| if (char_value > 0xFFFF) { |
| // We have to punt to the real String.indexOf. |
| return false; |
| } |
| |
| // Okay, we are commited to inlining this. |
| // EAX: 16 bit character being searched. |
| // ECX: count: number of words to be searched. |
| // EDI: String being searched. |
| // EDX: temporary during execution. |
| // EBX or R11: temporary during execution (depending on mode). |
| // REP SCASW: search instruction. |
| |
| FlushAllRegs(); |
| |
| RegLocation rl_return = GetReturn(kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| |
| // Is the string non-NULL? |
| LoadValueDirectFixed(rl_obj, rs_rDX); |
| GenNullCheck(rs_rDX, info->opt_flags); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. |
| |
| LIR *slowpath_branch = nullptr, *length_compare = nullptr; |
| |
| // We need the value in EAX. |
| if (rl_char.is_const) { |
| LoadConstantNoClobber(rs_rAX, char_value); |
| } else { |
| // Does the character fit in 16 bits? Compare it at runtime. |
| LoadValueDirectFixed(rl_char, rs_rAX); |
| slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in 16 bits. |
| // Location of reference to data array within the String object. |
| int value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int count_offset = mirror::String::CountOffset().Int32Value(); |
| // Starting offset within data array. |
| int offset_offset = mirror::String::OffsetOffset().Int32Value(); |
| // Start of char data with array_. |
| int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| // Compute the number of words to search in to rCX. |
| Load32Disp(rs_rDX, count_offset, rs_rCX); |
| |
| // Possible signal here due to null pointer dereference. |
| // Note that the signal handler will expect the top word of |
| // the stack to be the ArtMethod*. If the PUSH edi instruction |
| // below is ahead of the load above then this will not be true |
| // and the signal handler will not work. |
| MarkPossibleNullPointerException(0); |
| |
| if (!cu_->target64) { |
| // EDI is promotable in 32-bit mode. |
| NewLIR1(kX86Push32R, rs_rDI.GetReg()); |
| } |
| |
| if (zero_based) { |
| // Start index is not present. |
| // We have to handle an empty string. Use special instruction JECXZ. |
| length_compare = NewLIR0(kX86Jecxz8); |
| |
| // Copy the number of words to search in a temporary register. |
| // We will use the register at the end to calculate result. |
| OpRegReg(kOpMov, rs_tmp, rs_rCX); |
| } else { |
| // Start index is present. |
| rl_start = info->args[2]; |
| |
| // We have to offset by the start index. |
| if (rl_start.is_const) { |
| start_value = mir_graph_->ConstantValue(rl_start.orig_sreg); |
| start_value = std::max(start_value, 0); |
| |
| // Is the start > count? |
| length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr); |
| OpRegImm(kOpMov, rs_rDI, start_value); |
| |
| // Copy the number of words to search in a temporary register. |
| // We will use the register at the end to calculate result. |
| OpRegReg(kOpMov, rs_tmp, rs_rCX); |
| |
| if (start_value != 0) { |
| // Decrease the number of words to search by the start index. |
| OpRegImm(kOpSub, rs_rCX, start_value); |
| } |
| } else { |
| // Handle "start index < 0" case. |
| if (!cu_->target64 && rl_start.location != kLocPhysReg) { |
| // Load the start index from stack, remembering that we pushed EDI. |
| int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t); |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| Load32Disp(rs_rX86_SP_32, displacement, rs_rDI); |
| // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it. |
| DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info)); |
| int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1; |
| AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false); |
| } else { |
| LoadValueDirectFixed(rl_start, rs_rDI); |
| } |
| OpRegReg(kOpXor, rs_tmp, rs_tmp); |
| OpRegReg(kOpCmp, rs_rDI, rs_tmp); |
| OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp); |
| |
| // The length of the string should be greater than the start index. |
| length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr); |
| |
| // Copy the number of words to search in a temporary register. |
| // We will use the register at the end to calculate result. |
| OpRegReg(kOpMov, rs_tmp, rs_rCX); |
| |
| // Decrease the number of words to search by the start index. |
| OpRegReg(kOpSub, rs_rCX, rs_rDI); |
| } |
| } |
| |
| // Load the address of the string into EDI. |
| // In case of start index we have to add the address to existing value in EDI. |
| // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET. |
| if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) { |
| Load32Disp(rs_rDX, offset_offset, rs_rDI); |
| } else { |
| OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset); |
| } |
| OpRegImm(kOpLsl, rs_rDI, 1); |
| OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset); |
| OpRegImm(kOpAdd, rs_rDI, data_offset); |
| |
| // EDI now contains the start of the string to be searched. |
| // We are all prepared to do the search for the character. |
| NewLIR0(kX86RepneScasw); |
| |
| // Did we find a match? |
| LIR* failed_branch = OpCondBranch(kCondNe, nullptr); |
| |
| // yes, we matched. Compute the index of the result. |
| OpRegReg(kOpSub, rs_tmp, rs_rCX); |
| NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1); |
| |
| LIR *all_done = NewLIR1(kX86Jmp8, 0); |
| |
| // Failed to match; return -1. |
| LIR *not_found = NewLIR0(kPseudoTargetLabel); |
| length_compare->target = not_found; |
| failed_branch->target = not_found; |
| LoadConstantNoClobber(rl_return.reg, -1); |
| |
| // And join up at the end. |
| all_done->target = NewLIR0(kPseudoTargetLabel); |
| |
| if (!cu_->target64) |
| NewLIR1(kX86Pop32R, rs_rDI.GetReg()); |
| |
| // Out of line code returns here. |
| if (slowpath_branch != nullptr) { |
| LIR *return_point = NewLIR0(kPseudoTargetLabel); |
| AddIntrinsicSlowPath(info, slowpath_branch, return_point); |
| ClobberCallerSave(); // We must clobber everything because slow path will return here |
| } |
| |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) { |
| if (is_x86_64) { |
| switch (art_reg_id) { |
| case 3 : *dwarf_reg_id = 3; return true; // %rbx |
| // This is the only discrepancy between ART & DWARF register numbering. |
| case 5 : *dwarf_reg_id = 6; return true; // %rbp |
| case 12: *dwarf_reg_id = 12; return true; // %r12 |
| case 13: *dwarf_reg_id = 13; return true; // %r13 |
| case 14: *dwarf_reg_id = 14; return true; // %r14 |
| case 15: *dwarf_reg_id = 15; return true; // %r15 |
| default: return false; // Should not get here |
| } |
| } else { |
| switch (art_reg_id) { |
| case 5: *dwarf_reg_id = 5; return true; // %ebp |
| case 6: *dwarf_reg_id = 6; return true; // %esi |
| case 7: *dwarf_reg_id = 7; return true; // %edi |
| default: return false; // Should not get here |
| } |
| } |
| } |
| |
| std::vector<uint8_t>* X86Mir2Lir::ReturnFrameDescriptionEntry() { |
| std::vector<uint8_t>* cfi_info = new std::vector<uint8_t>; |
| |
| // Generate the FDE for the method. |
| DCHECK_NE(data_offset_, 0U); |
| |
| WriteFDEHeader(cfi_info, cu_->target64); |
| WriteFDEAddressRange(cfi_info, data_offset_, cu_->target64); |
| |
| // The instructions in the FDE. |
| if (stack_decrement_ != nullptr) { |
| // Advance LOC to just past the stack decrement. |
| uint32_t pc = NEXT_LIR(stack_decrement_)->offset; |
| DW_CFA_advance_loc(cfi_info, pc); |
| |
| // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size. |
| DW_CFA_def_cfa_offset(cfi_info, frame_size_); |
| |
| // Handle register spills |
| const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4; |
| const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4; |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| pc += kSpillInstLen; |
| |
| // Advance LOC to pass this instruction |
| DW_CFA_advance_loc(cfi_info, kSpillInstLen); |
| |
| int dwarf_reg_id; |
| if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) { |
| // DW_CFA_offset_extended_sf reg offset |
| DW_CFA_offset_extended_sf(cfi_info, dwarf_reg_id, offset / kDataAlignmentFactor); |
| } |
| |
| offset += GetInstructionSetPointerSize(cu_->instruction_set); |
| } |
| } |
| |
| // We continue with that stack until the epilogue. |
| if (stack_increment_ != nullptr) { |
| uint32_t new_pc = NEXT_LIR(stack_increment_)->offset; |
| DW_CFA_advance_loc(cfi_info, new_pc - pc); |
| |
| // We probably have code snippets after the epilogue, so save the |
| // current state: DW_CFA_remember_state. |
| DW_CFA_remember_state(cfi_info); |
| |
| // We have now popped the stack: DW_CFA_def_cfa_offset 4/8. |
| // There is only the return PC on the stack now. |
| DW_CFA_def_cfa_offset(cfi_info, GetInstructionSetPointerSize(cu_->instruction_set)); |
| |
| // Everything after that is the same as before the epilogue. |
| // Stack bump was followed by RET instruction. |
| LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_)); |
| if (post_ret_insn != nullptr) { |
| pc = new_pc; |
| new_pc = post_ret_insn->offset; |
| DW_CFA_advance_loc(cfi_info, new_pc - pc); |
| // Restore the state: DW_CFA_restore_state. |
| DW_CFA_restore_state(cfi_info); |
| } |
| } |
| } |
| |
| PadCFI(cfi_info); |
| WriteCFILength(cfi_info, cu_->target64); |
| |
| return cfi_info; |
| } |
| |
| void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { |
| switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { |
| case kMirOpReserveVectorRegisters: |
| ReserveVectorRegisters(mir); |
| break; |
| case kMirOpReturnVectorRegisters: |
| ReturnVectorRegisters(mir); |
| break; |
| case kMirOpConstVector: |
| GenConst128(mir); |
| break; |
| case kMirOpMoveVector: |
| GenMoveVector(mir); |
| break; |
| case kMirOpPackedMultiply: |
| GenMultiplyVector(mir); |
| break; |
| case kMirOpPackedAddition: |
| GenAddVector(mir); |
| break; |
| case kMirOpPackedSubtract: |
| GenSubtractVector(mir); |
| break; |
| case kMirOpPackedShiftLeft: |
| GenShiftLeftVector(mir); |
| break; |
| case kMirOpPackedSignedShiftRight: |
| GenSignedShiftRightVector(mir); |
| break; |
| case kMirOpPackedUnsignedShiftRight: |
| GenUnsignedShiftRightVector(mir); |
| break; |
| case kMirOpPackedAnd: |
| GenAndVector(mir); |
| break; |
| case kMirOpPackedOr: |
| GenOrVector(mir); |
| break; |
| case kMirOpPackedXor: |
| GenXorVector(mir); |
| break; |
| case kMirOpPackedAddReduce: |
| GenAddReduceVector(mir); |
| break; |
| case kMirOpPackedReduce: |
| GenReduceVector(mir); |
| break; |
| case kMirOpPackedSet: |
| GenSetVector(mir); |
| break; |
| case kMirOpMemBarrier: |
| GenMemBarrier(static_cast<MemBarrierKind>(mir->dalvikInsn.vA)); |
| break; |
| case kMirOpPackedArrayGet: |
| GenPackedArrayGet(bb, mir); |
| break; |
| case kMirOpPackedArrayPut: |
| GenPackedArrayPut(bb, mir); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) { |
| for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) { |
| RegStorage xp_reg = RegStorage::Solo128(i); |
| RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); |
| Clobber(xp_reg); |
| |
| for (RegisterInfo *info = xp_reg_info->GetAliasChain(); |
| info != nullptr; |
| info = info->GetAliasChain()) { |
| ArenaVector<RegisterInfo*>* regs = |
| info->GetReg().IsSingle() ? ®_pool_->sp_regs_ : ®_pool_->dp_regs_; |
| auto it = std::find(regs->begin(), regs->end(), info); |
| DCHECK(it != regs->end()); |
| regs->erase(it); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::ReturnVectorRegisters(MIR* mir) { |
| for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) { |
| RegStorage xp_reg = RegStorage::Solo128(i); |
| RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); |
| |
| for (RegisterInfo *info = xp_reg_info->GetAliasChain(); |
| info != nullptr; |
| info = info->GetAliasChain()) { |
| if (info->GetReg().IsSingle()) { |
| reg_pool_->sp_regs_.push_back(info); |
| } else { |
| reg_pool_->dp_regs_.push_back(info); |
| } |
| } |
| } |
| } |
| |
| void X86Mir2Lir::GenConst128(MIR* mir) { |
| RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest); |
| |
| uint32_t *args = mir->dalvikInsn.arg; |
| int reg = rs_dest.GetReg(); |
| // Check for all 0 case. |
| if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) { |
| NewLIR2(kX86XorpsRR, reg, reg); |
| return; |
| } |
| |
| // Append the mov const vector to reg opcode. |
| AppendOpcodeWithConst(kX86MovdqaRM, reg, mir); |
| } |
| |
| void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) { |
| // To deal with correct memory ordering, reverse order of constants. |
| int32_t constants[4]; |
| constants[3] = mir->dalvikInsn.arg[0]; |
| constants[2] = mir->dalvikInsn.arg[1]; |
| constants[1] = mir->dalvikInsn.arg[2]; |
| constants[0] = mir->dalvikInsn.arg[3]; |
| |
| // Search if there is already a constant in pool with this value. |
| LIR *data_target = ScanVectorLiteral(constants); |
| if (data_target == nullptr) { |
| data_target = AddVectorLiteral(constants); |
| } |
| |
| // Load the proper value from the literal area. |
| // We don't know the proper offset for the value, so pick one that will force |
| // 4 byte offset. We will fix this up in the assembler later to have the |
| // right value. |
| LIR* load; |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); |
| if (cu_->target64) { |
| load = NewLIR3(opcode, reg, kRIPReg, 256 /* bogus */); |
| } else { |
| // Address the start of the method. |
| RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low); |
| if (rl_method.wide) { |
| rl_method = LoadValueWide(rl_method, kCoreReg); |
| } else { |
| rl_method = LoadValue(rl_method, kCoreReg); |
| } |
| |
| load = NewLIR3(opcode, reg, rl_method.reg.GetReg(), 256 /* bogus */); |
| |
| // The literal pool needs position independent logic. |
| store_method_addr_used_ = true; |
| } |
| load->flags.fixup = kFixupLoad; |
| load->target = data_target; |
| } |
| |
| void X86Mir2Lir::GenMoveVector(MIR* mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest); |
| RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB); |
| NewLIR2(kX86MovdqaRR, rs_dest.GetReg(), rs_src.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2) { |
| /* |
| * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM |
| * and multiplying 8 at a time before recombining back into one XMM register. |
| * |
| * let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes) |
| * xmm3 is tmp (operate on high bits of 16bit lanes) |
| * |
| * xmm3 = xmm1 |
| * xmm1 = xmm1 .* xmm2 |
| * xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits |
| * xmm3 = xmm3 .>> 8 |
| * xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00 |
| * xmm2 = xmm2 .* xmm3 // xmm2 now has high bits |
| * xmm1 = xmm1 | xmm2 // combine results |
| */ |
| |
| // Copy xmm1. |
| RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempDouble()); |
| RegStorage rs_dest_high_tmp = Get128BitRegister(AllocTempDouble()); |
| NewLIR2(kX86MovdqaRR, rs_src1_high_tmp.GetReg(), rs_src2.GetReg()); |
| NewLIR2(kX86MovdqaRR, rs_dest_high_tmp.GetReg(), rs_dest_src1.GetReg()); |
| |
| // Multiply low bits. |
| // x7 *= x3 |
| NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| |
| // xmm1 now has low bits. |
| AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF); |
| |
| // Prepare high bits for multiplication. |
| NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), 0x8); |
| AndMaskVectorRegister(rs_dest_high_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00); |
| |
| // Multiply high bits and xmm2 now has high bits. |
| NewLIR2(kX86PmullwRR, rs_src1_high_tmp.GetReg(), rs_dest_high_tmp.GetReg()); |
| |
| // Combine back into dest XMM register. |
| NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src1_high_tmp.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2) { |
| /* |
| * We need to emulate the packed long multiply. |
| * For kMirOpPackedMultiply xmm1, xmm0: |
| * - xmm1 is src/dest |
| * - xmm0 is src |
| * - Get xmm2 and xmm3 as temp |
| * - Idea is to multiply the lower 32 of each operand with the higher 32 of the other. |
| * - Then add the two results. |
| * - Move it to the upper 32 of the destination |
| * - Then multiply the lower 32-bits of the operands and add the result to the destination. |
| * |
| * (op dest src ) |
| * movdqa %xmm2, %xmm1 |
| * movdqa %xmm3, %xmm0 |
| * psrlq %xmm3, $0x20 |
| * pmuludq %xmm3, %xmm2 |
| * psrlq %xmm1, $0x20 |
| * pmuludq %xmm1, %xmm0 |
| * paddq %xmm1, %xmm3 |
| * psllq %xmm1, $0x20 |
| * pmuludq %xmm2, %xmm0 |
| * paddq %xmm1, %xmm2 |
| * |
| * When both the operands are the same, then we need to calculate the lower-32 * higher-32 |
| * calculation only once. Thus we don't need the xmm3 temp above. That sequence becomes: |
| * |
| * (op dest src ) |
| * movdqa %xmm2, %xmm1 |
| * psrlq %xmm1, $0x20 |
| * pmuludq %xmm1, %xmm0 |
| * paddq %xmm1, %xmm1 |
| * psllq %xmm1, $0x20 |
| * pmuludq %xmm2, %xmm0 |
| * paddq %xmm1, %xmm2 |
| * |
| */ |
| |
| bool both_operands_same = (rs_dest_src1.GetReg() == rs_src2.GetReg()); |
| |
| RegStorage rs_tmp_vector_1; |
| RegStorage rs_tmp_vector_2; |
| rs_tmp_vector_1 = Get128BitRegister(AllocTempDouble()); |
| NewLIR2(kX86MovdqaRR, rs_tmp_vector_1.GetReg(), rs_dest_src1.GetReg()); |
| |
| if (both_operands_same == false) { |
| rs_tmp_vector_2 = Get128BitRegister(AllocTempDouble()); |
| NewLIR2(kX86MovdqaRR, rs_tmp_vector_2.GetReg(), rs_src2.GetReg()); |
| NewLIR2(kX86PsrlqRI, rs_tmp_vector_2.GetReg(), 0x20); |
| NewLIR2(kX86PmuludqRR, rs_tmp_vector_2.GetReg(), rs_tmp_vector_1.GetReg()); |
| } |
| |
| NewLIR2(kX86PsrlqRI, rs_dest_src1.GetReg(), 0x20); |
| NewLIR2(kX86PmuludqRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| |
| if (both_operands_same == false) { |
| NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_2.GetReg()); |
| } else { |
| NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg()); |
| } |
| |
| NewLIR2(kX86PsllqRI, rs_dest_src1.GetReg(), 0x20); |
| NewLIR2(kX86PmuludqRR, rs_tmp_vector_1.GetReg(), rs_src2.GetReg()); |
| NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_1.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenMultiplyVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PmulldRR; |
| break; |
| case kSignedHalf: |
| opcode = kX86PmullwRR; |
| break; |
| case kSingle: |
| opcode = kX86MulpsRR; |
| break; |
| case kDouble: |
| opcode = kX86MulpdRR; |
| break; |
| case kSignedByte: |
| // HW doesn't support 16x16 byte multiplication so emulate it. |
| GenMultiplyVectorSignedByte(rs_dest_src1, rs_src2); |
| return; |
| case k64: |
| GenMultiplyVectorLong(rs_dest_src1, rs_src2); |
| return; |
| default: |
| LOG(FATAL) << "Unsupported vector multiply " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenAddVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PadddRR; |
| break; |
| case k64: |
| opcode = kX86PaddqRR; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PaddwRR; |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = kX86PaddbRR; |
| break; |
| case kSingle: |
| opcode = kX86AddpsRR; |
| break; |
| case kDouble: |
| opcode = kX86AddpdRR; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector addition " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenSubtractVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PsubdRR; |
| break; |
| case k64: |
| opcode = kX86PsubqRR; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsubwRR; |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = kX86PsubbRR; |
| break; |
| case kSingle: |
| opcode = kX86SubpsRR; |
| break; |
| case kDouble: |
| opcode = kX86SubpdRR; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector subtraction " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenShiftByteVector(MIR* mir) { |
| // Destination does not need clobbered because it has already been as part |
| // of the general packed shift handler (caller of this method). |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| |
| int opcode = 0; |
| switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { |
| case kMirOpPackedShiftLeft: |
| opcode = kX86PsllwRI; |
| break; |
| case kMirOpPackedSignedShiftRight: |
| case kMirOpPackedUnsignedShiftRight: |
| // TODO Add support for emulated byte shifts. |
| default: |
| LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode; |
| break; |
| } |
| |
| // Clear xmm register and return if shift more than byte length. |
| int imm = mir->dalvikInsn.vB; |
| if (imm >= 8) { |
| NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg()); |
| return; |
| } |
| |
| // Shift lower values. |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| |
| /* |
| * The above shift will shift the whole word, but that means |
| * both the bytes will shift as well. To emulate a byte level |
| * shift, we can just throw away the lower (8 - N) bits of the |
| * upper byte, and we are done. |
| */ |
| uint8_t byte_mask = 0xFF << imm; |
| uint32_t int_mask = byte_mask; |
| int_mask = int_mask << 8 | byte_mask; |
| int_mask = int_mask << 8 | byte_mask; |
| int_mask = int_mask << 8 | byte_mask; |
| |
| // And the destination with the mask |
| AndMaskVectorRegister(rs_dest_src1, int_mask, int_mask, int_mask, int_mask); |
| } |
| |
| void X86Mir2Lir::GenShiftLeftVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| int imm = mir->dalvikInsn.vB; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PslldRI; |
| break; |
| case k64: |
| opcode = kX86PsllqRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsllwRI; |
| break; |
| case kSignedByte: |
| case kUnsignedByte: |
| GenShiftByteVector(mir); |
| return; |
| default: |
| LOG(FATAL) << "Unsupported vector shift left " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenSignedShiftRightVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| int imm = mir->dalvikInsn.vB; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PsradRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsrawRI; |
| break; |
| case kSignedByte: |
| case kUnsignedByte: |
| GenShiftByteVector(mir); |
| return; |
| case k64: |
| // TODO Implement emulated shift algorithm. |
| default: |
| LOG(FATAL) << "Unsupported vector signed shift right " << opsize; |
| UNREACHABLE(); |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenUnsignedShiftRightVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| int imm = mir->dalvikInsn.vB; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PsrldRI; |
| break; |
| case k64: |
| opcode = kX86PsrlqRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsrlwRI; |
| break; |
| case kSignedByte: |
| case kUnsignedByte: |
| GenShiftByteVector(mir); |
| return; |
| default: |
| LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenAndVector(MIR* mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenOrVector(MIR* mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenXorVector(MIR* mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest_src1); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) { |
| MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4); |
| } |
| |
| void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) { |
| // Create temporary MIR as container for 128-bit binary mask. |
| MIR const_mir; |
| MIR* const_mirp = &const_mir; |
| const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector); |
| const_mirp->dalvikInsn.arg[0] = m0; |
| const_mirp->dalvikInsn.arg[1] = m1; |
| const_mirp->dalvikInsn.arg[2] = m2; |
| const_mirp->dalvikInsn.arg[3] = m3; |
| |
| // Mask vector with const from literal pool. |
| AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp); |
| } |
| |
| void X86Mir2Lir::GenAddReduceVector(MIR* mir) { |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB); |
| bool is_wide = opsize == k64 || opsize == kDouble; |
| |
| // Get the location of the virtual register. Since this bytecode is overloaded |
| // for different types (and sizes), we need different logic for each path. |
| // The design of bytecode uses same VR for source and destination. |
| RegLocation rl_src, rl_dest, rl_result; |
| if (is_wide) { |
| rl_src = mir_graph_->GetSrcWide(mir, 0); |
| rl_dest = mir_graph_->GetDestWide(mir); |
| } else { |
| rl_src = mir_graph_->GetSrc(mir, 0); |
| rl_dest = mir_graph_->GetDest(mir); |
| } |
| |
| // We need a temp for byte and short values |
| RegStorage temp; |
| |
| // There is a different path depending on type and size. |
| if (opsize == kSingle) { |
| // Handle float case. |
| // TODO Add support for fast math (not value safe) and do horizontal add in that case. |
| |
| rl_src = LoadValue(rl_src, kFPReg); |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| |
| // Since we are doing an add-reduce, we move the reg holding the VR |
| // into the result so we include it in result. |
| OpRegCopy(rl_result.reg, rl_src.reg); |
| NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); |
| |
| // Since FP must keep order of operation for value safety, we shift to low |
| // 32-bits and add to result. |
| for (int i = 0; i < 3; i++) { |
| NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), 0x39); |
| NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); |
| } |
| |
| StoreValue(rl_dest, rl_result); |
| } else if (opsize == kDouble) { |
| // Handle double case. |
| rl_src = LoadValueWide(rl_src, kFPReg); |
| rl_result = EvalLocWide(rl_dest, kFPReg, true); |
| LOG(FATAL) << "Unsupported vector add reduce for double."; |
| } else if (opsize == k64) { |
| /* |
| * Handle long case: |
| * 1) Reduce the vector register to lower half (with addition). |
| * 1-1) Get an xmm temp and fill it with vector register. |
| * 1-2) Shift the xmm temp by 8-bytes. |
| * 1-3) Add the xmm temp to vector register that is being reduced. |
| * 2) Allocate temp GP / GP pair. |
| * 2-1) In 64-bit case, use movq to move result to a 64-bit GP. |
| * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair. |
| * 3) Finish the add reduction by doing what add-long/2addr does, |
| * but instead of having a VR as one of the sources, we have our temp GP. |
| */ |
| RegStorage rs_tmp_vector = Get128BitRegister(AllocTempDouble()); |
| NewLIR2(kX86MovdqaRR, rs_tmp_vector.GetReg(), vector_src.GetReg()); |
| NewLIR2(kX86PsrldqRI, rs_tmp_vector.GetReg(), 8); |
| NewLIR2(kX86PaddqRR, vector_src.GetReg(), rs_tmp_vector.GetReg()); |
| FreeTemp(rs_tmp_vector); |
| |
| // We would like to be able to reuse the add-long implementation, so set up a fake |
| // register location to pass it. |
| RegLocation temp_loc = mir_graph_->GetBadLoc(); |
| temp_loc.core = 1; |
| temp_loc.wide = 1; |
| temp_loc.location = kLocPhysReg; |
| temp_loc.reg = AllocTempWide(); |
| |
| if (cu_->target64) { |
| DCHECK(!temp_loc.reg.IsPair()); |
| NewLIR2(kX86MovqrxRR, temp_loc.reg.GetReg(), vector_src.GetReg()); |
| } else { |
| NewLIR2(kX86MovdrxRR, temp_loc.reg.GetLowReg(), vector_src.GetReg()); |
| NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20); |
| NewLIR2(kX86MovdrxRR, temp_loc.reg.GetHighReg(), vector_src.GetReg()); |
| } |
| |
| GenArithOpLong(Instruction::ADD_LONG_2ADDR, rl_dest, temp_loc, temp_loc, mir->optimization_flags); |
| } else if (opsize == kSignedByte || opsize == kUnsignedByte) { |
| RegStorage rs_tmp = Get128BitRegister(AllocTempDouble()); |
| NewLIR2(kX86PxorRR, rs_tmp.GetReg(), rs_tmp.GetReg()); |
| NewLIR2(kX86PsadbwRR, vector_src.GetReg(), rs_tmp.GetReg()); |
| NewLIR3(kX86PshufdRRI, rs_tmp.GetReg(), vector_src.GetReg(), 0x4e); |
| NewLIR2(kX86PaddbRR, vector_src.GetReg(), rs_tmp.GetReg()); |
| // Move to a GPR |
| temp = AllocTemp(); |
| NewLIR2(kX86MovdrxRR, temp.GetReg(), vector_src.GetReg()); |
| } else { |
| // Handle and the int and short cases together |
| |
| // Initialize as if we were handling int case. Below we update |
| // the opcode if handling byte or short. |
| int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8; |
| int vec_unit_size; |
| int horizontal_add_opcode; |
| int extract_opcode; |
| |
| if (opsize == kSignedHalf || opsize == kUnsignedHalf) { |
| extract_opcode = kX86PextrwRRI; |
| horizontal_add_opcode = kX86PhaddwRR; |
| vec_unit_size = 2; |
| } else if (opsize == k32) { |
| vec_unit_size = 4; |
| horizontal_add_opcode = kX86PhadddRR; |
| extract_opcode = kX86PextrdRRI; |
| } else { |
| LOG(FATAL) << "Unsupported vector add reduce " << opsize; |
| return; |
| } |
| |
| int elems = vec_bytes / vec_unit_size; |
| |
| while (elems > 1) { |
| NewLIR2(horizontal_add_opcode, vector_src.GetReg(), vector_src.GetReg()); |
| elems >>= 1; |
| } |
| |
| // Handle this as arithmetic unary case. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| |
| // Extract to a GP register because this is integral typed. |
| temp = AllocTemp(); |
| NewLIR3(extract_opcode, temp.GetReg(), vector_src.GetReg(), 0); |
| } |
| |
| if (opsize != k64 && opsize != kSingle && opsize != kDouble) { |
| // The logic below looks very similar to the handling of ADD_INT_2ADDR |
| // except the rhs is not a VR but a physical register allocated above. |
| // No load of source VR is done because it assumes that rl_result will |
| // share physical register / memory location. |
| rl_result = UpdateLocTyped(rl_dest); |
| if (rl_result.location == kLocPhysReg) { |
| // Ensure res is in a core reg. |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegReg(kOpAdd, rl_result.reg, temp); |
| StoreFinalValue(rl_dest, rl_result); |
| } else { |
| // Do the addition directly to memory. |
| OpMemReg(kOpAdd, rl_result, temp.GetReg()); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::GenReduceVector(MIR* mir) { |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegLocation rl_dest = mir_graph_->GetDest(mir); |
| RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegLocation rl_result; |
| bool is_wide = false; |
| |
| // There is a different path depending on type and size. |
| if (opsize == kSingle) { |
| // Handle float case. |
| // TODO Add support for fast math (not value safe) and do horizontal add in that case. |
| |
| int extract_index = mir->dalvikInsn.arg[0]; |
| |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| NewLIR2(kX86PxorRR, rl_result.reg.GetReg(), rl_result.reg.GetReg()); |
| |
| if (LIKELY(extract_index != 0)) { |
| // We know the index of element which we want to extract. We want to extract it and |
| // keep values in vector register correct for future use. So the way we act is: |
| // 1. Generate shuffle mask that allows to swap zeroth and required elements; |
| // 2. Shuffle vector register with this mask; |
| // 3. Extract zeroth element where required value lies; |
| // 4. Shuffle with same mask again to restore original values in vector register. |
| // The mask is generated from equivalence mask 0b11100100 swapping 0th and extracted |
| // element indices. |
| int shuffle[4] = {0b00, 0b01, 0b10, 0b11}; |
| shuffle[0] = extract_index; |
| shuffle[extract_index] = 0; |
| int mask = 0; |
| for (int i = 0; i < 4; i++) { |
| mask |= (shuffle[i] << (2 * i)); |
| } |
| NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask); |
| NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); |
| NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask); |
| } else { |
| // We need to extract zeroth element and don't need any complex stuff to do it. |
| NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg()); |
| } |
| |
| StoreFinalValue(rl_dest, rl_result); |
| } else if (opsize == kDouble) { |
| // TODO Handle double case. |
| LOG(FATAL) << "Unsupported add reduce for double."; |
| } else if (opsize == k64) { |
| /* |
| * Handle long case: |
| * 1) Reduce the vector register to lower half (with addition). |
| * 1-1) Get an xmm temp and fill it with vector register. |
| * 1-2) Shift the xmm temp by 8-bytes. |
| * 1-3) Add the xmm temp to vector register that is being reduced. |
| * 2) Evaluate destination to a GP / GP pair. |
| * 2-1) In 64-bit case, use movq to move result to a 64-bit GP. |
| * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair. |
| * 3) Store the result to the final destination. |
| */ |
| NewLIR2(kX86PsrldqRI, vector_src.GetReg(), 8); |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| if (cu_->target64) { |
| DCHECK(!rl_result.reg.IsPair()); |
| NewLIR2(kX86MovqrxRR, rl_result.reg.GetReg(), vector_src.GetReg()); |
| } else { |
| NewLIR2(kX86MovdrxRR, rl_result.reg.GetLowReg(), vector_src.GetReg()); |
| NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20); |
| NewLIR2(kX86MovdrxRR, rl_result.reg.GetHighReg(), vector_src.GetReg()); |
| } |
| |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| int extract_index = mir->dalvikInsn.arg[0]; |
| int extr_opcode = 0; |
| rl_result = UpdateLocTyped(rl_dest); |
| |
| // Handle the rest of integral types now. |
| switch (opsize) { |
| case k32: |
| extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdRRI : kX86PextrdMRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwRRI : kX86PextrwMRI; |
| break; |
| case kSignedByte: |
| extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrbRRI : kX86PextrbMRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector reduce " << opsize; |
| UNREACHABLE(); |
| } |
| |
| if (rl_result.location == kLocPhysReg) { |
| NewLIR3(extr_opcode, rl_result.reg.GetReg(), vector_src.GetReg(), extract_index); |
| StoreFinalValue(rl_dest, rl_result); |
| } else { |
| int displacement = SRegOffset(rl_result.s_reg_low); |
| LIR *l = NewLIR4(extr_opcode, rs_rX86_SP_32.GetReg(), displacement, vector_src.GetReg(), |
| extract_index); |
| AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */); |
| AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src, |
| OpSize opsize, int op_mov) { |
| if (!cu_->target64 && opsize == k64) { |
| // Logic assumes that longs are loaded in GP register pairs. |
| NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rs_src.GetLowReg()); |
| RegStorage r_tmp = AllocTempDouble(); |
| NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), rs_src.GetHighReg()); |
| NewLIR2(kX86PunpckldqRR, rs_dest.GetReg(), r_tmp.GetReg()); |
| FreeTemp(r_tmp); |
| } else { |
| NewLIR2(op_mov, rs_dest.GetReg(), rs_src.GetReg()); |
| } |
| } |
| |
| void X86Mir2Lir::GenSetVector(MIR* mir) { |
| DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); |
| Clobber(rs_dest); |
| int op_shuffle = 0, op_shuffle_high = 0, op_mov = kX86MovdxrRR; |
| RegisterClass reg_type = kCoreReg; |
| bool is_wide = false; |
| |
| switch (opsize) { |
| case k32: |
| op_shuffle = kX86PshufdRRI; |
| break; |
| case kSingle: |
| op_shuffle = kX86PshufdRRI; |
| op_mov = kX86MovdqaRR; |
| reg_type = kFPReg; |
| break; |
| case k64: |
| op_shuffle = kX86PunpcklqdqRR; |
| op_mov = kX86MovqxrRR; |
| is_wide = true; |
| break; |
| case kSignedByte: |
| case kUnsignedByte: |
| // We will have the source loaded up in a |
| // double-word before we use this shuffle |
| op_shuffle = kX86PshufdRRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| // Handles low quadword. |
| op_shuffle = kX86PshuflwRRI; |
| // Handles upper quadword. |
| op_shuffle_high = kX86PshufdRRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector set " << opsize; |
| break; |
| } |
| |
| // Load the value from the VR into a physical register. |
| RegLocation rl_src; |
| if (!is_wide) { |
| rl_src = mir_graph_->GetSrc(mir, 0); |
| rl_src = LoadValue(rl_src, reg_type); |
| } else { |
| rl_src = mir_graph_->GetSrcWide(mir, 0); |
| rl_src = LoadValueWide(rl_src, reg_type); |
| } |
| RegStorage reg_to_shuffle = rl_src.reg; |
| |
| // Load the value into the XMM register. |
| LoadVectorRegister(rs_dest, reg_to_shuffle, opsize, op_mov); |
| |
| if (opsize == kSignedByte || opsize == kUnsignedByte) { |
| // In the byte case, first duplicate it to be a word |
| // Then duplicate it to be a double-word |
| NewLIR2(kX86PunpcklbwRR, rs_dest.GetReg(), rs_dest.GetReg()); |
| NewLIR2(kX86PunpcklwdRR, rs_dest.GetReg(), rs_dest.GetReg()); |
| } |
| |
| // Now shuffle the value across the destination. |
| if (op_shuffle == kX86PunpcklqdqRR) { |
| NewLIR2(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg()); |
| } else { |
| NewLIR3(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg(), 0); |
| } |
| |
| // And then repeat as needed. |
| if (op_shuffle_high != 0) { |
| NewLIR3(op_shuffle_high, rs_dest.GetReg(), rs_dest.GetReg(), 0); |
| } |
| } |
| |
| void X86Mir2Lir::GenPackedArrayGet(BasicBlock* bb, MIR* mir) { |
| UNUSED(bb, mir); |
| UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayGet not supported."; |
| } |
| |
| void X86Mir2Lir::GenPackedArrayPut(BasicBlock* bb, MIR* mir) { |
| UNUSED(bb, mir); |
| UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayPut not supported."; |
| } |
| |
| LIR* X86Mir2Lir::ScanVectorLiteral(int32_t* constants) { |
| for (LIR *p = const_vectors_; p != nullptr; p = p->next) { |
| if (constants[0] == p->operands[0] && constants[1] == p->operands[1] && |
| constants[2] == p->operands[2] && constants[3] == p->operands[3]) { |
| return p; |
| } |
| } |
| return nullptr; |
| } |
| |
| LIR* X86Mir2Lir::AddVectorLiteral(int32_t* constants) { |
| LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData)); |
| new_value->operands[0] = constants[0]; |
| new_value->operands[1] = constants[1]; |
| new_value->operands[2] = constants[2]; |
| new_value->operands[3] = constants[3]; |
| new_value->next = const_vectors_; |
| if (const_vectors_ == nullptr) { |
| estimated_native_code_size_ += 12; // Maximum needed to align to 16 byte boundary. |
| } |
| estimated_native_code_size_ += 16; // Space for one vector. |
| const_vectors_ = new_value; |
| return new_value; |
| } |
| |
| // ------------ ABI support: mapping of args to physical registers ------------- |
| RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(ShortyArg arg) { |
| const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5}; |
| const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg); |
| const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3, |
| kFArg4, kFArg5, kFArg6, kFArg7}; |
| const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg); |
| |
| if (arg.IsFP()) { |
| if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { |
| return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], |
| arg.IsWide() ? kWide : kNotWide); |
| } |
| } else { |
| if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { |
| return m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], |
| arg.IsRef() ? kRef : (arg.IsWide() ? kWide : kNotWide)); |
| } |
| } |
| return RegStorage::InvalidReg(); |
| } |
| |
| RegStorage X86Mir2Lir::InToRegStorageX86Mapper::GetNextReg(ShortyArg arg) { |
| const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3}; |
| const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg); |
| const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3}; |
| const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg); |
| |
| RegStorage result = RegStorage::InvalidReg(); |
| if (arg.IsFP()) { |
| if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { |
| return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], |
| arg.IsWide() ? kWide : kNotWide); |
| } |
| } else { |
| if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { |
| result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], |
| arg.IsRef() ? kRef : kNotWide); |
| if (arg.IsWide() && cur_core_reg_ < coreArgMappingToPhysicalRegSize) { |
| result = RegStorage::MakeRegPair( |
| result, m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], kNotWide)); |
| } |
| } |
| } |
| return result; |
| } |
| |
| // ---------End of ABI support: mapping of args to physical registers ------------- |
| |
| bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) { |
| // Location of reference to data array |
| int value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count |
| int count_offset = mirror::String::CountOffset().Int32Value(); |
| // Starting offset within data array |
| int offset_offset = mirror::String::OffsetOffset().Int32Value(); |
| // Start of char data with array_ |
| int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_idx = info->args[1]; |
| rl_obj = LoadValue(rl_obj, kRefReg); |
| // X86 wants to avoid putting a constant index into a register. |
| if (!rl_idx.is_const) { |
| rl_idx = LoadValue(rl_idx, kCoreReg); |
| } |
| RegStorage reg_max; |
| GenNullCheck(rl_obj.reg, info->opt_flags); |
| bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| LIR* range_check_branch = nullptr; |
| RegStorage reg_off; |
| RegStorage reg_ptr; |
| if (range_check) { |
| // On x86, we can compare to memory directly |
| // Set up a launch pad to allow retry in case of bounds violation */ |
| if (rl_idx.is_const) { |
| LIR* comparison; |
| range_check_branch = OpCmpMemImmBranch( |
| kCondUlt, RegStorage::InvalidReg(), rl_obj.reg, count_offset, |
| mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison); |
| MarkPossibleNullPointerExceptionAfter(0, comparison); |
| } else { |
| OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset); |
| MarkPossibleNullPointerException(0); |
| range_check_branch = OpCondBranch(kCondUge, nullptr); |
| } |
| } |
| reg_off = AllocTemp(); |
| reg_ptr = AllocTempRef(); |
| Load32Disp(rl_obj.reg, offset_offset, reg_off); |
| LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile); |
| if (rl_idx.is_const) { |
| OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg)); |
| } else { |
| OpRegReg(kOpAdd, reg_off, rl_idx.reg); |
| } |
| FreeTemp(rl_obj.reg); |
| if (rl_idx.location == kLocPhysReg) { |
| FreeTemp(rl_idx.reg); |
| } |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf); |
| FreeTemp(reg_off); |
| FreeTemp(reg_ptr); |
| StoreValue(rl_dest, rl_result); |
| if (range_check) { |
| DCHECK(range_check_branch != nullptr); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked. |
| AddIntrinsicSlowPath(info, range_check_branch); |
| } |
| return true; |
| } |
| |
| bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { |
| RegLocation rl_dest = InlineTarget(info); |
| |
| // Early exit if the result is unused. |
| if (rl_dest.orig_sreg < 0) { |
| return true; |
| } |
| |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| |
| if (cu_->target64) { |
| OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>()); |
| } else { |
| OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>()); |
| } |
| |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| /** |
| * Lock temp registers for explicit usage. Registers will be freed in destructor. |
| */ |
| X86Mir2Lir::ExplicitTempRegisterLock::ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir, |
| int n_regs, ...) : |
| temp_regs_(n_regs), |
| mir_to_lir_(mir_to_lir) { |
| va_list regs; |
| va_start(regs, n_regs); |
| for (int i = 0; i < n_regs; i++) { |
| RegStorage reg = *(va_arg(regs, RegStorage*)); |
| RegisterInfo* info = mir_to_lir_->GetRegInfo(reg); |
| |
| // Make sure we don't have promoted register here. |
| DCHECK(info->IsTemp()); |
| |
| temp_regs_.push_back(reg); |
| mir_to_lir_->FlushReg(reg); |
| |
| if (reg.IsPair()) { |
| RegStorage partner = info->Partner(); |
| temp_regs_.push_back(partner); |
| mir_to_lir_->FlushReg(partner); |
| } |
| |
| mir_to_lir_->Clobber(reg); |
| mir_to_lir_->LockTemp(reg); |
| } |
| |
| va_end(regs); |
| } |
| |
| /* |
| * Free all locked registers. |
| */ |
| X86Mir2Lir::ExplicitTempRegisterLock::~ExplicitTempRegisterLock() { |
| // Free all locked temps. |
| for (auto it : temp_regs_) { |
| mir_to_lir_->FreeTemp(it); |
| } |
| } |
| |
| int X86Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) { |
| if (count < 4) { |
| // It does not make sense to use this utility if we have no chance to use |
| // 128-bit move. |
| return count; |
| } |
| GenDalvikArgsFlushPromoted(info, first); |
| |
| // The rest can be copied together |
| int current_src_offset = SRegOffset(info->args[first].s_reg_low); |
| int current_dest_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set); |
| |
| // Only davik regs are accessed in this loop; no next_call_insn() calls. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| while (count > 0) { |
| // This is based on the knowledge that the stack itself is 16-byte aligned. |
| bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; |
| bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; |
| size_t bytes_to_move; |
| |
| /* |
| * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a |
| * a 128-bit move because we won't get the chance to try to aligned. If there are more than |
| * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. |
| * We do this because we could potentially do a smaller move to align. |
| */ |
| if (count == 4 || (count > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { |
| // Moving 128-bits via xmm register. |
| bytes_to_move = sizeof(uint32_t) * 4; |
| |
| // Allocate a free xmm temp. Since we are working through the calling sequence, |
| // we expect to have an xmm temporary available. AllocTempDouble will abort if |
| // there are no free registers. |
| RegStorage temp = AllocTempDouble(); |
| |
| LIR* ld1 = nullptr; |
| LIR* ld2 = nullptr; |
| LIR* st1 = nullptr; |
| LIR* st2 = nullptr; |
| |
| /* |
| * The logic is similar for both loads and stores. If we have 16-byte alignment, |
| * do an aligned move. If we have 8-byte alignment, then do the move in two |
| * parts. This approach prevents possible cache line splits. Finally, fall back |
| * to doing an unaligned move. In most cases we likely won't split the cache |
| * line but we cannot prove it and thus take a conservative approach. |
| */ |
| bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; |
| bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; |
| |
| if (src_is_16b_aligned) { |
| ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP); |
| } else if (src_is_8b_aligned) { |
| ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP); |
| ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1), |
| kMovHi128FP); |
| } else { |
| ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP); |
| } |
| |
| if (dest_is_16b_aligned) { |
| st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP); |
| } else if (dest_is_8b_aligned) { |
| st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP); |
| st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1), |
| temp, kMovHi128FP); |
| } else { |
| st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP); |
| } |
| |
| // TODO If we could keep track of aliasing information for memory accesses that are wider |
| // than 64-bit, we wouldn't need to set up a barrier. |
| if (ld1 != nullptr) { |
| if (ld2 != nullptr) { |
| // For 64-bit load we can actually set up the aliasing information. |
| AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); |
| AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, |
| true); |
| } else { |
| // Set barrier for 128-bit load. |
| ld1->u.m.def_mask = &kEncodeAll; |
| } |
| } |
| if (st1 != nullptr) { |
| if (st2 != nullptr) { |
| // For 64-bit store we can actually set up the aliasing information. |
| AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); |
| AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, |
| true); |
| } else { |
| // Set barrier for 128-bit store. |
| st1->u.m.def_mask = &kEncodeAll; |
| } |
| } |
| |
| // Free the temporary used for the data movement. |
| FreeTemp(temp); |
| } else { |
| // Moving 32-bits via general purpose register. |
| bytes_to_move = sizeof(uint32_t); |
| |
| // Instead of allocating a new temp, simply reuse one of the registers being used |
| // for argument passing. |
| RegStorage temp = TargetReg(kArg3, kNotWide); |
| |
| // Now load the argument VR and store to the outs. |
| Load32Disp(TargetPtrReg(kSp), current_src_offset, temp); |
| Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp); |
| } |
| |
| current_src_offset += bytes_to_move; |
| current_dest_offset += bytes_to_move; |
| count -= (bytes_to_move >> 2); |
| } |
| DCHECK_EQ(count, 0); |
| return count; |
| } |
| |
| } // namespace art |