| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Thumb2 ISA. */ |
| |
| #include "arm64_lir.h" |
| #include "codegen_arm64.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "gc/accounting/card_table.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "mirror/art_method.h" |
| #include "mirror/object_array-inl.h" |
| |
| namespace art { |
| |
| /* |
| * The sparse table in the literal pool is an array of <key,displacement> |
| * pairs. For each set, we'll load them as a pair using ldp. |
| * The test loop will look something like: |
| * |
| * adr r_base, <table> |
| * ldr r_val, [rA64_SP, v_reg_off] |
| * mov r_idx, #table_size |
| * loop: |
| * cbz r_idx, quit |
| * ldp r_key, r_disp, [r_base], #8 |
| * sub r_idx, #1 |
| * cmp r_val, r_key |
| * b.ne loop |
| * adr r_base, #0 ; This is the instruction from which we compute displacements |
| * add r_base, r_disp |
| * br r_base |
| * quit: |
| */ |
| void Arm64Mir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| if (cu_->verbose) { |
| DumpSparseSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint32_t size = table[1]; |
| tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR)); |
| switch_tables_.push_back(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegStorage r_base = AllocTempWide(); |
| // Allocate key and disp temps. |
| RegStorage r_key = AllocTemp(); |
| RegStorage r_disp = AllocTemp(); |
| // Materialize a pointer to the switch table |
| NewLIR3(kA64Adr2xd, r_base.GetReg(), 0, WrapPointer(tab_rec)); |
| // Set up r_idx |
| RegStorage r_idx = AllocTemp(); |
| LoadConstant(r_idx, size); |
| |
| // Entry of loop. |
| LIR* loop_entry = NewLIR0(kPseudoTargetLabel); |
| LIR* branch_out = NewLIR2(kA64Cbz2rt, r_idx.GetReg(), 0); |
| |
| // Load next key/disp. |
| NewLIR4(kA64LdpPost4rrXD, r_key.GetReg(), r_disp.GetReg(), r_base.GetReg(), 2); |
| OpRegRegImm(kOpSub, r_idx, r_idx, 1); |
| |
| // Go to next case, if key does not match. |
| OpRegReg(kOpCmp, r_key, rl_src.reg); |
| OpCondBranch(kCondNe, loop_entry); |
| |
| // Key does match: branch to case label. |
| LIR* switch_label = NewLIR3(kA64Adr2xd, r_base.GetReg(), 0, -1); |
| tab_rec->anchor = switch_label; |
| |
| // Add displacement to base branch address and go! |
| OpRegRegRegExtend(kOpAdd, r_base, r_base, As64BitReg(r_disp), kA64Sxtw, 0U); |
| NewLIR1(kA64Br1x, r_base.GetReg()); |
| |
| // Loop exit label. |
| LIR* loop_exit = NewLIR0(kPseudoTargetLabel); |
| branch_out->target = loop_exit; |
| } |
| |
| |
| void Arm64Mir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| if (cu_->verbose) { |
| DumpPackedSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint32_t size = table[1]; |
| tab_rec->targets = |
| static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR)); |
| switch_tables_.push_back(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegStorage table_base = AllocTempWide(); |
| // Materialize a pointer to the switch table |
| NewLIR3(kA64Adr2xd, table_base.GetReg(), 0, WrapPointer(tab_rec)); |
| int low_key = s4FromSwitchData(&table[2]); |
| RegStorage key_reg; |
| // Remove the bias, if necessary |
| if (low_key == 0) { |
| key_reg = rl_src.reg; |
| } else { |
| key_reg = AllocTemp(); |
| OpRegRegImm(kOpSub, key_reg, rl_src.reg, low_key); |
| } |
| // Bounds check - if < 0 or >= size continue following switch |
| OpRegImm(kOpCmp, key_reg, size - 1); |
| LIR* branch_over = OpCondBranch(kCondHi, NULL); |
| |
| // Load the displacement from the switch table |
| RegStorage disp_reg = AllocTemp(); |
| LoadBaseIndexed(table_base, As64BitReg(key_reg), disp_reg, 2, k32); |
| |
| // Get base branch address. |
| RegStorage branch_reg = AllocTempWide(); |
| LIR* switch_label = NewLIR3(kA64Adr2xd, branch_reg.GetReg(), 0, -1); |
| tab_rec->anchor = switch_label; |
| |
| // Add displacement to base branch address and go! |
| OpRegRegRegExtend(kOpAdd, branch_reg, branch_reg, As64BitReg(disp_reg), kA64Sxtw, 0U); |
| NewLIR1(kA64Br1x, branch_reg.GetReg()); |
| |
| // branch_over target here |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| } |
| |
| /* |
| * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more |
| * details see monitor.cc. |
| */ |
| void Arm64Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { |
| // x0/w0 = object |
| // w1 = thin lock thread id |
| // x2 = address of lock word |
| // w3 = lock word / store failure |
| // TUNING: How much performance we get when we inline this? |
| // Since we've already flush all register. |
| FlushAllRegs(); |
| LoadValueDirectFixed(rl_src, rs_x0); // = TargetReg(kArg0, kRef) |
| LockCallTemps(); // Prepare for explicit register usage |
| LIR* null_check_branch = nullptr; |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { |
| null_check_branch = nullptr; // No null check. |
| } else { |
| // If the null-check fails its handled by the slow-path to reduce exception related meta-data. |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| null_check_branch = OpCmpImmBranch(kCondEq, rs_x0, 0, NULL); |
| } |
| } |
| Load32Disp(rs_xSELF, Thread::ThinLockIdOffset<8>().Int32Value(), rs_w1); |
| OpRegRegImm(kOpAdd, rs_x2, rs_x0, mirror::Object::MonitorOffset().Int32Value()); |
| NewLIR2(kA64Ldxr2rX, rw3, rx2); |
| MarkPossibleNullPointerException(opt_flags); |
| LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_w3, 0, NULL); |
| NewLIR3(kA64Stxr3wrX, rw3, rw1, rx2); |
| LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_w3, 0, NULL); |
| |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| not_unlocked_branch->target = slow_path_target; |
| if (null_check_branch != nullptr) { |
| null_check_branch->target = slow_path_target; |
| } |
| // TODO: move to a slow path. |
| // Go expensive route - artLockObjectFromCode(obj); |
| LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pLockObject).Int32Value(), rs_xLR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_xLR); |
| MarkSafepointPC(call_inst); |
| |
| LIR* success_target = NewLIR0(kPseudoTargetLabel); |
| lock_success_branch->target = success_target; |
| GenMemBarrier(kLoadAny); |
| } |
| |
| /* |
| * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more |
| * details see monitor.cc. Note the code below doesn't use ldxr/stxr as the code holds the lock |
| * and can only give away ownership if its suspended. |
| */ |
| void Arm64Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { |
| // x0/w0 = object |
| // w1 = thin lock thread id |
| // w2 = lock word |
| // TUNING: How much performance we get when we inline this? |
| // Since we've already flush all register. |
| FlushAllRegs(); |
| LoadValueDirectFixed(rl_src, rs_x0); // Get obj |
| LockCallTemps(); // Prepare for explicit register usage |
| LIR* null_check_branch = nullptr; |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { |
| null_check_branch = nullptr; // No null check. |
| } else { |
| // If the null-check fails its handled by the slow-path to reduce exception related meta-data. |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| null_check_branch = OpCmpImmBranch(kCondEq, rs_x0, 0, NULL); |
| } |
| } |
| Load32Disp(rs_xSELF, Thread::ThinLockIdOffset<8>().Int32Value(), rs_w1); |
| Load32Disp(rs_x0, mirror::Object::MonitorOffset().Int32Value(), rs_w2); |
| MarkPossibleNullPointerException(opt_flags); |
| LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_w1, rs_w2, NULL); |
| GenMemBarrier(kAnyStore); |
| Store32Disp(rs_x0, mirror::Object::MonitorOffset().Int32Value(), rs_wzr); |
| LIR* unlock_success_branch = OpUnconditionalBranch(NULL); |
| |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| slow_unlock_branch->target = slow_path_target; |
| if (null_check_branch != nullptr) { |
| null_check_branch->target = slow_path_target; |
| } |
| // TODO: move to a slow path. |
| // Go expensive route - artUnlockObjectFromCode(obj); |
| LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject).Int32Value(), rs_xLR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_xLR); |
| MarkSafepointPC(call_inst); |
| |
| LIR* success_target = NewLIR0(kPseudoTargetLabel); |
| unlock_success_branch->target = success_target; |
| } |
| |
| void Arm64Mir2Lir::GenMoveException(RegLocation rl_dest) { |
| int ex_offset = Thread::ExceptionOffset<8>().Int32Value(); |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| LoadRefDisp(rs_xSELF, ex_offset, rl_result.reg, kNotVolatile); |
| StoreRefDisp(rs_xSELF, ex_offset, rs_xzr, kNotVolatile); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) { |
| RegStorage reg_card_base = AllocTempWide(); |
| RegStorage reg_card_no = AllocTempWide(); // Needs to be wide as addr is ref=64b |
| LoadWordDisp(rs_xSELF, Thread::CardTableOffset<8>().Int32Value(), reg_card_base); |
| OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); |
| // TODO(Arm64): generate "strb wB, [xB, wC, uxtw]" rather than "strb wB, [xB, xC]"? |
| StoreBaseIndexed(reg_card_base, reg_card_no, As32BitReg(reg_card_base), |
| 0, kUnsignedByte); |
| FreeTemp(reg_card_base); |
| FreeTemp(reg_card_no); |
| } |
| |
| void Arm64Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { |
| /* |
| * On entry, x0 to x7 are live. Let the register allocation |
| * mechanism know so it doesn't try to use any of them when |
| * expanding the frame or flushing. |
| * Reserve x8 & x9 for temporaries. |
| */ |
| LockTemp(rs_x0); |
| LockTemp(rs_x1); |
| LockTemp(rs_x2); |
| LockTemp(rs_x3); |
| LockTemp(rs_x4); |
| LockTemp(rs_x5); |
| LockTemp(rs_x6); |
| LockTemp(rs_x7); |
| LockTemp(rs_xIP0); |
| LockTemp(rs_xIP1); |
| |
| /* TUNING: |
| * Use AllocTemp() and reuse LR if possible to give us the freedom on adjusting the number |
| * of temp registers. |
| */ |
| |
| /* |
| * We can safely skip the stack overflow check if we're |
| * a leaf *and* our frame size < fudge factor. |
| */ |
| bool skip_overflow_check = mir_graph_->MethodIsLeaf() && |
| !FrameNeedsStackCheck(frame_size_, kArm64); |
| |
| NewLIR0(kPseudoMethodEntry); |
| |
| const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(kArm64); |
| const bool large_frame = static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes; |
| bool generate_explicit_stack_overflow_check = large_frame || |
| !cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks(); |
| const int spill_count = num_core_spills_ + num_fp_spills_; |
| const int spill_size = (spill_count * kArm64PointerSize + 15) & ~0xf; // SP 16 byte alignment. |
| const int frame_size_without_spills = frame_size_ - spill_size; |
| |
| if (!skip_overflow_check) { |
| if (generate_explicit_stack_overflow_check) { |
| // Load stack limit |
| LoadWordDisp(rs_xSELF, Thread::StackEndOffset<8>().Int32Value(), rs_xIP1); |
| } else { |
| // Implicit stack overflow check. |
| // Generate a load from [sp, #-framesize]. If this is in the stack |
| // redzone we will get a segmentation fault. |
| |
| // TODO: If the frame size is small enough, is it possible to make this a pre-indexed load, |
| // so that we can avoid the following "sub sp" when spilling? |
| OpRegRegImm(kOpSub, rs_x8, rs_sp, GetStackOverflowReservedBytes(kArm64)); |
| Load32Disp(rs_x8, 0, rs_wzr); |
| MarkPossibleStackOverflowException(); |
| } |
| } |
| |
| int spilled_already = 0; |
| if (spill_size > 0) { |
| spilled_already = SpillRegs(rs_sp, core_spill_mask_, fp_spill_mask_, frame_size_); |
| DCHECK(spill_size == spilled_already || frame_size_ == spilled_already); |
| } |
| |
| if (spilled_already != frame_size_) { |
| OpRegImm(kOpSub, rs_sp, frame_size_without_spills); |
| } |
| |
| if (!skip_overflow_check) { |
| if (generate_explicit_stack_overflow_check) { |
| class StackOverflowSlowPath: public LIRSlowPath { |
| public: |
| StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace) : |
| LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), |
| sp_displace_(sp_displace) { |
| } |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| // Unwinds stack. |
| m2l_->OpRegImm(kOpAdd, rs_sp, sp_displace_); |
| m2l_->ClobberCallerSave(); |
| ThreadOffset<8> func_offset = QUICK_ENTRYPOINT_OFFSET(8, pThrowStackOverflow); |
| m2l_->LockTemp(rs_xIP0); |
| m2l_->LoadWordDisp(rs_xSELF, func_offset.Int32Value(), rs_xIP0); |
| m2l_->NewLIR1(kA64Br1x, rs_xIP0.GetReg()); |
| m2l_->FreeTemp(rs_xIP0); |
| } |
| |
| private: |
| const size_t sp_displace_; |
| }; |
| |
| LIR* branch = OpCmpBranch(kCondUlt, rs_sp, rs_xIP1, nullptr); |
| AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, frame_size_)); |
| } |
| } |
| |
| FlushIns(ArgLocs, rl_method); |
| |
| FreeTemp(rs_x0); |
| FreeTemp(rs_x1); |
| FreeTemp(rs_x2); |
| FreeTemp(rs_x3); |
| FreeTemp(rs_x4); |
| FreeTemp(rs_x5); |
| FreeTemp(rs_x6); |
| FreeTemp(rs_x7); |
| FreeTemp(rs_xIP0); |
| FreeTemp(rs_xIP1); |
| } |
| |
| void Arm64Mir2Lir::GenExitSequence() { |
| /* |
| * In the exit path, r0/r1 are live - make sure they aren't |
| * allocated by the register utilities as temps. |
| */ |
| LockTemp(rs_x0); |
| LockTemp(rs_x1); |
| |
| NewLIR0(kPseudoMethodExit); |
| |
| UnspillRegs(rs_sp, core_spill_mask_, fp_spill_mask_, frame_size_); |
| |
| // Finally return. |
| NewLIR0(kA64Ret); |
| } |
| |
| void Arm64Mir2Lir::GenSpecialExitSequence() { |
| NewLIR0(kA64Ret); |
| } |
| |
| static bool Arm64UseRelativeCall(CompilationUnit* cu, const MethodReference& target_method) { |
| UNUSED(cu, target_method); |
| // Always emit relative calls. |
| return true; |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in static & direct invoke sequences. |
| */ |
| static int Arm64NextSDCallInsn(CompilationUnit* cu, CallInfo* info, |
| int state, const MethodReference& target_method, |
| uint32_t unused_idx, |
| uintptr_t direct_code, uintptr_t direct_method, |
| InvokeType type) { |
| UNUSED(info, unused_idx); |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| if (direct_code != 0 && direct_method != 0) { |
| switch (state) { |
| case 0: // Get the current Method* [sets kArg0] |
| if (direct_code != static_cast<uintptr_t>(-1)) { |
| cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code); |
| } else if (Arm64UseRelativeCall(cu, target_method)) { |
| // Defer to linker patch. |
| } else { |
| cg->LoadCodeAddress(target_method, type, kInvokeTgt); |
| } |
| if (direct_method != static_cast<uintptr_t>(-1)) { |
| cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method); |
| } else { |
| cg->LoadMethodAddress(target_method, type, kArg0); |
| } |
| break; |
| default: |
| return -1; |
| } |
| } else { |
| RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); |
| switch (state) { |
| case 0: // Get the current Method* [sets kArg0] |
| // TUNING: we can save a reg copy if Method* has been promoted. |
| cg->LoadCurrMethodDirect(arg0_ref); |
| break; |
| case 1: // Get method->dex_cache_resolved_methods_ |
| cg->LoadRefDisp(arg0_ref, |
| mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), |
| arg0_ref, |
| kNotVolatile); |
| // Set up direct code if known. |
| if (direct_code != 0) { |
| if (direct_code != static_cast<uintptr_t>(-1)) { |
| cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code); |
| } else if (Arm64UseRelativeCall(cu, target_method)) { |
| // Defer to linker patch. |
| } else { |
| CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); |
| cg->LoadCodeAddress(target_method, type, kInvokeTgt); |
| } |
| } |
| break; |
| case 2: // Grab target method* |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| cg->LoadRefDisp(arg0_ref, |
| mirror::ObjectArray<mirror::Object>::OffsetOfElement( |
| target_method.dex_method_index).Int32Value(), |
| arg0_ref, |
| kNotVolatile); |
| break; |
| case 3: // Grab the code from the method* |
| if (direct_code == 0) { |
| // kInvokeTgt := arg0_ref->entrypoint |
| cg->LoadWordDisp(arg0_ref, |
| mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArm64PointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt)); |
| } |
| break; |
| default: |
| return -1; |
| } |
| } |
| return state + 1; |
| } |
| |
| NextCallInsn Arm64Mir2Lir::GetNextSDCallInsn() { |
| return Arm64NextSDCallInsn; |
| } |
| |
| LIR* Arm64Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { |
| // For ARM64, just generate a relative BL instruction that will be filled in at 'link time'. |
| // If the target turns out to be too far, the linker will generate a thunk for dispatch. |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| |
| // Generate the call instruction and save index, dex_file, and type. |
| // NOTE: Method deduplication takes linker patches into account, so we can just pass 0 |
| // as a placeholder for the offset. |
| LIR* call = RawLIR(current_dalvik_offset_, kA64Bl1t, 0, |
| target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(call); |
| call_method_insns_.push_back(call); |
| return call; |
| } |
| |
| LIR* Arm64Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) { |
| LIR* call_insn; |
| if (method_info.FastPath() && Arm64UseRelativeCall(cu_, method_info.GetTargetMethod()) && |
| (method_info.GetSharpType() == kDirect || method_info.GetSharpType() == kStatic) && |
| method_info.DirectCode() == static_cast<uintptr_t>(-1)) { |
| call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType()); |
| } else { |
| call_insn = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt)); |
| } |
| return call_insn; |
| } |
| |
| } // namespace art |