blob: 091b58a63ddc8925451dee4860d3979003cd6dd5 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_LOCATIONS_H_
#define ART_COMPILER_OPTIMIZING_LOCATIONS_H_
#include "base/arena_containers.h"
#include "base/arena_object.h"
#include "base/bit_field.h"
#include "base/bit_utils.h"
#include "base/bit_vector.h"
#include "base/value_object.h"
namespace art {
class HConstant;
class HInstruction;
class Location;
std::ostream& operator<<(std::ostream& os, const Location& location);
/**
* A Location is an abstraction over the potential location
* of an instruction. It could be in register or stack.
*/
class Location : public ValueObject {
public:
enum OutputOverlap {
// The liveness of the output overlaps the liveness of one or
// several input(s); the register allocator cannot reuse an
// input's location for the output's location.
kOutputOverlap,
// The liveness of the output does not overlap the liveness of any
// input; the register allocator is allowed to reuse an input's
// location for the output's location.
kNoOutputOverlap
};
enum Kind {
kInvalid = 0,
kConstant = 1,
kStackSlot = 2, // 32bit stack slot.
kDoubleStackSlot = 3, // 64bit stack slot.
kRegister = 4, // Core register.
// We do not use the value 5 because it conflicts with kLocationConstantMask.
kDoNotUse5 = 5,
kFpuRegister = 6, // Float register.
kRegisterPair = 7, // Long register.
kFpuRegisterPair = 8, // Double register.
// We do not use the value 9 because it conflicts with kLocationConstantMask.
kDoNotUse9 = 9,
// Unallocated location represents a location that is not fixed and can be
// allocated by a register allocator. Each unallocated location has
// a policy that specifies what kind of location is suitable. Payload
// contains register allocation policy.
kUnallocated = 10,
};
Location() : ValueObject(), value_(kInvalid) {
// Verify that non-constant location kinds do not interfere with kConstant.
static_assert((kInvalid & kLocationConstantMask) != kConstant, "TagError");
static_assert((kUnallocated & kLocationConstantMask) != kConstant, "TagError");
static_assert((kStackSlot & kLocationConstantMask) != kConstant, "TagError");
static_assert((kDoubleStackSlot & kLocationConstantMask) != kConstant, "TagError");
static_assert((kRegister & kLocationConstantMask) != kConstant, "TagError");
static_assert((kFpuRegister & kLocationConstantMask) != kConstant, "TagError");
static_assert((kRegisterPair & kLocationConstantMask) != kConstant, "TagError");
static_assert((kFpuRegisterPair & kLocationConstantMask) != kConstant, "TagError");
static_assert((kConstant & kLocationConstantMask) == kConstant, "TagError");
DCHECK(!IsValid());
}
Location(const Location& other) = default;
Location& operator=(const Location& other) = default;
bool IsConstant() const {
return (value_ & kLocationConstantMask) == kConstant;
}
static Location ConstantLocation(HConstant* constant) {
DCHECK(constant != nullptr);
return Location(kConstant | reinterpret_cast<uintptr_t>(constant));
}
HConstant* GetConstant() const {
DCHECK(IsConstant());
return reinterpret_cast<HConstant*>(value_ & ~kLocationConstantMask);
}
bool IsValid() const {
return value_ != kInvalid;
}
bool IsInvalid() const {
return !IsValid();
}
// Empty location. Used if there the location should be ignored.
static Location NoLocation() {
return Location();
}
// Register locations.
static Location RegisterLocation(int reg) {
return Location(kRegister, reg);
}
static Location FpuRegisterLocation(int reg) {
return Location(kFpuRegister, reg);
}
static Location RegisterPairLocation(int low, int high) {
return Location(kRegisterPair, low << 16 | high);
}
static Location FpuRegisterPairLocation(int low, int high) {
return Location(kFpuRegisterPair, low << 16 | high);
}
bool IsRegister() const {
return GetKind() == kRegister;
}
bool IsFpuRegister() const {
return GetKind() == kFpuRegister;
}
bool IsRegisterPair() const {
return GetKind() == kRegisterPair;
}
bool IsFpuRegisterPair() const {
return GetKind() == kFpuRegisterPair;
}
bool IsRegisterKind() const {
return IsRegister() || IsFpuRegister() || IsRegisterPair() || IsFpuRegisterPair();
}
int reg() const {
DCHECK(IsRegister() || IsFpuRegister());
return GetPayload();
}
int low() const {
DCHECK(IsPair());
return GetPayload() >> 16;
}
int high() const {
DCHECK(IsPair());
return GetPayload() & 0xFFFF;
}
template <typename T>
T AsRegister() const {
DCHECK(IsRegister());
return static_cast<T>(reg());
}
template <typename T>
T AsFpuRegister() const {
DCHECK(IsFpuRegister());
return static_cast<T>(reg());
}
template <typename T>
T AsRegisterPairLow() const {
DCHECK(IsRegisterPair());
return static_cast<T>(low());
}
template <typename T>
T AsRegisterPairHigh() const {
DCHECK(IsRegisterPair());
return static_cast<T>(high());
}
template <typename T>
T AsFpuRegisterPairLow() const {
DCHECK(IsFpuRegisterPair());
return static_cast<T>(low());
}
template <typename T>
T AsFpuRegisterPairHigh() const {
DCHECK(IsFpuRegisterPair());
return static_cast<T>(high());
}
bool IsPair() const {
return IsRegisterPair() || IsFpuRegisterPair();
}
Location ToLow() const {
if (IsRegisterPair()) {
return Location::RegisterLocation(low());
} else if (IsFpuRegisterPair()) {
return Location::FpuRegisterLocation(low());
} else {
DCHECK(IsDoubleStackSlot());
return Location::StackSlot(GetStackIndex());
}
}
Location ToHigh() const {
if (IsRegisterPair()) {
return Location::RegisterLocation(high());
} else if (IsFpuRegisterPair()) {
return Location::FpuRegisterLocation(high());
} else {
DCHECK(IsDoubleStackSlot());
return Location::StackSlot(GetHighStackIndex(4));
}
}
static uintptr_t EncodeStackIndex(intptr_t stack_index) {
DCHECK(-kStackIndexBias <= stack_index);
DCHECK(stack_index < kStackIndexBias);
return static_cast<uintptr_t>(kStackIndexBias + stack_index);
}
static Location StackSlot(intptr_t stack_index) {
uintptr_t payload = EncodeStackIndex(stack_index);
Location loc(kStackSlot, payload);
// Ensure that sign is preserved.
DCHECK_EQ(loc.GetStackIndex(), stack_index);
return loc;
}
bool IsStackSlot() const {
return GetKind() == kStackSlot;
}
static Location DoubleStackSlot(intptr_t stack_index) {
uintptr_t payload = EncodeStackIndex(stack_index);
Location loc(kDoubleStackSlot, payload);
// Ensure that sign is preserved.
DCHECK_EQ(loc.GetStackIndex(), stack_index);
return loc;
}
bool IsDoubleStackSlot() const {
return GetKind() == kDoubleStackSlot;
}
intptr_t GetStackIndex() const {
DCHECK(IsStackSlot() || IsDoubleStackSlot());
// Decode stack index manually to preserve sign.
return GetPayload() - kStackIndexBias;
}
intptr_t GetHighStackIndex(uintptr_t word_size) const {
DCHECK(IsDoubleStackSlot());
// Decode stack index manually to preserve sign.
return GetPayload() - kStackIndexBias + word_size;
}
Kind GetKind() const {
return IsConstant() ? kConstant : KindField::Decode(value_);
}
bool Equals(Location other) const {
return value_ == other.value_;
}
bool Contains(Location other) const {
if (Equals(other)) {
return true;
} else if (IsPair() || IsDoubleStackSlot()) {
return ToLow().Equals(other) || ToHigh().Equals(other);
}
return false;
}
bool OverlapsWith(Location other) const {
// Only check the overlapping case that can happen with our register allocation algorithm.
bool overlap = Contains(other) || other.Contains(*this);
if (kIsDebugBuild && !overlap) {
// Note: These are also overlapping cases. But we are not able to handle them in
// ParallelMoveResolverWithSwap. Make sure that we do not meet such case with our compiler.
if ((IsPair() && other.IsPair()) || (IsDoubleStackSlot() && other.IsDoubleStackSlot())) {
DCHECK(!Contains(other.ToLow()));
DCHECK(!Contains(other.ToHigh()));
}
}
return overlap;
}
const char* DebugString() const {
switch (GetKind()) {
case kInvalid: return "I";
case kRegister: return "R";
case kStackSlot: return "S";
case kDoubleStackSlot: return "DS";
case kUnallocated: return "U";
case kConstant: return "C";
case kFpuRegister: return "F";
case kRegisterPair: return "RP";
case kFpuRegisterPair: return "FP";
case kDoNotUse5: // fall-through
case kDoNotUse9:
LOG(FATAL) << "Should not use this location kind";
}
UNREACHABLE();
}
// Unallocated locations.
enum Policy {
kAny,
kRequiresRegister,
kRequiresFpuRegister,
kSameAsFirstInput,
};
bool IsUnallocated() const {
return GetKind() == kUnallocated;
}
static Location UnallocatedLocation(Policy policy) {
return Location(kUnallocated, PolicyField::Encode(policy));
}
// Any free register is suitable to replace this unallocated location.
static Location Any() {
return UnallocatedLocation(kAny);
}
static Location RequiresRegister() {
return UnallocatedLocation(kRequiresRegister);
}
static Location RequiresFpuRegister() {
return UnallocatedLocation(kRequiresFpuRegister);
}
static Location RegisterOrConstant(HInstruction* instruction);
static Location RegisterOrInt32Constant(HInstruction* instruction);
static Location ByteRegisterOrConstant(int reg, HInstruction* instruction);
static Location FpuRegisterOrConstant(HInstruction* instruction);
static Location FpuRegisterOrInt32Constant(HInstruction* instruction);
// The location of the first input to the instruction will be
// used to replace this unallocated location.
static Location SameAsFirstInput() {
return UnallocatedLocation(kSameAsFirstInput);
}
Policy GetPolicy() const {
DCHECK(IsUnallocated());
return PolicyField::Decode(GetPayload());
}
bool RequiresRegisterKind() const {
return GetPolicy() == kRequiresRegister || GetPolicy() == kRequiresFpuRegister;
}
uintptr_t GetEncoding() const {
return GetPayload();
}
private:
// Number of bits required to encode Kind value.
static constexpr uint32_t kBitsForKind = 4;
static constexpr uint32_t kBitsForPayload = kBitsPerIntPtrT - kBitsForKind;
static constexpr uintptr_t kLocationConstantMask = 0x3;
explicit Location(uintptr_t value) : value_(value) {}
Location(Kind kind, uintptr_t payload)
: value_(KindField::Encode(kind) | PayloadField::Encode(payload)) {}
uintptr_t GetPayload() const {
return PayloadField::Decode(value_);
}
typedef BitField<Kind, 0, kBitsForKind> KindField;
typedef BitField<uintptr_t, kBitsForKind, kBitsForPayload> PayloadField;
// Layout for kUnallocated locations payload.
typedef BitField<Policy, 0, 3> PolicyField;
// Layout for stack slots.
static const intptr_t kStackIndexBias =
static_cast<intptr_t>(1) << (kBitsForPayload - 1);
// Location either contains kind and payload fields or a tagged handle for
// a constant locations. Values of enumeration Kind are selected in such a
// way that none of them can be interpreted as a kConstant tag.
uintptr_t value_;
};
std::ostream& operator<<(std::ostream& os, const Location::Kind& rhs);
std::ostream& operator<<(std::ostream& os, const Location::Policy& rhs);
class RegisterSet : public ValueObject {
public:
static RegisterSet Empty() { return RegisterSet(); }
void Add(Location loc) {
if (loc.IsRegister()) {
core_registers_ |= (1 << loc.reg());
} else {
DCHECK(loc.IsFpuRegister());
floating_point_registers_ |= (1 << loc.reg());
}
}
void Remove(Location loc) {
if (loc.IsRegister()) {
core_registers_ &= ~(1 << loc.reg());
} else {
DCHECK(loc.IsFpuRegister()) << loc;
floating_point_registers_ &= ~(1 << loc.reg());
}
}
bool ContainsCoreRegister(uint32_t id) const {
return Contains(core_registers_, id);
}
bool ContainsFloatingPointRegister(uint32_t id) const {
return Contains(floating_point_registers_, id);
}
static bool Contains(uint32_t register_set, uint32_t reg) {
return (register_set & (1 << reg)) != 0;
}
size_t GetNumberOfRegisters() const {
return POPCOUNT(core_registers_) + POPCOUNT(floating_point_registers_);
}
uint32_t GetCoreRegisters() const {
return core_registers_;
}
uint32_t GetFloatingPointRegisters() const {
return floating_point_registers_;
}
private:
RegisterSet() : core_registers_(0), floating_point_registers_(0) {}
uint32_t core_registers_;
uint32_t floating_point_registers_;
};
static constexpr bool kIntrinsified = true;
/**
* The code generator computes LocationSummary for each instruction so that
* the instruction itself knows what code to generate: where to find the inputs
* and where to place the result.
*
* The intent is to have the code for generating the instruction independent of
* register allocation. A register allocator just has to provide a LocationSummary.
*/
class LocationSummary : public ArenaObject<kArenaAllocLocationSummary> {
public:
enum CallKind {
kNoCall,
kCallOnMainAndSlowPath,
kCallOnSlowPath,
kCallOnMainOnly
};
explicit LocationSummary(HInstruction* instruction,
CallKind call_kind = kNoCall,
bool intrinsified = false);
void SetInAt(uint32_t at, Location location) {
inputs_[at] = location;
}
Location InAt(uint32_t at) const {
return inputs_[at];
}
size_t GetInputCount() const {
return inputs_.size();
}
// Set the output location. Argument `overlaps` tells whether the
// output overlaps any of the inputs (if so, it cannot share the
// same register as one of the inputs); it is set to
// `Location::kOutputOverlap` by default for safety.
void SetOut(Location location, Location::OutputOverlap overlaps = Location::kOutputOverlap) {
DCHECK(output_.IsInvalid());
output_overlaps_ = overlaps;
output_ = location;
}
void UpdateOut(Location location) {
// There are two reasons for updating an output:
// 1) Parameters, where we only know the exact stack slot after
// doing full register allocation.
// 2) Unallocated location.
DCHECK(output_.IsStackSlot() || output_.IsDoubleStackSlot() || output_.IsUnallocated());
output_ = location;
}
void AddTemp(Location location) {
temps_.push_back(location);
}
void AddRegisterTemps(size_t count) {
for (size_t i = 0; i < count; ++i) {
AddTemp(Location::RequiresRegister());
}
}
Location GetTemp(uint32_t at) const {
return temps_[at];
}
void SetTempAt(uint32_t at, Location location) {
DCHECK(temps_[at].IsUnallocated() || temps_[at].IsInvalid());
temps_[at] = location;
}
size_t GetTempCount() const {
return temps_.size();
}
bool HasTemps() const { return !temps_.empty(); }
Location Out() const { return output_; }
bool CanCall() const {
return call_kind_ != kNoCall;
}
bool WillCall() const {
return call_kind_ == kCallOnMainOnly || call_kind_ == kCallOnMainAndSlowPath;
}
bool CallsOnSlowPath() const {
return call_kind_ == kCallOnSlowPath || call_kind_ == kCallOnMainAndSlowPath;
}
bool OnlyCallsOnSlowPath() const {
return call_kind_ == kCallOnSlowPath;
}
bool CallsOnMainAndSlowPath() const {
return call_kind_ == kCallOnMainAndSlowPath;
}
bool NeedsSafepoint() const {
return CanCall();
}
void SetCustomSlowPathCallerSaves(const RegisterSet& caller_saves) {
DCHECK(OnlyCallsOnSlowPath());
has_custom_slow_path_calling_convention_ = true;
custom_slow_path_caller_saves_ = caller_saves;
}
bool HasCustomSlowPathCallingConvention() const {
return has_custom_slow_path_calling_convention_;
}
const RegisterSet& GetCustomSlowPathCallerSaves() const {
DCHECK(HasCustomSlowPathCallingConvention());
return custom_slow_path_caller_saves_;
}
void SetStackBit(uint32_t index) {
stack_mask_->SetBit(index);
}
void ClearStackBit(uint32_t index) {
stack_mask_->ClearBit(index);
}
void SetRegisterBit(uint32_t reg_id) {
register_mask_ |= (1 << reg_id);
}
uint32_t GetRegisterMask() const {
return register_mask_;
}
bool RegisterContainsObject(uint32_t reg_id) {
return RegisterSet::Contains(register_mask_, reg_id);
}
void AddLiveRegister(Location location) {
live_registers_.Add(location);
}
BitVector* GetStackMask() const {
return stack_mask_;
}
RegisterSet* GetLiveRegisters() {
return &live_registers_;
}
size_t GetNumberOfLiveRegisters() const {
return live_registers_.GetNumberOfRegisters();
}
bool OutputUsesSameAs(uint32_t input_index) const {
return (input_index == 0)
&& output_.IsUnallocated()
&& (output_.GetPolicy() == Location::kSameAsFirstInput);
}
bool IsFixedInput(uint32_t input_index) const {
Location input = inputs_[input_index];
return input.IsRegister()
|| input.IsFpuRegister()
|| input.IsPair()
|| input.IsStackSlot()
|| input.IsDoubleStackSlot();
}
bool OutputCanOverlapWithInputs() const {
return output_overlaps_ == Location::kOutputOverlap;
}
bool Intrinsified() const {
return intrinsified_;
}
private:
ArenaVector<Location> inputs_;
ArenaVector<Location> temps_;
const CallKind call_kind_;
// Whether these are locations for an intrinsified call.
const bool intrinsified_;
// Whether the slow path has default or custom calling convention.
bool has_custom_slow_path_calling_convention_;
// Whether the output overlaps with any of the inputs. If it overlaps, then it cannot
// share the same register as the inputs.
Location::OutputOverlap output_overlaps_;
Location output_;
// Mask of objects that live in the stack.
BitVector* stack_mask_;
// Mask of objects that live in register.
uint32_t register_mask_;
// Registers that are in use at this position.
RegisterSet live_registers_;
// Custom slow path caller saves. Valid only if indicated by slow_path_calling_convention_.
RegisterSet custom_slow_path_caller_saves_;
friend class RegisterAllocatorTest;
DISALLOW_COPY_AND_ASSIGN(LocationSummary);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_LOCATIONS_H_