| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "assembler_arm.h" |
| |
| #include <algorithm> |
| |
| #include "base/bit_utils.h" |
| #include "base/logging.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "offsets.h" |
| #include "thread.h" |
| |
| namespace art { |
| namespace arm { |
| |
| const char* kRegisterNames[] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", |
| "fp", "ip", "sp", "lr", "pc" |
| }; |
| |
| const char* kConditionNames[] = { |
| "EQ", "NE", "CS", "CC", "MI", "PL", "VS", "VC", "HI", "LS", "GE", "LT", "GT", |
| "LE", "AL", |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const Register& rhs) { |
| if (rhs >= R0 && rhs <= PC) { |
| os << kRegisterNames[rhs]; |
| } else { |
| os << "Register[" << static_cast<int>(rhs) << "]"; |
| } |
| return os; |
| } |
| |
| |
| std::ostream& operator<<(std::ostream& os, const SRegister& rhs) { |
| if (rhs >= S0 && rhs < kNumberOfSRegisters) { |
| os << "s" << static_cast<int>(rhs); |
| } else { |
| os << "SRegister[" << static_cast<int>(rhs) << "]"; |
| } |
| return os; |
| } |
| |
| |
| std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { |
| if (rhs >= D0 && rhs < kNumberOfDRegisters) { |
| os << "d" << static_cast<int>(rhs); |
| } else { |
| os << "DRegister[" << static_cast<int>(rhs) << "]"; |
| } |
| return os; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const Condition& rhs) { |
| if (rhs >= EQ && rhs <= AL) { |
| os << kConditionNames[rhs]; |
| } else { |
| os << "Condition[" << static_cast<int>(rhs) << "]"; |
| } |
| return os; |
| } |
| |
| ShifterOperand::ShifterOperand(uint32_t immed) |
| : type_(kImmediate), rm_(kNoRegister), rs_(kNoRegister), |
| is_rotate_(false), is_shift_(false), shift_(kNoShift), rotate_(0), immed_(immed) { |
| CHECK(immed < (1u << 12) || ArmAssembler::ModifiedImmediate(immed) != kInvalidModifiedImmediate); |
| } |
| |
| |
| uint32_t ShifterOperand::encodingArm() const { |
| CHECK(is_valid()); |
| switch (type_) { |
| case kImmediate: |
| if (is_rotate_) { |
| return (rotate_ << kRotateShift) | (immed_ << kImmed8Shift); |
| } else { |
| return immed_; |
| } |
| case kRegister: |
| if (is_shift_) { |
| uint32_t shift_type; |
| switch (shift_) { |
| case arm::Shift::ROR: |
| shift_type = static_cast<uint32_t>(shift_); |
| CHECK_NE(immed_, 0U); |
| break; |
| case arm::Shift::RRX: |
| shift_type = static_cast<uint32_t>(arm::Shift::ROR); // Same encoding as ROR. |
| CHECK_EQ(immed_, 0U); |
| break; |
| default: |
| shift_type = static_cast<uint32_t>(shift_); |
| } |
| // Shifted immediate or register. |
| if (rs_ == kNoRegister) { |
| // Immediate shift. |
| return immed_ << kShiftImmShift | |
| shift_type << kShiftShift | |
| static_cast<uint32_t>(rm_); |
| } else { |
| // Register shift. |
| return static_cast<uint32_t>(rs_) << kShiftRegisterShift | |
| shift_type << kShiftShift | (1 << 4) | |
| static_cast<uint32_t>(rm_); |
| } |
| } else { |
| // Simple register |
| return static_cast<uint32_t>(rm_); |
| } |
| default: |
| // Can't get here. |
| LOG(FATAL) << "Invalid shifter operand for ARM"; |
| return 0; |
| } |
| } |
| |
| uint32_t ShifterOperand::encodingThumb() const { |
| switch (type_) { |
| case kImmediate: |
| return immed_; |
| case kRegister: |
| if (is_shift_) { |
| // Shifted immediate or register. |
| if (rs_ == kNoRegister) { |
| // Immediate shift. |
| if (shift_ == RRX) { |
| DCHECK_EQ(immed_, 0u); |
| // RRX is encoded as an ROR with imm 0. |
| return ROR << 4 | static_cast<uint32_t>(rm_); |
| } else { |
| DCHECK((1 <= immed_ && immed_ <= 31) || |
| (immed_ == 0u && shift_ == LSL) || |
| (immed_ == 32u && (shift_ == ASR || shift_ == LSR))); |
| uint32_t imm3 = (immed_ >> 2) & 7 /* 0b111*/; |
| uint32_t imm2 = immed_ & 3U /* 0b11 */; |
| |
| return imm3 << 12 | imm2 << 6 | shift_ << 4 | |
| static_cast<uint32_t>(rm_); |
| } |
| } else { |
| LOG(FATAL) << "No register-shifted register instruction available in thumb"; |
| return 0; |
| } |
| } else { |
| // Simple register |
| return static_cast<uint32_t>(rm_); |
| } |
| default: |
| // Can't get here. |
| LOG(FATAL) << "Invalid shifter operand for thumb"; |
| UNREACHABLE(); |
| } |
| } |
| |
| uint32_t Address::encodingArm() const { |
| CHECK(IsAbsoluteUint<12>(offset_)); |
| uint32_t encoding; |
| if (is_immed_offset_) { |
| if (offset_ < 0) { |
| encoding = (am_ ^ (1 << kUShift)) | -offset_; // Flip U to adjust sign. |
| } else { |
| encoding = am_ | offset_; |
| } |
| } else { |
| uint32_t shift = shift_; |
| if (shift == RRX) { |
| CHECK_EQ(offset_, 0); |
| shift = ROR; |
| } |
| encoding = am_ | static_cast<uint32_t>(rm_) | shift << 5 | offset_ << 7 | B25; |
| } |
| encoding |= static_cast<uint32_t>(rn_) << kRnShift; |
| return encoding; |
| } |
| |
| |
| uint32_t Address::encodingThumb(bool is_32bit) const { |
| uint32_t encoding = 0; |
| if (is_immed_offset_) { |
| encoding = static_cast<uint32_t>(rn_) << 16; |
| // Check for the T3/T4 encoding. |
| // PUW must Offset for T3 |
| // Convert ARM PU0W to PUW |
| // The Mode is in ARM encoding format which is: |
| // |P|U|0|W| |
| // we need this in thumb2 mode: |
| // |P|U|W| |
| |
| uint32_t am = am_; |
| int32_t offset = offset_; |
| if (offset < 0) { |
| am ^= 1 << kUShift; |
| offset = -offset; |
| } |
| if (offset_ < 0 || (offset >= 0 && offset < 256 && |
| am_ != Mode::Offset)) { |
| // T4 encoding. |
| uint32_t PUW = am >> 21; // Move down to bottom of word. |
| PUW = (PUW >> 1) | (PUW & 1); // Bits 3, 2 and 0. |
| // If P is 0 then W must be 1 (Different from ARM). |
| if ((PUW & 4U /* 0b100 */) == 0) { |
| PUW |= 1U /* 0b1 */; |
| } |
| encoding |= B11 | PUW << 8 | offset; |
| } else { |
| // T3 encoding (also sets op1 to 0b01). |
| encoding |= B23 | offset_; |
| } |
| } else { |
| // Register offset, possibly shifted. |
| // Need to choose between encoding T1 (16 bit) or T2. |
| // Only Offset mode is supported. Shift must be LSL and the count |
| // is only 2 bits. |
| CHECK_EQ(shift_, LSL); |
| CHECK_LE(offset_, 4); |
| CHECK_EQ(am_, Offset); |
| bool is_t2 = is_32bit; |
| if (ArmAssembler::IsHighRegister(rn_) || ArmAssembler::IsHighRegister(rm_)) { |
| is_t2 = true; |
| } else if (offset_ != 0) { |
| is_t2 = true; |
| } |
| if (is_t2) { |
| encoding = static_cast<uint32_t>(rn_) << 16 | static_cast<uint32_t>(rm_) | |
| offset_ << 4; |
| } else { |
| encoding = static_cast<uint32_t>(rn_) << 3 | static_cast<uint32_t>(rm_) << 6; |
| } |
| } |
| return encoding; |
| } |
| |
| // This is very like the ARM encoding except the offset is 10 bits. |
| uint32_t Address::encodingThumbLdrdStrd() const { |
| DCHECK(IsImmediate()); |
| uint32_t encoding; |
| uint32_t am = am_; |
| // If P is 0 then W must be 1 (Different from ARM). |
| uint32_t PU1W = am_ >> 21; // Move down to bottom of word. |
| if ((PU1W & 8U /* 0b1000 */) == 0) { |
| am |= 1 << 21; // Set W bit. |
| } |
| if (offset_ < 0) { |
| int32_t off = -offset_; |
| CHECK_LT(off, 1024); |
| CHECK_ALIGNED(off, 4); |
| encoding = (am ^ (1 << kUShift)) | off >> 2; // Flip U to adjust sign. |
| } else { |
| CHECK_LT(offset_, 1024); |
| CHECK_ALIGNED(offset_, 4); |
| encoding = am | offset_ >> 2; |
| } |
| encoding |= static_cast<uint32_t>(rn_) << 16; |
| return encoding; |
| } |
| |
| // Encoding for ARM addressing mode 3. |
| uint32_t Address::encoding3() const { |
| const uint32_t offset_mask = (1 << 12) - 1; |
| uint32_t encoding = encodingArm(); |
| uint32_t offset = encoding & offset_mask; |
| CHECK_LT(offset, 256u); |
| return (encoding & ~offset_mask) | ((offset & 0xf0) << 4) | (offset & 0xf); |
| } |
| |
| // Encoding for vfp load/store addressing. |
| uint32_t Address::vencoding() const { |
| CHECK(IsAbsoluteUint<10>(offset_)); // In the range -1020 to +1020. |
| CHECK_ALIGNED(offset_, 2); // Multiple of 4. |
| |
| const uint32_t offset_mask = (1 << 12) - 1; |
| uint32_t encoding = encodingArm(); |
| uint32_t offset = encoding & offset_mask; |
| CHECK((am_ == Offset) || (am_ == NegOffset)); |
| uint32_t vencoding_value = (encoding & (0xf << kRnShift)) | (offset >> 2); |
| if (am_ == Offset) { |
| vencoding_value |= 1 << 23; |
| } |
| return vencoding_value; |
| } |
| |
| |
| bool Address::CanHoldLoadOffsetArm(LoadOperandType type, int offset) { |
| switch (type) { |
| case kLoadSignedByte: |
| case kLoadSignedHalfword: |
| case kLoadUnsignedHalfword: |
| case kLoadWordPair: |
| return IsAbsoluteUint<8>(offset); // Addressing mode 3. |
| case kLoadUnsignedByte: |
| case kLoadWord: |
| return IsAbsoluteUint<12>(offset); // Addressing mode 2. |
| case kLoadSWord: |
| case kLoadDWord: |
| return IsAbsoluteUint<10>(offset); // VFP addressing mode. |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| bool Address::CanHoldStoreOffsetArm(StoreOperandType type, int offset) { |
| switch (type) { |
| case kStoreHalfword: |
| case kStoreWordPair: |
| return IsAbsoluteUint<8>(offset); // Addressing mode 3. |
| case kStoreByte: |
| case kStoreWord: |
| return IsAbsoluteUint<12>(offset); // Addressing mode 2. |
| case kStoreSWord: |
| case kStoreDWord: |
| return IsAbsoluteUint<10>(offset); // VFP addressing mode. |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| bool Address::CanHoldLoadOffsetThumb(LoadOperandType type, int offset) { |
| switch (type) { |
| case kLoadSignedByte: |
| case kLoadSignedHalfword: |
| case kLoadUnsignedHalfword: |
| case kLoadUnsignedByte: |
| case kLoadWord: |
| return IsAbsoluteUint<12>(offset); |
| case kLoadSWord: |
| case kLoadDWord: |
| return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; // VFP addressing mode. |
| case kLoadWordPair: |
| return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| bool Address::CanHoldStoreOffsetThumb(StoreOperandType type, int offset) { |
| switch (type) { |
| case kStoreHalfword: |
| case kStoreByte: |
| case kStoreWord: |
| return IsAbsoluteUint<12>(offset); |
| case kStoreSWord: |
| case kStoreDWord: |
| return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; // VFP addressing mode. |
| case kStoreWordPair: |
| return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| void ArmAssembler::Pad(uint32_t bytes) { |
| AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| for (uint32_t i = 0; i < bytes; ++i) { |
| buffer_.Emit<uint8_t>(0); |
| } |
| } |
| |
| static int LeadingZeros(uint32_t val) { |
| uint32_t alt; |
| int32_t n; |
| int32_t count; |
| |
| count = 16; |
| n = 32; |
| do { |
| alt = val >> count; |
| if (alt != 0) { |
| n = n - count; |
| val = alt; |
| } |
| count >>= 1; |
| } while (count); |
| return n - val; |
| } |
| |
| |
| uint32_t ArmAssembler::ModifiedImmediate(uint32_t value) { |
| int32_t z_leading; |
| int32_t z_trailing; |
| uint32_t b0 = value & 0xff; |
| |
| /* Note: case of value==0 must use 0:000:0:0000000 encoding */ |
| if (value <= 0xFF) |
| return b0; // 0:000:a:bcdefgh. |
| if (value == ((b0 << 16) | b0)) |
| return (0x1 << 12) | b0; /* 0:001:a:bcdefgh */ |
| if (value == ((b0 << 24) | (b0 << 16) | (b0 << 8) | b0)) |
| return (0x3 << 12) | b0; /* 0:011:a:bcdefgh */ |
| b0 = (value >> 8) & 0xff; |
| if (value == ((b0 << 24) | (b0 << 8))) |
| return (0x2 << 12) | b0; /* 0:010:a:bcdefgh */ |
| /* Can we do it with rotation? */ |
| z_leading = LeadingZeros(value); |
| z_trailing = 32 - LeadingZeros(~value & (value - 1)); |
| /* A run of eight or fewer active bits? */ |
| if ((z_leading + z_trailing) < 24) |
| return kInvalidModifiedImmediate; /* No - bail */ |
| /* left-justify the constant, discarding msb (known to be 1) */ |
| value <<= z_leading + 1; |
| /* Create bcdefgh */ |
| value >>= 25; |
| |
| /* Put it all together */ |
| uint32_t v = 8 + z_leading; |
| |
| uint32_t i = (v & 16U /* 0b10000 */) >> 4; |
| uint32_t imm3 = (v >> 1) & 7U /* 0b111 */; |
| uint32_t a = v & 1; |
| return value | i << 26 | imm3 << 12 | a << 7; |
| } |
| |
| void ArmAssembler::FinalizeTrackedLabels() { |
| if (!tracked_labels_.empty()) { |
| // This array should be sorted, as assembly is generated in linearized order. It isn't |
| // technically required, but GetAdjustedPosition() used in AdjustLabelPosition() can take |
| // advantage of it. So ensure that it's actually the case. |
| DCHECK(std::is_sorted( |
| tracked_labels_.begin(), |
| tracked_labels_.end(), |
| [](const Label* lhs, const Label* rhs) { return lhs->Position() < rhs->Position(); })); |
| |
| Label* last_label = nullptr; // Track duplicates, we must not adjust twice. |
| for (Label* label : tracked_labels_) { |
| DCHECK_NE(label, last_label); |
| AdjustLabelPosition(label); |
| last_label = label; |
| } |
| } |
| } |
| |
| } // namespace arm |
| } // namespace art |