blob: ab3c946897c0b9d92b82274ad8e68cb651cdd41c [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "global_value_numbering.h"
#include "base/stl_util.h"
#include "local_value_numbering.h"
namespace art {
GlobalValueNumbering::GlobalValueNumbering(CompilationUnit* cu, ScopedArenaAllocator* allocator,
Mode mode)
: cu_(cu),
mir_graph_(cu->mir_graph.get()),
allocator_(allocator),
bbs_processed_(0u),
max_bbs_to_process_(kMaxBbsToProcessMultiplyFactor * mir_graph_->GetNumReachableBlocks()),
last_value_(kNullValue),
modifications_allowed_(true),
mode_(mode),
global_value_map_(std::less<uint64_t>(), allocator->Adapter()),
array_location_map_(ArrayLocationComparator(), allocator->Adapter()),
array_location_reverse_map_(allocator->Adapter()),
ref_set_map_(std::less<ValueNameSet>(), allocator->Adapter()),
lvns_(mir_graph_->GetNumBlocks(), nullptr, allocator->Adapter()),
work_lvn_(nullptr),
merge_lvns_(allocator->Adapter()) {
}
GlobalValueNumbering::~GlobalValueNumbering() {
STLDeleteElements(&lvns_);
}
LocalValueNumbering* GlobalValueNumbering::PrepareBasicBlock(BasicBlock* bb,
ScopedArenaAllocator* allocator) {
if (UNLIKELY(!Good())) {
return nullptr;
}
if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock) {
DCHECK(bb->first_mir_insn == nullptr);
return nullptr;
}
if (mode_ == kModeGvn && UNLIKELY(bbs_processed_ == max_bbs_to_process_)) {
// If we're still trying to converge, stop now. Otherwise, proceed to apply optimizations.
last_value_ = kNoValue; // Make bad.
return nullptr;
}
if (mode_ == kModeGvnPostProcessing &&
mir_graph_->GetTopologicalSortOrderLoopHeadStack()->empty()) {
// Modifications outside loops are performed during the main phase.
return nullptr;
}
if (allocator == nullptr) {
allocator = allocator_;
}
DCHECK(work_lvn_.get() == nullptr);
work_lvn_.reset(new (allocator) LocalValueNumbering(this, bb->id, allocator));
if (bb->block_type == kEntryBlock) {
work_lvn_->PrepareEntryBlock();
DCHECK(bb->first_mir_insn == nullptr); // modifications_allowed_ is irrelevant.
} else {
// To avoid repeated allocation on the ArenaStack, reuse a single vector kept as a member.
DCHECK(merge_lvns_.empty());
// If we're running the full GVN, the RepeatingTopologicalSortIterator keeps the loop
// head stack in the MIRGraph up to date and for a loop head we need to check whether
// we're making the initial computation and need to merge only preceding blocks in the
// topological order, or we're recalculating a loop head and need to merge all incoming
// LVNs. When we're not at a loop head (including having an empty loop head stack) all
// predecessors should be preceding blocks and we shall merge all of them anyway.
bool use_all_predecessors = true;
uint16_t loop_head_idx = 0u; // Used only if !use_all_predecessors.
if (mode_ == kModeGvn && mir_graph_->GetTopologicalSortOrderLoopHeadStack()->size() != 0) {
// Full GVN inside a loop, see if we're at the loop head for the first time.
modifications_allowed_ = false;
auto top = mir_graph_->GetTopologicalSortOrderLoopHeadStack()->back();
loop_head_idx = top.first;
bool recalculating = top.second;
use_all_predecessors = recalculating ||
loop_head_idx != mir_graph_->GetTopologicalSortOrderIndexes()[bb->id];
} else {
modifications_allowed_ = true;
}
for (BasicBlockId pred_id : bb->predecessors) {
DCHECK_NE(pred_id, NullBasicBlockId);
if (lvns_[pred_id] != nullptr &&
(use_all_predecessors ||
mir_graph_->GetTopologicalSortOrderIndexes()[pred_id] < loop_head_idx)) {
merge_lvns_.push_back(lvns_[pred_id]);
}
}
// Determine merge type.
LocalValueNumbering::MergeType merge_type = LocalValueNumbering::kNormalMerge;
if (bb->catch_entry) {
merge_type = LocalValueNumbering::kCatchMerge;
} else if (bb->last_mir_insn != nullptr &&
IsInstructionReturn(bb->last_mir_insn->dalvikInsn.opcode) &&
bb->GetFirstNonPhiInsn() == bb->last_mir_insn) {
merge_type = LocalValueNumbering::kReturnMerge;
}
// At least one predecessor must have been processed before this bb.
CHECK(!merge_lvns_.empty());
if (merge_lvns_.size() == 1u) {
work_lvn_->MergeOne(*merge_lvns_[0], merge_type);
} else {
work_lvn_->Merge(merge_type);
}
}
return work_lvn_.get();
}
bool GlobalValueNumbering::FinishBasicBlock(BasicBlock* bb) {
DCHECK(work_lvn_ != nullptr);
DCHECK_EQ(bb->id, work_lvn_->Id());
++bbs_processed_;
merge_lvns_.clear();
bool change = (lvns_[bb->id] == nullptr) || !lvns_[bb->id]->Equals(*work_lvn_);
if (mode_ == kModeGvn) {
// In GVN mode, keep the latest LVN even if Equals() indicates no change. This is
// to keep the correct values of fields that do not contribute to Equals() as long
// as they depend only on predecessor LVNs' fields that do contribute to Equals().
// Currently, that's LVN::merge_map_ used by LVN::GetStartingVregValueNumberImpl().
std::unique_ptr<const LocalValueNumbering> old_lvn(lvns_[bb->id]);
lvns_[bb->id] = work_lvn_.release();
} else {
work_lvn_.reset();
}
return change;
}
uint16_t GlobalValueNumbering::GetArrayLocation(uint16_t base, uint16_t index) {
auto cmp = array_location_map_.key_comp();
ArrayLocation key = { base, index };
auto lb = array_location_map_.lower_bound(key);
if (lb != array_location_map_.end() && !cmp(key, lb->first)) {
return lb->second;
}
uint16_t location = static_cast<uint16_t>(array_location_reverse_map_.size());
DCHECK_EQ(location, array_location_reverse_map_.size()); // No overflow.
auto it = array_location_map_.PutBefore(lb, key, location);
array_location_reverse_map_.push_back(&*it);
return location;
}
bool GlobalValueNumbering::HasNullCheckLastInsn(const BasicBlock* pred_bb,
BasicBlockId succ_id) {
if (pred_bb->block_type != kDalvikByteCode || pred_bb->last_mir_insn == nullptr) {
return false;
}
Instruction::Code last_opcode = pred_bb->last_mir_insn->dalvikInsn.opcode;
return ((last_opcode == Instruction::IF_EQZ && pred_bb->fall_through == succ_id) ||
(last_opcode == Instruction::IF_NEZ && pred_bb->taken == succ_id));
}
bool GlobalValueNumbering::NullCheckedInAllPredecessors(
const ScopedArenaVector<uint16_t>& merge_names) const {
// Implicit parameters:
// - *work_lvn: the LVN for which we're checking predecessors.
// - merge_lvns_: the predecessor LVNs.
DCHECK_EQ(merge_lvns_.size(), merge_names.size());
for (size_t i = 0, size = merge_lvns_.size(); i != size; ++i) {
const LocalValueNumbering* pred_lvn = merge_lvns_[i];
uint16_t value_name = merge_names[i];
if (!pred_lvn->IsValueNullChecked(value_name)) {
// Check if the predecessor has an IF_EQZ/IF_NEZ as the last insn.
const BasicBlock* pred_bb = mir_graph_->GetBasicBlock(pred_lvn->Id());
if (!HasNullCheckLastInsn(pred_bb, work_lvn_->Id())) {
return false;
}
// IF_EQZ/IF_NEZ checks some sreg, see if that sreg contains the value_name.
int s_reg = pred_bb->last_mir_insn->ssa_rep->uses[0];
if (pred_lvn->GetSregValue(s_reg) != value_name) {
return false;
}
}
}
return true;
}
bool GlobalValueNumbering::DivZeroCheckedInAllPredecessors(
const ScopedArenaVector<uint16_t>& merge_names) const {
// Implicit parameters:
// - *work_lvn: the LVN for which we're checking predecessors.
// - merge_lvns_: the predecessor LVNs.
DCHECK_EQ(merge_lvns_.size(), merge_names.size());
for (size_t i = 0, size = merge_lvns_.size(); i != size; ++i) {
const LocalValueNumbering* pred_lvn = merge_lvns_[i];
uint16_t value_name = merge_names[i];
if (!pred_lvn->IsValueDivZeroChecked(value_name)) {
return false;
}
}
return true;
}
} // namespace art