| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "concurrent_copying.h" |
| |
| #include "art_field-inl.h" |
| #include "base/stl_util.h" |
| #include "gc/accounting/heap_bitmap-inl.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/reference_processor.h" |
| #include "gc/space/image_space.h" |
| #include "gc/space/space.h" |
| #include "intern_table.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "scoped_thread_state_change.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| namespace gc { |
| namespace collector { |
| |
| ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix) |
| : GarbageCollector(heap, |
| name_prefix + (name_prefix.empty() ? "" : " ") + |
| "concurrent copying + mark sweep"), |
| region_space_(nullptr), gc_barrier_(new Barrier(0)), |
| gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack", |
| 2 * MB, 2 * MB)), |
| mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock), |
| thread_running_gc_(nullptr), |
| is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false), |
| heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff), |
| weak_ref_access_enabled_(true), |
| skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock), |
| rb_table_(heap_->GetReadBarrierTable()), |
| force_evacuate_all_(false) { |
| static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize, |
| "The region space size and the read barrier table region size must match"); |
| cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap)); |
| Thread* self = Thread::Current(); |
| { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // Cache this so that we won't have to lock heap_bitmap_lock_ in |
| // Mark() which could cause a nested lock on heap_bitmap_lock_ |
| // when GC causes a RB while doing GC or a lock order violation |
| // (class_linker_lock_ and heap_bitmap_lock_). |
| heap_mark_bitmap_ = heap->GetMarkBitmap(); |
| } |
| { |
| MutexLock mu(self, mark_stack_lock_); |
| for (size_t i = 0; i < kMarkStackPoolSize; ++i) { |
| accounting::AtomicStack<mirror::Object>* mark_stack = |
| accounting::AtomicStack<mirror::Object>::Create( |
| "thread local mark stack", kMarkStackSize, kMarkStackSize); |
| pooled_mark_stacks_.push_back(mark_stack); |
| } |
| } |
| } |
| |
| void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) { |
| // Used for preserving soft references, should be OK to not have a CAS here since there should be |
| // no other threads which can trigger read barriers on the same referent during reference |
| // processing. |
| from_ref->Assign(Mark(from_ref->AsMirrorPtr())); |
| DCHECK(!from_ref->IsNull()); |
| } |
| |
| ConcurrentCopying::~ConcurrentCopying() { |
| STLDeleteElements(&pooled_mark_stacks_); |
| } |
| |
| void ConcurrentCopying::RunPhases() { |
| CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier); |
| CHECK(!is_active_); |
| is_active_ = true; |
| Thread* self = Thread::Current(); |
| thread_running_gc_ = self; |
| Locks::mutator_lock_->AssertNotHeld(self); |
| { |
| ReaderMutexLock mu(self, *Locks::mutator_lock_); |
| InitializePhase(); |
| } |
| FlipThreadRoots(); |
| { |
| ReaderMutexLock mu(self, *Locks::mutator_lock_); |
| MarkingPhase(); |
| } |
| // Verify no from space refs. This causes a pause. |
| if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) { |
| TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings()); |
| ScopedPause pause(this); |
| CheckEmptyMarkStack(); |
| if (kVerboseMode) { |
| LOG(INFO) << "Verifying no from-space refs"; |
| } |
| VerifyNoFromSpaceReferences(); |
| if (kVerboseMode) { |
| LOG(INFO) << "Done verifying no from-space refs"; |
| } |
| CheckEmptyMarkStack(); |
| } |
| { |
| ReaderMutexLock mu(self, *Locks::mutator_lock_); |
| ReclaimPhase(); |
| } |
| FinishPhase(); |
| CHECK(is_active_); |
| is_active_ = false; |
| thread_running_gc_ = nullptr; |
| } |
| |
| void ConcurrentCopying::BindBitmaps() { |
| Thread* self = Thread::Current(); |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // Mark all of the spaces we never collect as immune. |
| for (const auto& space : heap_->GetContinuousSpaces()) { |
| if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect |
| || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) { |
| CHECK(space->IsZygoteSpace() || space->IsImageSpace()); |
| CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; |
| const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" : |
| "cc zygote space bitmap"; |
| // TODO: try avoiding using bitmaps for image/zygote to save space. |
| accounting::ContinuousSpaceBitmap* bitmap = |
| accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity()); |
| cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap); |
| cc_bitmaps_.push_back(bitmap); |
| } else if (space == region_space_) { |
| accounting::ContinuousSpaceBitmap* bitmap = |
| accounting::ContinuousSpaceBitmap::Create("cc region space bitmap", |
| space->Begin(), space->Capacity()); |
| cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap); |
| cc_bitmaps_.push_back(bitmap); |
| region_space_bitmap_ = bitmap; |
| } |
| } |
| } |
| |
| void ConcurrentCopying::InitializePhase() { |
| TimingLogger::ScopedTiming split("InitializePhase", GetTimings()); |
| if (kVerboseMode) { |
| LOG(INFO) << "GC InitializePhase"; |
| LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-" |
| << reinterpret_cast<void*>(region_space_->Limit()); |
| } |
| CheckEmptyMarkStack(); |
| immune_region_.Reset(); |
| bytes_moved_.StoreRelaxed(0); |
| objects_moved_.StoreRelaxed(0); |
| if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit || |
| GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc || |
| GetCurrentIteration()->GetClearSoftReferences()) { |
| force_evacuate_all_ = true; |
| } else { |
| force_evacuate_all_ = false; |
| } |
| BindBitmaps(); |
| if (kVerboseMode) { |
| LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_; |
| LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End(); |
| LOG(INFO) << "GC end of InitializePhase"; |
| } |
| } |
| |
| // Used to switch the thread roots of a thread from from-space refs to to-space refs. |
| class ThreadFlipVisitor : public Closure { |
| public: |
| ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab) |
| : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) { |
| } |
| |
| virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { |
| // Note: self is not necessarily equal to thread since thread may be suspended. |
| Thread* self = Thread::Current(); |
| CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) |
| << thread->GetState() << " thread " << thread << " self " << self; |
| if (use_tlab_ && thread->HasTlab()) { |
| if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { |
| // This must come before the revoke. |
| size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated(); |
| concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread); |
| reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)-> |
| FetchAndAddSequentiallyConsistent(thread_local_objects); |
| } else { |
| concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread); |
| } |
| } |
| if (kUseThreadLocalAllocationStack) { |
| thread->RevokeThreadLocalAllocationStack(); |
| } |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| thread->VisitRoots(concurrent_copying_); |
| concurrent_copying_->GetBarrier().Pass(self); |
| } |
| |
| private: |
| ConcurrentCopying* const concurrent_copying_; |
| const bool use_tlab_; |
| }; |
| |
| // Called back from Runtime::FlipThreadRoots() during a pause. |
| class FlipCallback : public Closure { |
| public: |
| explicit FlipCallback(ConcurrentCopying* concurrent_copying) |
| : concurrent_copying_(concurrent_copying) { |
| } |
| |
| virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) { |
| ConcurrentCopying* cc = concurrent_copying_; |
| TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings()); |
| // Note: self is not necessarily equal to thread since thread may be suspended. |
| Thread* self = Thread::Current(); |
| CHECK(thread == self); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_); |
| cc->SwapStacks(); |
| if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { |
| cc->RecordLiveStackFreezeSize(self); |
| cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated(); |
| cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated(); |
| } |
| cc->is_marking_ = true; |
| cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal); |
| if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) { |
| CHECK(Runtime::Current()->IsAotCompiler()); |
| TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings()); |
| Runtime::Current()->VisitTransactionRoots(cc); |
| } |
| } |
| |
| private: |
| ConcurrentCopying* const concurrent_copying_; |
| }; |
| |
| // Switch threads that from from-space to to-space refs. Forward/mark the thread roots. |
| void ConcurrentCopying::FlipThreadRoots() { |
| TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings()); |
| if (kVerboseMode) { |
| LOG(INFO) << "time=" << region_space_->Time(); |
| region_space_->DumpNonFreeRegions(LOG(INFO)); |
| } |
| Thread* self = Thread::Current(); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| gc_barrier_->Init(self, 0); |
| ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_); |
| FlipCallback flip_callback(this); |
| size_t barrier_count = Runtime::Current()->FlipThreadRoots( |
| &thread_flip_visitor, &flip_callback, this); |
| { |
| ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); |
| gc_barrier_->Increment(self, barrier_count); |
| } |
| is_asserting_to_space_invariant_ = true; |
| QuasiAtomic::ThreadFenceForConstructor(); |
| if (kVerboseMode) { |
| LOG(INFO) << "time=" << region_space_->Time(); |
| region_space_->DumpNonFreeRegions(LOG(INFO)); |
| LOG(INFO) << "GC end of FlipThreadRoots"; |
| } |
| } |
| |
| void ConcurrentCopying::SwapStacks() { |
| heap_->SwapStacks(); |
| } |
| |
| void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); |
| } |
| |
| // Used to visit objects in the immune spaces. |
| class ConcurrentCopyingImmuneSpaceObjVisitor { |
| public: |
| explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc) |
| : collector_(cc) {} |
| |
| void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_) |
| SHARED_REQUIRES(Locks::heap_bitmap_lock_) { |
| DCHECK(obj != nullptr); |
| DCHECK(collector_->immune_region_.ContainsObject(obj)); |
| accounting::ContinuousSpaceBitmap* cc_bitmap = |
| collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj); |
| DCHECK(cc_bitmap != nullptr) |
| << "An immune space object must have a bitmap"; |
| if (kIsDebugBuild) { |
| DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) |
| << "Immune space object must be already marked"; |
| } |
| // This may or may not succeed, which is ok. |
| if (kUseBakerReadBarrier) { |
| obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr()); |
| } |
| if (cc_bitmap->AtomicTestAndSet(obj)) { |
| // Already marked. Do nothing. |
| } else { |
| // Newly marked. Set the gray bit and push it onto the mark stack. |
| CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr()); |
| collector_->PushOntoMarkStack(obj); |
| } |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| class EmptyCheckpoint : public Closure { |
| public: |
| explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying) |
| : concurrent_copying_(concurrent_copying) { |
| } |
| |
| virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { |
| // Note: self is not necessarily equal to thread since thread may be suspended. |
| Thread* self = Thread::Current(); |
| CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) |
| << thread->GetState() << " thread " << thread << " self " << self; |
| // If thread is a running mutator, then act on behalf of the garbage collector. |
| // See the code in ThreadList::RunCheckpoint. |
| if (thread->GetState() == kRunnable) { |
| concurrent_copying_->GetBarrier().Pass(self); |
| } |
| } |
| |
| private: |
| ConcurrentCopying* const concurrent_copying_; |
| }; |
| |
| // Concurrently mark roots that are guarded by read barriers and process the mark stack. |
| void ConcurrentCopying::MarkingPhase() { |
| TimingLogger::ScopedTiming split("MarkingPhase", GetTimings()); |
| if (kVerboseMode) { |
| LOG(INFO) << "GC MarkingPhase"; |
| } |
| CHECK(weak_ref_access_enabled_); |
| { |
| // Mark the image root. The WB-based collectors do not need to |
| // scan the image objects from roots by relying on the card table, |
| // but it's necessary for the RB to-space invariant to hold. |
| TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings()); |
| gc::space::ImageSpace* image = heap_->GetImageSpace(); |
| if (image != nullptr) { |
| mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots(); |
| mirror::Object* marked_image_root = Mark(image_root); |
| CHECK_EQ(image_root, marked_image_root) << "An image object does not move"; |
| if (ReadBarrier::kEnableToSpaceInvariantChecks) { |
| AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root); |
| } |
| } |
| } |
| // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part |
| // to also use the same function. |
| { |
| TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings()); |
| Runtime::Current()->VisitConstantRoots(this); |
| } |
| { |
| TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings()); |
| Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots); |
| } |
| { |
| TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings()); |
| Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots); |
| } |
| { |
| // TODO: don't visit the transaction roots if it's not active. |
| TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings()); |
| Runtime::Current()->VisitNonThreadRoots(this); |
| } |
| Runtime::Current()->GetHeap()->VisitAllocationRecords(this); |
| |
| // Immune spaces. |
| for (auto& space : heap_->GetContinuousSpaces()) { |
| if (immune_region_.ContainsSpace(space)) { |
| DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); |
| accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); |
| ConcurrentCopyingImmuneSpaceObjVisitor visitor(this); |
| live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), |
| reinterpret_cast<uintptr_t>(space->Limit()), |
| visitor); |
| } |
| } |
| |
| Thread* self = Thread::Current(); |
| { |
| TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings()); |
| // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The |
| // primary reasons are the fact that we need to use a checkpoint to process thread-local mark |
| // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock |
| // issue because running threads potentially blocking at WaitHoldingLocks, and that once we |
| // reach the point where we process weak references, we can avoid using a lock when accessing |
| // the GC mark stack, which makes mark stack processing more efficient. |
| |
| // Process the mark stack once in the thread local stack mode. This marks most of the live |
| // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system |
| // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray |
| // objects and push refs on the mark stack. |
| ProcessMarkStack(); |
| // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks |
| // for the last time before transitioning to the shared mark stack mode, which would process new |
| // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack() |
| // call above. At the same time, disable weak ref accesses using a per-thread flag. It's |
| // important to do these together in a single checkpoint so that we can ensure that mutators |
| // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and |
| // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on |
| // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref |
| // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones. |
| SwitchToSharedMarkStackMode(); |
| CHECK(!self->GetWeakRefAccessEnabled()); |
| // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here |
| // (which may be non-empty if there were refs found on thread-local mark stacks during the above |
| // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators |
| // (via read barriers) have no way to produce any more refs to process. Marking converges once |
| // before we process weak refs below. |
| ProcessMarkStack(); |
| CheckEmptyMarkStack(); |
| // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a |
| // lock from this point on. |
| SwitchToGcExclusiveMarkStackMode(); |
| CheckEmptyMarkStack(); |
| if (kVerboseMode) { |
| LOG(INFO) << "ProcessReferences"; |
| } |
| // Process weak references. This may produce new refs to process and have them processed via |
| // ProcessMarkStack (in the GC exclusive mark stack mode). |
| ProcessReferences(self); |
| CheckEmptyMarkStack(); |
| if (kVerboseMode) { |
| LOG(INFO) << "SweepSystemWeaks"; |
| } |
| SweepSystemWeaks(self); |
| if (kVerboseMode) { |
| LOG(INFO) << "SweepSystemWeaks done"; |
| } |
| // Process the mark stack here one last time because the above SweepSystemWeaks() call may have |
| // marked some objects (strings alive) as hash_set::Erase() can call the hash function for |
| // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks(). |
| ProcessMarkStack(); |
| CheckEmptyMarkStack(); |
| // Re-enable weak ref accesses. |
| ReenableWeakRefAccess(self); |
| // Issue an empty checkpoint to ensure no threads are still in the middle of a read barrier |
| // which may have a from-space ref cached in a local variable. |
| IssueEmptyCheckpoint(); |
| // Marking is done. Disable marking. |
| if (kUseTableLookupReadBarrier) { |
| heap_->rb_table_->ClearAll(); |
| DCHECK(heap_->rb_table_->IsAllCleared()); |
| } |
| is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1); |
| is_marking_ = false; // This disables the read barrier/marking of weak roots. |
| mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff); |
| CheckEmptyMarkStack(); |
| } |
| |
| CHECK(weak_ref_access_enabled_); |
| if (kVerboseMode) { |
| LOG(INFO) << "GC end of MarkingPhase"; |
| } |
| } |
| |
| void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) { |
| if (kVerboseMode) { |
| LOG(INFO) << "ReenableWeakRefAccess"; |
| } |
| weak_ref_access_enabled_.StoreRelaxed(true); // This is for new threads. |
| QuasiAtomic::ThreadFenceForConstructor(); |
| // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access. |
| { |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); |
| for (Thread* thread : thread_list) { |
| thread->SetWeakRefAccessEnabled(true); |
| } |
| } |
| // Unblock blocking threads. |
| GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self); |
| Runtime::Current()->BroadcastForNewSystemWeaks(); |
| } |
| |
| void ConcurrentCopying::IssueEmptyCheckpoint() { |
| Thread* self = Thread::Current(); |
| EmptyCheckpoint check_point(this); |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| gc_barrier_->Init(self, 0); |
| size_t barrier_count = thread_list->RunCheckpoint(&check_point); |
| // If there are no threads to wait which implys that all the checkpoint functions are finished, |
| // then no need to release the mutator lock. |
| if (barrier_count == 0) { |
| return; |
| } |
| // Release locks then wait for all mutator threads to pass the barrier. |
| Locks::mutator_lock_->SharedUnlock(self); |
| { |
| ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); |
| gc_barrier_->Increment(self, barrier_count); |
| } |
| Locks::mutator_lock_->SharedLock(self); |
| } |
| |
| void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) { |
| CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0) |
| << " " << to_ref << " " << PrettyTypeOf(to_ref); |
| Thread* self = Thread::Current(); // TODO: pass self as an argument from call sites? |
| CHECK(thread_running_gc_ != nullptr); |
| MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); |
| if (mark_stack_mode == kMarkStackModeThreadLocal) { |
| if (self == thread_running_gc_) { |
| // If GC-running thread, use the GC mark stack instead of a thread-local mark stack. |
| CHECK(self->GetThreadLocalMarkStack() == nullptr); |
| CHECK(!gc_mark_stack_->IsFull()); |
| gc_mark_stack_->PushBack(to_ref); |
| } else { |
| // Otherwise, use a thread-local mark stack. |
| accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack(); |
| if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) { |
| MutexLock mu(self, mark_stack_lock_); |
| // Get a new thread local mark stack. |
| accounting::AtomicStack<mirror::Object>* new_tl_mark_stack; |
| if (!pooled_mark_stacks_.empty()) { |
| // Use a pooled mark stack. |
| new_tl_mark_stack = pooled_mark_stacks_.back(); |
| pooled_mark_stacks_.pop_back(); |
| } else { |
| // None pooled. Create a new one. |
| new_tl_mark_stack = |
| accounting::AtomicStack<mirror::Object>::Create( |
| "thread local mark stack", 4 * KB, 4 * KB); |
| } |
| DCHECK(new_tl_mark_stack != nullptr); |
| DCHECK(new_tl_mark_stack->IsEmpty()); |
| new_tl_mark_stack->PushBack(to_ref); |
| self->SetThreadLocalMarkStack(new_tl_mark_stack); |
| if (tl_mark_stack != nullptr) { |
| // Store the old full stack into a vector. |
| revoked_mark_stacks_.push_back(tl_mark_stack); |
| } |
| } else { |
| tl_mark_stack->PushBack(to_ref); |
| } |
| } |
| } else if (mark_stack_mode == kMarkStackModeShared) { |
| // Access the shared GC mark stack with a lock. |
| MutexLock mu(self, mark_stack_lock_); |
| CHECK(!gc_mark_stack_->IsFull()); |
| gc_mark_stack_->PushBack(to_ref); |
| } else { |
| CHECK_EQ(static_cast<uint32_t>(mark_stack_mode), |
| static_cast<uint32_t>(kMarkStackModeGcExclusive)); |
| CHECK(self == thread_running_gc_) |
| << "Only GC-running thread should access the mark stack " |
| << "in the GC exclusive mark stack mode"; |
| // Access the GC mark stack without a lock. |
| CHECK(!gc_mark_stack_->IsFull()); |
| gc_mark_stack_->PushBack(to_ref); |
| } |
| } |
| |
| accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() { |
| return heap_->allocation_stack_.get(); |
| } |
| |
| accounting::ObjectStack* ConcurrentCopying::GetLiveStack() { |
| return heap_->live_stack_.get(); |
| } |
| |
| inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) { |
| DCHECK(region_space_->IsInFromSpace(from_ref)); |
| LockWord lw = from_ref->GetLockWord(false); |
| if (lw.GetState() == LockWord::kForwardingAddress) { |
| mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress()); |
| CHECK(fwd_ptr != nullptr); |
| return fwd_ptr; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // The following visitors are that used to verify that there's no |
| // references to the from-space left after marking. |
| class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor { |
| public: |
| explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| |
| void operator()(mirror::Object* ref) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| if (ref == nullptr) { |
| // OK. |
| return; |
| } |
| collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref); |
| if (kUseBakerReadBarrier) { |
| if (collector_->RegionSpace()->IsInToSpace(ref)) { |
| CHECK(ref->GetReadBarrierPointer() == nullptr) |
| << "To-space ref " << ref << " " << PrettyTypeOf(ref) |
| << " has non-white rb_ptr " << ref->GetReadBarrierPointer(); |
| } else { |
| CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() || |
| (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() && |
| collector_->IsOnAllocStack(ref))) |
| << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref) |
| << " has non-black rb_ptr " << ref->GetReadBarrierPointer() |
| << " but isn't on the alloc stack (and has white rb_ptr)." |
| << " Is it in the non-moving space=" |
| << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref)); |
| } |
| } |
| } |
| |
| void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) |
| OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(root != nullptr); |
| operator()(root); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor { |
| public: |
| explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| |
| void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| mirror::Object* ref = |
| obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset); |
| ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_); |
| visitor(ref); |
| } |
| void operator()(mirror::Class* klass, mirror::Reference* ref) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| CHECK(klass->IsTypeOfReferenceClass()); |
| this->operator()(ref, mirror::Reference::ReferentOffset(), false); |
| } |
| |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_); |
| visitor(root->AsMirrorPtr()); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor { |
| public: |
| explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| void operator()(mirror::Object* obj) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| ObjectCallback(obj, collector_); |
| } |
| static void ObjectCallback(mirror::Object* obj, void *arg) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| CHECK(obj != nullptr); |
| ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg); |
| space::RegionSpace* region_space = collector->RegionSpace(); |
| CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space"; |
| ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector); |
| obj->VisitReferences<true>(visitor, visitor); |
| if (kUseBakerReadBarrier) { |
| if (collector->RegionSpace()->IsInToSpace(obj)) { |
| CHECK(obj->GetReadBarrierPointer() == nullptr) |
| << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer(); |
| } else { |
| CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() || |
| (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() && |
| collector->IsOnAllocStack(obj))) |
| << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj) |
| << " has non-black rb_ptr " << obj->GetReadBarrierPointer() |
| << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space=" |
| << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj)); |
| } |
| } |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| // Verify there's no from-space references left after the marking phase. |
| void ConcurrentCopying::VerifyNoFromSpaceReferences() { |
| Thread* self = Thread::Current(); |
| DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); |
| ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this); |
| // Roots. |
| { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this); |
| Runtime::Current()->VisitRoots(&ref_visitor); |
| } |
| // The to-space. |
| region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback, |
| this); |
| // Non-moving spaces. |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| heap_->GetMarkBitmap()->Visit(visitor); |
| } |
| // The alloc stack. |
| { |
| ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this); |
| for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End(); |
| it < end; ++it) { |
| mirror::Object* const obj = it->AsMirrorPtr(); |
| if (obj != nullptr && obj->GetClass() != nullptr) { |
| // TODO: need to call this only if obj is alive? |
| ref_visitor(obj); |
| visitor(obj); |
| } |
| } |
| } |
| // TODO: LOS. But only refs in LOS are classes. |
| } |
| |
| // The following visitors are used to assert the to-space invariant. |
| class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor { |
| public: |
| explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| |
| void operator()(mirror::Object* ref) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| if (ref == nullptr) { |
| // OK. |
| return; |
| } |
| collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor { |
| public: |
| explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| |
| void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| mirror::Object* ref = |
| obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset); |
| ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_); |
| visitor(ref); |
| } |
| void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| CHECK(klass->IsTypeOfReferenceClass()); |
| } |
| |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_); |
| visitor(root->AsMirrorPtr()); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor { |
| public: |
| explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| void operator()(mirror::Object* obj) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| ObjectCallback(obj, collector_); |
| } |
| static void ObjectCallback(mirror::Object* obj, void *arg) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| CHECK(obj != nullptr); |
| ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg); |
| space::RegionSpace* region_space = collector->RegionSpace(); |
| CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space"; |
| collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj); |
| ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector); |
| obj->VisitReferences<true>(visitor, visitor); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| class RevokeThreadLocalMarkStackCheckpoint : public Closure { |
| public: |
| RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying, |
| bool disable_weak_ref_access) |
| : concurrent_copying_(concurrent_copying), |
| disable_weak_ref_access_(disable_weak_ref_access) { |
| } |
| |
| virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { |
| // Note: self is not necessarily equal to thread since thread may be suspended. |
| Thread* self = Thread::Current(); |
| CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) |
| << thread->GetState() << " thread " << thread << " self " << self; |
| // Revoke thread local mark stacks. |
| accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack(); |
| if (tl_mark_stack != nullptr) { |
| MutexLock mu(self, concurrent_copying_->mark_stack_lock_); |
| concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack); |
| thread->SetThreadLocalMarkStack(nullptr); |
| } |
| // Disable weak ref access. |
| if (disable_weak_ref_access_) { |
| thread->SetWeakRefAccessEnabled(false); |
| } |
| // If thread is a running mutator, then act on behalf of the garbage collector. |
| // See the code in ThreadList::RunCheckpoint. |
| if (thread->GetState() == kRunnable) { |
| concurrent_copying_->GetBarrier().Pass(self); |
| } |
| } |
| |
| private: |
| ConcurrentCopying* const concurrent_copying_; |
| const bool disable_weak_ref_access_; |
| }; |
| |
| void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) { |
| Thread* self = Thread::Current(); |
| RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access); |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| gc_barrier_->Init(self, 0); |
| size_t barrier_count = thread_list->RunCheckpoint(&check_point); |
| // If there are no threads to wait which implys that all the checkpoint functions are finished, |
| // then no need to release the mutator lock. |
| if (barrier_count == 0) { |
| return; |
| } |
| Locks::mutator_lock_->SharedUnlock(self); |
| { |
| ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); |
| gc_barrier_->Increment(self, barrier_count); |
| } |
| Locks::mutator_lock_->SharedLock(self); |
| } |
| |
| void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) { |
| Thread* self = Thread::Current(); |
| CHECK_EQ(self, thread); |
| accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack(); |
| if (tl_mark_stack != nullptr) { |
| CHECK(is_marking_); |
| MutexLock mu(self, mark_stack_lock_); |
| revoked_mark_stacks_.push_back(tl_mark_stack); |
| thread->SetThreadLocalMarkStack(nullptr); |
| } |
| } |
| |
| void ConcurrentCopying::ProcessMarkStack() { |
| if (kVerboseMode) { |
| LOG(INFO) << "ProcessMarkStack. "; |
| } |
| bool empty_prev = false; |
| while (true) { |
| bool empty = ProcessMarkStackOnce(); |
| if (empty_prev && empty) { |
| // Saw empty mark stack for a second time, done. |
| break; |
| } |
| empty_prev = empty; |
| } |
| } |
| |
| bool ConcurrentCopying::ProcessMarkStackOnce() { |
| Thread* self = Thread::Current(); |
| CHECK(thread_running_gc_ != nullptr); |
| CHECK(self == thread_running_gc_); |
| CHECK(self->GetThreadLocalMarkStack() == nullptr); |
| size_t count = 0; |
| MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); |
| if (mark_stack_mode == kMarkStackModeThreadLocal) { |
| // Process the thread-local mark stacks and the GC mark stack. |
| count += ProcessThreadLocalMarkStacks(false); |
| while (!gc_mark_stack_->IsEmpty()) { |
| mirror::Object* to_ref = gc_mark_stack_->PopBack(); |
| ProcessMarkStackRef(to_ref); |
| ++count; |
| } |
| gc_mark_stack_->Reset(); |
| } else if (mark_stack_mode == kMarkStackModeShared) { |
| // Process the shared GC mark stack with a lock. |
| { |
| MutexLock mu(self, mark_stack_lock_); |
| CHECK(revoked_mark_stacks_.empty()); |
| } |
| while (true) { |
| std::vector<mirror::Object*> refs; |
| { |
| // Copy refs with lock. Note the number of refs should be small. |
| MutexLock mu(self, mark_stack_lock_); |
| if (gc_mark_stack_->IsEmpty()) { |
| break; |
| } |
| for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin(); |
| p != gc_mark_stack_->End(); ++p) { |
| refs.push_back(p->AsMirrorPtr()); |
| } |
| gc_mark_stack_->Reset(); |
| } |
| for (mirror::Object* ref : refs) { |
| ProcessMarkStackRef(ref); |
| ++count; |
| } |
| } |
| } else { |
| CHECK_EQ(static_cast<uint32_t>(mark_stack_mode), |
| static_cast<uint32_t>(kMarkStackModeGcExclusive)); |
| { |
| MutexLock mu(self, mark_stack_lock_); |
| CHECK(revoked_mark_stacks_.empty()); |
| } |
| // Process the GC mark stack in the exclusive mode. No need to take the lock. |
| while (!gc_mark_stack_->IsEmpty()) { |
| mirror::Object* to_ref = gc_mark_stack_->PopBack(); |
| ProcessMarkStackRef(to_ref); |
| ++count; |
| } |
| gc_mark_stack_->Reset(); |
| } |
| |
| // Return true if the stack was empty. |
| return count == 0; |
| } |
| |
| size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) { |
| // Run a checkpoint to collect all thread local mark stacks and iterate over them all. |
| RevokeThreadLocalMarkStacks(disable_weak_ref_access); |
| size_t count = 0; |
| std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks; |
| { |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| // Make a copy of the mark stack vector. |
| mark_stacks = revoked_mark_stacks_; |
| revoked_mark_stacks_.clear(); |
| } |
| for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) { |
| for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) { |
| mirror::Object* to_ref = p->AsMirrorPtr(); |
| ProcessMarkStackRef(to_ref); |
| ++count; |
| } |
| { |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) { |
| // The pool has enough. Delete it. |
| delete mark_stack; |
| } else { |
| // Otherwise, put it into the pool for later reuse. |
| mark_stack->Reset(); |
| pooled_mark_stacks_.push_back(mark_stack); |
| } |
| } |
| } |
| return count; |
| } |
| |
| void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) { |
| DCHECK(!region_space_->IsInFromSpace(to_ref)); |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr()) |
| << " " << to_ref << " " << to_ref->GetReadBarrierPointer() |
| << " is_marked=" << IsMarked(to_ref); |
| } |
| // Scan ref fields. |
| Scan(to_ref); |
| // Mark the gray ref as white or black. |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr()) |
| << " " << to_ref << " " << to_ref->GetReadBarrierPointer() |
| << " is_marked=" << IsMarked(to_ref); |
| } |
| if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() && |
| to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr && |
| !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) { |
| // Leave References gray so that GetReferent() will trigger RB. |
| CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref; |
| } else { |
| #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER |
| if (kUseBakerReadBarrier) { |
| if (region_space_->IsInToSpace(to_ref)) { |
| // If to-space, change from gray to white. |
| bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(), |
| ReadBarrier::WhitePtr()); |
| CHECK(success) << "Must succeed as we won the race."; |
| CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr()); |
| } else { |
| // If non-moving space/unevac from space, change from gray |
| // to black. We can't change gray to white because it's not |
| // safe to use CAS if two threads change values in opposite |
| // directions (A->B and B->A). So, we change it to black to |
| // indicate non-moving objects that have been marked |
| // through. Note we'd need to change from black to white |
| // later (concurrently). |
| bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(), |
| ReadBarrier::BlackPtr()); |
| CHECK(success) << "Must succeed as we won the race."; |
| CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr()); |
| } |
| } |
| #else |
| DCHECK(!kUseBakerReadBarrier); |
| #endif |
| } |
| if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) { |
| ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this); |
| visitor(to_ref); |
| } |
| } |
| |
| void ConcurrentCopying::SwitchToSharedMarkStackMode() { |
| Thread* self = Thread::Current(); |
| CHECK(thread_running_gc_ != nullptr); |
| CHECK_EQ(self, thread_running_gc_); |
| CHECK(self->GetThreadLocalMarkStack() == nullptr); |
| MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed(); |
| CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode), |
| static_cast<uint32_t>(kMarkStackModeThreadLocal)); |
| mark_stack_mode_.StoreRelaxed(kMarkStackModeShared); |
| CHECK(weak_ref_access_enabled_.LoadRelaxed()); |
| weak_ref_access_enabled_.StoreRelaxed(false); |
| QuasiAtomic::ThreadFenceForConstructor(); |
| // Process the thread local mark stacks one last time after switching to the shared mark stack |
| // mode and disable weak ref accesses. |
| ProcessThreadLocalMarkStacks(true); |
| if (kVerboseMode) { |
| LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access"; |
| } |
| } |
| |
| void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() { |
| Thread* self = Thread::Current(); |
| CHECK(thread_running_gc_ != nullptr); |
| CHECK_EQ(self, thread_running_gc_); |
| CHECK(self->GetThreadLocalMarkStack() == nullptr); |
| MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed(); |
| CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode), |
| static_cast<uint32_t>(kMarkStackModeShared)); |
| mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive); |
| QuasiAtomic::ThreadFenceForConstructor(); |
| if (kVerboseMode) { |
| LOG(INFO) << "Switched to GC exclusive mark stack mode"; |
| } |
| } |
| |
| void ConcurrentCopying::CheckEmptyMarkStack() { |
| Thread* self = Thread::Current(); |
| CHECK(thread_running_gc_ != nullptr); |
| CHECK_EQ(self, thread_running_gc_); |
| CHECK(self->GetThreadLocalMarkStack() == nullptr); |
| MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); |
| if (mark_stack_mode == kMarkStackModeThreadLocal) { |
| // Thread-local mark stack mode. |
| RevokeThreadLocalMarkStacks(false); |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| if (!revoked_mark_stacks_.empty()) { |
| for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) { |
| while (!mark_stack->IsEmpty()) { |
| mirror::Object* obj = mark_stack->PopBack(); |
| if (kUseBakerReadBarrier) { |
| mirror::Object* rb_ptr = obj->GetReadBarrierPointer(); |
| LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr |
| << " is_marked=" << IsMarked(obj); |
| } else { |
| LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) |
| << " is_marked=" << IsMarked(obj); |
| } |
| } |
| } |
| LOG(FATAL) << "mark stack is not empty"; |
| } |
| } else { |
| // Shared, GC-exclusive, or off. |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| CHECK(gc_mark_stack_->IsEmpty()); |
| CHECK(revoked_mark_stacks_.empty()); |
| } |
| } |
| |
| void ConcurrentCopying::SweepSystemWeaks(Thread* self) { |
| TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings()); |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| Runtime::Current()->SweepSystemWeaks(this); |
| } |
| |
| void ConcurrentCopying::Sweep(bool swap_bitmaps) { |
| { |
| TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings()); |
| accounting::ObjectStack* live_stack = heap_->GetLiveStack(); |
| if (kEnableFromSpaceAccountingCheck) { |
| CHECK_GE(live_stack_freeze_size_, live_stack->Size()); |
| } |
| heap_->MarkAllocStackAsLive(live_stack); |
| live_stack->Reset(); |
| } |
| CheckEmptyMarkStack(); |
| TimingLogger::ScopedTiming split("Sweep", GetTimings()); |
| for (const auto& space : GetHeap()->GetContinuousSpaces()) { |
| if (space->IsContinuousMemMapAllocSpace()) { |
| space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); |
| if (space == region_space_ || immune_region_.ContainsSpace(space)) { |
| continue; |
| } |
| TimingLogger::ScopedTiming split2( |
| alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings()); |
| RecordFree(alloc_space->Sweep(swap_bitmaps)); |
| } |
| } |
| SweepLargeObjects(swap_bitmaps); |
| } |
| |
| void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) { |
| TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings()); |
| RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); |
| } |
| |
| class ConcurrentCopyingClearBlackPtrsVisitor { |
| public: |
| explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc) |
| : collector_(cc) {} |
| #ifndef USE_BAKER_OR_BROOKS_READ_BARRIER |
| NO_RETURN |
| #endif |
| void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_) |
| SHARED_REQUIRES(Locks::heap_bitmap_lock_) { |
| DCHECK(obj != nullptr); |
| DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj; |
| DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj; |
| obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr()); |
| DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj; |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| // Clear the black ptrs in non-moving objects back to white. |
| void ConcurrentCopying::ClearBlackPtrs() { |
| CHECK(kUseBakerReadBarrier); |
| TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings()); |
| ConcurrentCopyingClearBlackPtrsVisitor visitor(this); |
| for (auto& space : heap_->GetContinuousSpaces()) { |
| if (space == region_space_) { |
| continue; |
| } |
| accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); |
| if (kVerboseMode) { |
| LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap; |
| } |
| mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), |
| reinterpret_cast<uintptr_t>(space->Limit()), |
| visitor); |
| } |
| space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace(); |
| large_object_space->GetMarkBitmap()->VisitMarkedRange( |
| reinterpret_cast<uintptr_t>(large_object_space->Begin()), |
| reinterpret_cast<uintptr_t>(large_object_space->End()), |
| visitor); |
| // Objects on the allocation stack? |
| if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) { |
| size_t count = GetAllocationStack()->Size(); |
| auto* it = GetAllocationStack()->Begin(); |
| auto* end = GetAllocationStack()->End(); |
| for (size_t i = 0; i < count; ++i, ++it) { |
| CHECK_LT(it, end); |
| mirror::Object* obj = it->AsMirrorPtr(); |
| if (obj != nullptr) { |
| // Must have been cleared above. |
| CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj; |
| } |
| } |
| } |
| } |
| |
| void ConcurrentCopying::ReclaimPhase() { |
| TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings()); |
| if (kVerboseMode) { |
| LOG(INFO) << "GC ReclaimPhase"; |
| } |
| Thread* self = Thread::Current(); |
| |
| { |
| // Double-check that the mark stack is empty. |
| // Note: need to set this after VerifyNoFromSpaceRef(). |
| is_asserting_to_space_invariant_ = false; |
| QuasiAtomic::ThreadFenceForConstructor(); |
| if (kVerboseMode) { |
| LOG(INFO) << "Issue an empty check point. "; |
| } |
| IssueEmptyCheckpoint(); |
| // Disable the check. |
| is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0); |
| CheckEmptyMarkStack(); |
| } |
| |
| { |
| // Record freed objects. |
| TimingLogger::ScopedTiming split2("RecordFree", GetTimings()); |
| // Don't include thread-locals that are in the to-space. |
| uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace(); |
| uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace(); |
| uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace(); |
| uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace(); |
| uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent(); |
| uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent(); |
| if (kEnableFromSpaceAccountingCheck) { |
| CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects); |
| CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes); |
| } |
| CHECK_LE(to_objects, from_objects); |
| CHECK_LE(to_bytes, from_bytes); |
| int64_t freed_bytes = from_bytes - to_bytes; |
| int64_t freed_objects = from_objects - to_objects; |
| if (kVerboseMode) { |
| LOG(INFO) << "RecordFree:" |
| << " from_bytes=" << from_bytes << " from_objects=" << from_objects |
| << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects |
| << " to_bytes=" << to_bytes << " to_objects=" << to_objects |
| << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects |
| << " from_space size=" << region_space_->FromSpaceSize() |
| << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize() |
| << " to_space size=" << region_space_->ToSpaceSize(); |
| LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent(); |
| } |
| RecordFree(ObjectBytePair(freed_objects, freed_bytes)); |
| if (kVerboseMode) { |
| LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent(); |
| } |
| } |
| |
| { |
| TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings()); |
| ComputeUnevacFromSpaceLiveRatio(); |
| } |
| |
| { |
| TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings()); |
| region_space_->ClearFromSpace(); |
| } |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (kUseBakerReadBarrier) { |
| ClearBlackPtrs(); |
| } |
| Sweep(false); |
| SwapBitmaps(); |
| heap_->UnBindBitmaps(); |
| |
| // Remove bitmaps for the immune spaces. |
| while (!cc_bitmaps_.empty()) { |
| accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back(); |
| cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap); |
| delete cc_bitmap; |
| cc_bitmaps_.pop_back(); |
| } |
| region_space_bitmap_ = nullptr; |
| } |
| |
| CheckEmptyMarkStack(); |
| |
| if (kVerboseMode) { |
| LOG(INFO) << "GC end of ReclaimPhase"; |
| } |
| } |
| |
| class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor { |
| public: |
| explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc) |
| : collector_(cc) {} |
| void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) |
| SHARED_REQUIRES(Locks::heap_bitmap_lock_) { |
| DCHECK(ref != nullptr); |
| DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref; |
| DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref; |
| if (kUseBakerReadBarrier) { |
| DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref; |
| // Clear the black ptr. |
| ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr()); |
| DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref; |
| } |
| size_t obj_size = ref->SizeOf(); |
| size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); |
| collector_->region_space_->AddLiveBytes(ref, alloc_size); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| // Compute how much live objects are left in regions. |
| void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() { |
| region_space_->AssertAllRegionLiveBytesZeroOrCleared(); |
| ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this); |
| region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()), |
| reinterpret_cast<uintptr_t>(region_space_->Limit()), |
| visitor); |
| } |
| |
| // Assert the to-space invariant. |
| void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset, |
| mirror::Object* ref) { |
| CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_); |
| if (is_asserting_to_space_invariant_) { |
| if (region_space_->IsInToSpace(ref)) { |
| // OK. |
| return; |
| } else if (region_space_->IsInUnevacFromSpace(ref)) { |
| CHECK(region_space_bitmap_->Test(ref)) << ref; |
| } else if (region_space_->IsInFromSpace(ref)) { |
| // Not OK. Do extra logging. |
| if (obj != nullptr) { |
| LogFromSpaceRefHolder(obj, offset); |
| } |
| ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL)); |
| CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref); |
| } else { |
| AssertToSpaceInvariantInNonMovingSpace(obj, ref); |
| } |
| } |
| } |
| |
| class RootPrinter { |
| public: |
| RootPrinter() { } |
| |
| template <class MirrorType> |
| ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| template <class MirrorType> |
| void VisitRoot(mirror::Object** root) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root; |
| } |
| |
| template <class MirrorType> |
| void VisitRoot(mirror::CompressedReference<MirrorType>* root) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr(); |
| } |
| }; |
| |
| void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source, |
| mirror::Object* ref) { |
| CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_); |
| if (is_asserting_to_space_invariant_) { |
| if (region_space_->IsInToSpace(ref)) { |
| // OK. |
| return; |
| } else if (region_space_->IsInUnevacFromSpace(ref)) { |
| CHECK(region_space_bitmap_->Test(ref)) << ref; |
| } else if (region_space_->IsInFromSpace(ref)) { |
| // Not OK. Do extra logging. |
| if (gc_root_source == nullptr) { |
| // No info. |
| } else if (gc_root_source->HasArtField()) { |
| ArtField* field = gc_root_source->GetArtField(); |
| LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field); |
| RootPrinter root_printer; |
| field->VisitRoots(root_printer); |
| } else if (gc_root_source->HasArtMethod()) { |
| ArtMethod* method = gc_root_source->GetArtMethod(); |
| LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method); |
| RootPrinter root_printer; |
| method->VisitRoots(root_printer); |
| } |
| ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL)); |
| region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL)); |
| PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL); |
| MemMap::DumpMaps(LOG(INTERNAL_FATAL), true); |
| CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref); |
| } else { |
| AssertToSpaceInvariantInNonMovingSpace(nullptr, ref); |
| } |
| } |
| } |
| |
| void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) { |
| if (kUseBakerReadBarrier) { |
| LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj) |
| << " holder rb_ptr=" << obj->GetReadBarrierPointer(); |
| } else { |
| LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj); |
| } |
| if (region_space_->IsInFromSpace(obj)) { |
| LOG(INFO) << "holder is in the from-space."; |
| } else if (region_space_->IsInToSpace(obj)) { |
| LOG(INFO) << "holder is in the to-space."; |
| } else if (region_space_->IsInUnevacFromSpace(obj)) { |
| LOG(INFO) << "holder is in the unevac from-space."; |
| if (region_space_bitmap_->Test(obj)) { |
| LOG(INFO) << "holder is marked in the region space bitmap."; |
| } else { |
| LOG(INFO) << "holder is not marked in the region space bitmap."; |
| } |
| } else { |
| // In a non-moving space. |
| if (immune_region_.ContainsObject(obj)) { |
| LOG(INFO) << "holder is in the image or the zygote space."; |
| accounting::ContinuousSpaceBitmap* cc_bitmap = |
| cc_heap_bitmap_->GetContinuousSpaceBitmap(obj); |
| CHECK(cc_bitmap != nullptr) |
| << "An immune space object must have a bitmap."; |
| if (cc_bitmap->Test(obj)) { |
| LOG(INFO) << "holder is marked in the bit map."; |
| } else { |
| LOG(INFO) << "holder is NOT marked in the bit map."; |
| } |
| } else { |
| LOG(INFO) << "holder is in a non-moving (or main) space."; |
| accounting::ContinuousSpaceBitmap* mark_bitmap = |
| heap_mark_bitmap_->GetContinuousSpaceBitmap(obj); |
| accounting::LargeObjectBitmap* los_bitmap = |
| heap_mark_bitmap_->GetLargeObjectBitmap(obj); |
| CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; |
| bool is_los = mark_bitmap == nullptr; |
| if (!is_los && mark_bitmap->Test(obj)) { |
| LOG(INFO) << "holder is marked in the mark bit map."; |
| } else if (is_los && los_bitmap->Test(obj)) { |
| LOG(INFO) << "holder is marked in the los bit map."; |
| } else { |
| // If ref is on the allocation stack, then it is considered |
| // mark/alive (but not necessarily on the live stack.) |
| if (IsOnAllocStack(obj)) { |
| LOG(INFO) << "holder is on the alloc stack."; |
| } else { |
| LOG(INFO) << "holder is not marked or on the alloc stack."; |
| } |
| } |
| } |
| } |
| LOG(INFO) << "offset=" << offset.SizeValue(); |
| } |
| |
| void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj, |
| mirror::Object* ref) { |
| // In a non-moving spaces. Check that the ref is marked. |
| if (immune_region_.ContainsObject(ref)) { |
| accounting::ContinuousSpaceBitmap* cc_bitmap = |
| cc_heap_bitmap_->GetContinuousSpaceBitmap(ref); |
| CHECK(cc_bitmap != nullptr) |
| << "An immune space ref must have a bitmap. " << ref; |
| if (kUseBakerReadBarrier) { |
| CHECK(cc_bitmap->Test(ref)) |
| << "Unmarked immune space ref. obj=" << obj << " rb_ptr=" |
| << obj->GetReadBarrierPointer() << " ref=" << ref; |
| } else { |
| CHECK(cc_bitmap->Test(ref)) |
| << "Unmarked immune space ref. obj=" << obj << " ref=" << ref; |
| } |
| } else { |
| accounting::ContinuousSpaceBitmap* mark_bitmap = |
| heap_mark_bitmap_->GetContinuousSpaceBitmap(ref); |
| accounting::LargeObjectBitmap* los_bitmap = |
| heap_mark_bitmap_->GetLargeObjectBitmap(ref); |
| CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; |
| bool is_los = mark_bitmap == nullptr; |
| if ((!is_los && mark_bitmap->Test(ref)) || |
| (is_los && los_bitmap->Test(ref))) { |
| // OK. |
| } else { |
| // If ref is on the allocation stack, then it may not be |
| // marked live, but considered marked/alive (but not |
| // necessarily on the live stack). |
| CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. " |
| << "obj=" << obj << " ref=" << ref; |
| } |
| } |
| } |
| |
| // Used to scan ref fields of an object. |
| class ConcurrentCopyingRefFieldsVisitor { |
| public: |
| explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector) |
| : collector_(collector) {} |
| |
| void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) |
| const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_) |
| SHARED_REQUIRES(Locks::heap_bitmap_lock_) { |
| collector_->Process(obj, offset); |
| } |
| |
| void operator()(mirror::Class* klass, mirror::Reference* ref) const |
| SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE { |
| CHECK(klass->IsTypeOfReferenceClass()); |
| collector_->DelayReferenceReferent(klass, ref); |
| } |
| |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| collector_->MarkRoot(root); |
| } |
| |
| private: |
| ConcurrentCopying* const collector_; |
| }; |
| |
| // Scan ref fields of an object. |
| void ConcurrentCopying::Scan(mirror::Object* to_ref) { |
| DCHECK(!region_space_->IsInFromSpace(to_ref)); |
| ConcurrentCopyingRefFieldsVisitor visitor(this); |
| to_ref->VisitReferences<true>(visitor, visitor); |
| } |
| |
| // Process a field. |
| inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) { |
| mirror::Object* ref = obj->GetFieldObject< |
| mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset); |
| if (ref == nullptr || region_space_->IsInToSpace(ref)) { |
| return; |
| } |
| mirror::Object* to_ref = Mark(ref); |
| if (to_ref == ref) { |
| return; |
| } |
| // This may fail if the mutator writes to the field at the same time. But it's ok. |
| mirror::Object* expected_ref = ref; |
| mirror::Object* new_ref = to_ref; |
| do { |
| if (expected_ref != |
| obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) { |
| // It was updated by the mutator. |
| break; |
| } |
| } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier< |
| false, false, kVerifyNone>(offset, expected_ref, new_ref)); |
| } |
| |
| // Process some roots. |
| void ConcurrentCopying::VisitRoots( |
| mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) { |
| for (size_t i = 0; i < count; ++i) { |
| mirror::Object** root = roots[i]; |
| mirror::Object* ref = *root; |
| if (ref == nullptr || region_space_->IsInToSpace(ref)) { |
| continue; |
| } |
| mirror::Object* to_ref = Mark(ref); |
| if (to_ref == ref) { |
| continue; |
| } |
| Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root); |
| mirror::Object* expected_ref = ref; |
| mirror::Object* new_ref = to_ref; |
| do { |
| if (expected_ref != addr->LoadRelaxed()) { |
| // It was updated by the mutator. |
| break; |
| } |
| } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref)); |
| } |
| } |
| |
| void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) { |
| DCHECK(!root->IsNull()); |
| mirror::Object* const ref = root->AsMirrorPtr(); |
| if (region_space_->IsInToSpace(ref)) { |
| return; |
| } |
| mirror::Object* to_ref = Mark(ref); |
| if (to_ref != ref) { |
| auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root); |
| auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref); |
| auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref); |
| // If the cas fails, then it was updated by the mutator. |
| do { |
| if (ref != addr->LoadRelaxed().AsMirrorPtr()) { |
| // It was updated by the mutator. |
| break; |
| } |
| } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref)); |
| } |
| } |
| |
| void ConcurrentCopying::VisitRoots( |
| mirror::CompressedReference<mirror::Object>** roots, size_t count, |
| const RootInfo& info ATTRIBUTE_UNUSED) { |
| for (size_t i = 0; i < count; ++i) { |
| mirror::CompressedReference<mirror::Object>* const root = roots[i]; |
| if (!root->IsNull()) { |
| MarkRoot(root); |
| } |
| } |
| } |
| |
| // Fill the given memory block with a dummy object. Used to fill in a |
| // copy of objects that was lost in race. |
| void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) { |
| CHECK_ALIGNED(byte_size, kObjectAlignment); |
| memset(dummy_obj, 0, byte_size); |
| mirror::Class* int_array_class = mirror::IntArray::GetArrayClass(); |
| CHECK(int_array_class != nullptr); |
| AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class); |
| size_t component_size = int_array_class->GetComponentSize(); |
| CHECK_EQ(component_size, sizeof(int32_t)); |
| size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue(); |
| if (data_offset > byte_size) { |
| // An int array is too big. Use java.lang.Object. |
| mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object); |
| AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object); |
| CHECK_EQ(byte_size, java_lang_Object->GetObjectSize()); |
| dummy_obj->SetClass(java_lang_Object); |
| CHECK_EQ(byte_size, dummy_obj->SizeOf()); |
| } else { |
| // Use an int array. |
| dummy_obj->SetClass(int_array_class); |
| CHECK(dummy_obj->IsArrayInstance()); |
| int32_t length = (byte_size - data_offset) / component_size; |
| dummy_obj->AsArray()->SetLength(length); |
| CHECK_EQ(dummy_obj->AsArray()->GetLength(), length) |
| << "byte_size=" << byte_size << " length=" << length |
| << " component_size=" << component_size << " data_offset=" << data_offset; |
| CHECK_EQ(byte_size, dummy_obj->SizeOf()) |
| << "byte_size=" << byte_size << " length=" << length |
| << " component_size=" << component_size << " data_offset=" << data_offset; |
| } |
| } |
| |
| // Reuse the memory blocks that were copy of objects that were lost in race. |
| mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) { |
| // Try to reuse the blocks that were unused due to CAS failures. |
| CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment); |
| Thread* self = Thread::Current(); |
| size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment); |
| MutexLock mu(self, skipped_blocks_lock_); |
| auto it = skipped_blocks_map_.lower_bound(alloc_size); |
| if (it == skipped_blocks_map_.end()) { |
| // Not found. |
| return nullptr; |
| } |
| { |
| size_t byte_size = it->first; |
| CHECK_GE(byte_size, alloc_size); |
| if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) { |
| // If remainder would be too small for a dummy object, retry with a larger request size. |
| it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size); |
| if (it == skipped_blocks_map_.end()) { |
| // Not found. |
| return nullptr; |
| } |
| CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment); |
| CHECK_GE(it->first - alloc_size, min_object_size) |
| << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size; |
| } |
| } |
| // Found a block. |
| CHECK(it != skipped_blocks_map_.end()); |
| size_t byte_size = it->first; |
| uint8_t* addr = it->second; |
| CHECK_GE(byte_size, alloc_size); |
| CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr))); |
| CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment); |
| if (kVerboseMode) { |
| LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size; |
| } |
| skipped_blocks_map_.erase(it); |
| memset(addr, 0, byte_size); |
| if (byte_size > alloc_size) { |
| // Return the remainder to the map. |
| CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment); |
| CHECK_GE(byte_size - alloc_size, min_object_size); |
| FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size), |
| byte_size - alloc_size); |
| CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size))); |
| skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size)); |
| } |
| return reinterpret_cast<mirror::Object*>(addr); |
| } |
| |
| mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) { |
| DCHECK(region_space_->IsInFromSpace(from_ref)); |
| // No read barrier to avoid nested RB that might violate the to-space |
| // invariant. Note that from_ref is a from space ref so the SizeOf() |
| // call will access the from-space meta objects, but it's ok and necessary. |
| size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>(); |
| size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); |
| size_t region_space_bytes_allocated = 0U; |
| size_t non_moving_space_bytes_allocated = 0U; |
| size_t bytes_allocated = 0U; |
| size_t dummy; |
| mirror::Object* to_ref = region_space_->AllocNonvirtual<true>( |
| region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy); |
| bytes_allocated = region_space_bytes_allocated; |
| if (to_ref != nullptr) { |
| DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated); |
| } |
| bool fall_back_to_non_moving = false; |
| if (UNLIKELY(to_ref == nullptr)) { |
| // Failed to allocate in the region space. Try the skipped blocks. |
| to_ref = AllocateInSkippedBlock(region_space_alloc_size); |
| if (to_ref != nullptr) { |
| // Succeeded to allocate in a skipped block. |
| if (heap_->use_tlab_) { |
| // This is necessary for the tlab case as it's not accounted in the space. |
| region_space_->RecordAlloc(to_ref); |
| } |
| bytes_allocated = region_space_alloc_size; |
| } else { |
| // Fall back to the non-moving space. |
| fall_back_to_non_moving = true; |
| if (kVerboseMode) { |
| LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes=" |
| << to_space_bytes_skipped_.LoadSequentiallyConsistent() |
| << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent(); |
| } |
| fall_back_to_non_moving = true; |
| to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size, |
| &non_moving_space_bytes_allocated, nullptr, &dummy); |
| CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed"; |
| bytes_allocated = non_moving_space_bytes_allocated; |
| // Mark it in the mark bitmap. |
| accounting::ContinuousSpaceBitmap* mark_bitmap = |
| heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref); |
| CHECK(mark_bitmap != nullptr); |
| CHECK(!mark_bitmap->AtomicTestAndSet(to_ref)); |
| } |
| } |
| DCHECK(to_ref != nullptr); |
| |
| // Attempt to install the forward pointer. This is in a loop as the |
| // lock word atomic write can fail. |
| while (true) { |
| // Copy the object. TODO: copy only the lockword in the second iteration and on? |
| memcpy(to_ref, from_ref, obj_size); |
| |
| LockWord old_lock_word = to_ref->GetLockWord(false); |
| |
| if (old_lock_word.GetState() == LockWord::kForwardingAddress) { |
| // Lost the race. Another thread (either GC or mutator) stored |
| // the forwarding pointer first. Make the lost copy (to_ref) |
| // look like a valid but dead (dummy) object and keep it for |
| // future reuse. |
| FillWithDummyObject(to_ref, bytes_allocated); |
| if (!fall_back_to_non_moving) { |
| DCHECK(region_space_->IsInToSpace(to_ref)); |
| if (bytes_allocated > space::RegionSpace::kRegionSize) { |
| // Free the large alloc. |
| region_space_->FreeLarge(to_ref, bytes_allocated); |
| } else { |
| // Record the lost copy for later reuse. |
| heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated); |
| to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated); |
| to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1); |
| MutexLock mu(Thread::Current(), skipped_blocks_lock_); |
| skipped_blocks_map_.insert(std::make_pair(bytes_allocated, |
| reinterpret_cast<uint8_t*>(to_ref))); |
| } |
| } else { |
| DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); |
| DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); |
| // Free the non-moving-space chunk. |
| accounting::ContinuousSpaceBitmap* mark_bitmap = |
| heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref); |
| CHECK(mark_bitmap != nullptr); |
| CHECK(mark_bitmap->Clear(to_ref)); |
| heap_->non_moving_space_->Free(Thread::Current(), to_ref); |
| } |
| |
| // Get the winner's forward ptr. |
| mirror::Object* lost_fwd_ptr = to_ref; |
| to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress()); |
| CHECK(to_ref != nullptr); |
| CHECK_NE(to_ref, lost_fwd_ptr); |
| CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)); |
| CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); |
| return to_ref; |
| } |
| |
| // Set the gray ptr. |
| if (kUseBakerReadBarrier) { |
| to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr()); |
| } |
| |
| LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref)); |
| |
| // Try to atomically write the fwd ptr. |
| bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word); |
| if (LIKELY(success)) { |
| // The CAS succeeded. |
| objects_moved_.FetchAndAddSequentiallyConsistent(1); |
| bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size); |
| if (LIKELY(!fall_back_to_non_moving)) { |
| DCHECK(region_space_->IsInToSpace(to_ref)); |
| } else { |
| DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); |
| DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); |
| } |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr()); |
| } |
| DCHECK(GetFwdPtr(from_ref) == to_ref); |
| CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); |
| PushOntoMarkStack(to_ref); |
| return to_ref; |
| } else { |
| // The CAS failed. It may have lost the race or may have failed |
| // due to monitor/hashcode ops. Either way, retry. |
| } |
| } |
| } |
| |
| mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) { |
| DCHECK(from_ref != nullptr); |
| space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref); |
| if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) { |
| // It's already marked. |
| return from_ref; |
| } |
| mirror::Object* to_ref; |
| if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) { |
| to_ref = GetFwdPtr(from_ref); |
| DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) || |
| heap_->non_moving_space_->HasAddress(to_ref)) |
| << "from_ref=" << from_ref << " to_ref=" << to_ref; |
| } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) { |
| if (region_space_bitmap_->Test(from_ref)) { |
| to_ref = from_ref; |
| } else { |
| to_ref = nullptr; |
| } |
| } else { |
| // from_ref is in a non-moving space. |
| if (immune_region_.ContainsObject(from_ref)) { |
| accounting::ContinuousSpaceBitmap* cc_bitmap = |
| cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref); |
| DCHECK(cc_bitmap != nullptr) |
| << "An immune space object must have a bitmap"; |
| if (kIsDebugBuild) { |
| DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref)) |
| << "Immune space object must be already marked"; |
| } |
| if (cc_bitmap->Test(from_ref)) { |
| // Already marked. |
| to_ref = from_ref; |
| } else { |
| // Newly marked. |
| to_ref = nullptr; |
| } |
| } else { |
| // Non-immune non-moving space. Use the mark bitmap. |
| accounting::ContinuousSpaceBitmap* mark_bitmap = |
| heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref); |
| accounting::LargeObjectBitmap* los_bitmap = |
| heap_mark_bitmap_->GetLargeObjectBitmap(from_ref); |
| CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; |
| bool is_los = mark_bitmap == nullptr; |
| if (!is_los && mark_bitmap->Test(from_ref)) { |
| // Already marked. |
| to_ref = from_ref; |
| } else if (is_los && los_bitmap->Test(from_ref)) { |
| // Already marked in LOS. |
| to_ref = from_ref; |
| } else { |
| // Not marked. |
| if (IsOnAllocStack(from_ref)) { |
| // If on the allocation stack, it's considered marked. |
| to_ref = from_ref; |
| } else { |
| // Not marked. |
| to_ref = nullptr; |
| } |
| } |
| } |
| } |
| return to_ref; |
| } |
| |
| bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) { |
| QuasiAtomic::ThreadFenceAcquire(); |
| accounting::ObjectStack* alloc_stack = GetAllocationStack(); |
| return alloc_stack->Contains(ref); |
| } |
| |
| mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) { |
| if (from_ref == nullptr) { |
| return nullptr; |
| } |
| DCHECK(from_ref != nullptr); |
| DCHECK(heap_->collector_type_ == kCollectorTypeCC); |
| if (kUseBakerReadBarrier && !is_active_) { |
| // In the lock word forward address state, the read barrier bits |
| // in the lock word are part of the stored forwarding address and |
| // invalid. This is usually OK as the from-space copy of objects |
| // aren't accessed by mutators due to the to-space |
| // invariant. However, during the dex2oat image writing relocation |
| // and the zygote compaction, objects can be in the forward |
| // address state (to store the forward/relocation addresses) and |
| // they can still be accessed and the invalid read barrier bits |
| // are consulted. If they look like gray but aren't really, the |
| // read barriers slow path can trigger when it shouldn't. To guard |
| // against this, return here if the CC collector isn't running. |
| return from_ref; |
| } |
| DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?"; |
| space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref); |
| if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) { |
| // It's already marked. |
| return from_ref; |
| } |
| mirror::Object* to_ref; |
| if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) { |
| to_ref = GetFwdPtr(from_ref); |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref; |
| } |
| if (to_ref == nullptr) { |
| // It isn't marked yet. Mark it by copying it to the to-space. |
| to_ref = Copy(from_ref); |
| } |
| DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) |
| << "from_ref=" << from_ref << " to_ref=" << to_ref; |
| } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) { |
| // This may or may not succeed, which is ok. |
| if (kUseBakerReadBarrier) { |
| from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr()); |
| } |
| if (region_space_bitmap_->AtomicTestAndSet(from_ref)) { |
| // Already marked. |
| to_ref = from_ref; |
| } else { |
| // Newly marked. |
| to_ref = from_ref; |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr()); |
| } |
| PushOntoMarkStack(to_ref); |
| } |
| } else { |
| // from_ref is in a non-moving space. |
| DCHECK(!region_space_->HasAddress(from_ref)) << from_ref; |
| if (immune_region_.ContainsObject(from_ref)) { |
| accounting::ContinuousSpaceBitmap* cc_bitmap = |
| cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref); |
| DCHECK(cc_bitmap != nullptr) |
| << "An immune space object must have a bitmap"; |
| if (kIsDebugBuild) { |
| DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref)) |
| << "Immune space object must be already marked"; |
| } |
| // This may or may not succeed, which is ok. |
| if (kUseBakerReadBarrier) { |
| from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr()); |
| } |
| if (cc_bitmap->AtomicTestAndSet(from_ref)) { |
| // Already marked. |
| to_ref = from_ref; |
| } else { |
| // Newly marked. |
| to_ref = from_ref; |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr()); |
| } |
| PushOntoMarkStack(to_ref); |
| } |
| } else { |
| // Use the mark bitmap. |
| accounting::ContinuousSpaceBitmap* mark_bitmap = |
| heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref); |
| accounting::LargeObjectBitmap* los_bitmap = |
| heap_mark_bitmap_->GetLargeObjectBitmap(from_ref); |
| CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; |
| bool is_los = mark_bitmap == nullptr; |
| if (!is_los && mark_bitmap->Test(from_ref)) { |
| // Already marked. |
| to_ref = from_ref; |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() || |
| to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr()); |
| } |
| } else if (is_los && los_bitmap->Test(from_ref)) { |
| // Already marked in LOS. |
| to_ref = from_ref; |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() || |
| to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr()); |
| } |
| } else { |
| // Not marked. |
| if (IsOnAllocStack(from_ref)) { |
| // If it's on the allocation stack, it's considered marked. Keep it white. |
| to_ref = from_ref; |
| // Objects on the allocation stack need not be marked. |
| if (!is_los) { |
| DCHECK(!mark_bitmap->Test(to_ref)); |
| } else { |
| DCHECK(!los_bitmap->Test(to_ref)); |
| } |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr()); |
| } |
| } else { |
| // Not marked or on the allocation stack. Try to mark it. |
| // This may or may not succeed, which is ok. |
| if (kUseBakerReadBarrier) { |
| from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr()); |
| } |
| if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) { |
| // Already marked. |
| to_ref = from_ref; |
| } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) { |
| // Already marked in LOS. |
| to_ref = from_ref; |
| } else { |
| // Newly marked. |
| to_ref = from_ref; |
| if (kUseBakerReadBarrier) { |
| DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr()); |
| } |
| PushOntoMarkStack(to_ref); |
| } |
| } |
| } |
| } |
| } |
| return to_ref; |
| } |
| |
| void ConcurrentCopying::FinishPhase() { |
| { |
| MutexLock mu(Thread::Current(), mark_stack_lock_); |
| CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); |
| } |
| region_space_ = nullptr; |
| { |
| MutexLock mu(Thread::Current(), skipped_blocks_lock_); |
| skipped_blocks_map_.clear(); |
| } |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| heap_->ClearMarkedObjects(); |
| } |
| |
| bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) { |
| mirror::Object* from_ref = field->AsMirrorPtr(); |
| mirror::Object* to_ref = IsMarked(from_ref); |
| if (to_ref == nullptr) { |
| return false; |
| } |
| if (from_ref != to_ref) { |
| QuasiAtomic::ThreadFenceRelease(); |
| field->Assign(to_ref); |
| QuasiAtomic::ThreadFenceSequentiallyConsistent(); |
| } |
| return true; |
| } |
| |
| mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) { |
| return Mark(from_ref); |
| } |
| |
| void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) { |
| heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this); |
| } |
| |
| void ConcurrentCopying::ProcessReferences(Thread* self) { |
| TimingLogger::ScopedTiming split("ProcessReferences", GetTimings()); |
| // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps. |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| GetHeap()->GetReferenceProcessor()->ProcessReferences( |
| true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this); |
| } |
| |
| void ConcurrentCopying::RevokeAllThreadLocalBuffers() { |
| TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); |
| region_space_->RevokeAllThreadLocalBuffers(); |
| } |
| |
| } // namespace collector |
| } // namespace gc |
| } // namespace art |