| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mir_graph.h" |
| #include "gtest/gtest.h" |
| |
| namespace art { |
| |
| class TopologicalSortOrderTest : public testing::Test { |
| protected: |
| struct BBDef { |
| static constexpr size_t kMaxSuccessors = 4; |
| static constexpr size_t kMaxPredecessors = 4; |
| |
| BBType type; |
| size_t num_successors; |
| BasicBlockId successors[kMaxPredecessors]; |
| size_t num_predecessors; |
| BasicBlockId predecessors[kMaxPredecessors]; |
| }; |
| |
| #define DEF_SUCC0() \ |
| 0u, { } |
| #define DEF_SUCC1(s1) \ |
| 1u, { s1 } |
| #define DEF_SUCC2(s1, s2) \ |
| 2u, { s1, s2 } |
| #define DEF_SUCC3(s1, s2, s3) \ |
| 3u, { s1, s2, s3 } |
| #define DEF_SUCC4(s1, s2, s3, s4) \ |
| 4u, { s1, s2, s3, s4 } |
| #define DEF_PRED0() \ |
| 0u, { } |
| #define DEF_PRED1(p1) \ |
| 1u, { p1 } |
| #define DEF_PRED2(p1, p2) \ |
| 2u, { p1, p2 } |
| #define DEF_PRED3(p1, p2, p3) \ |
| 3u, { p1, p2, p3 } |
| #define DEF_PRED4(p1, p2, p3, p4) \ |
| 4u, { p1, p2, p3, p4 } |
| #define DEF_BB(type, succ, pred) \ |
| { type, succ, pred } |
| |
| void DoPrepareBasicBlocks(const BBDef* defs, size_t count) { |
| cu_.mir_graph->block_id_map_.clear(); |
| cu_.mir_graph->block_list_.Reset(); |
| ASSERT_LT(3u, count); // null, entry, exit and at least one bytecode block. |
| ASSERT_EQ(kNullBlock, defs[0].type); |
| ASSERT_EQ(kEntryBlock, defs[1].type); |
| ASSERT_EQ(kExitBlock, defs[2].type); |
| for (size_t i = 0u; i != count; ++i) { |
| const BBDef* def = &defs[i]; |
| BasicBlock* bb = cu_.mir_graph->NewMemBB(def->type, i); |
| cu_.mir_graph->block_list_.Insert(bb); |
| if (def->num_successors <= 2) { |
| bb->successor_block_list_type = kNotUsed; |
| bb->successor_blocks = nullptr; |
| bb->fall_through = (def->num_successors >= 1) ? def->successors[0] : 0u; |
| bb->taken = (def->num_successors >= 2) ? def->successors[1] : 0u; |
| } else { |
| bb->successor_block_list_type = kPackedSwitch; |
| bb->fall_through = 0u; |
| bb->taken = 0u; |
| bb->successor_blocks = new (&cu_.arena) GrowableArray<SuccessorBlockInfo*>( |
| &cu_.arena, def->num_successors, kGrowableArraySuccessorBlocks); |
| for (size_t j = 0u; j != def->num_successors; ++j) { |
| SuccessorBlockInfo* successor_block_info = |
| static_cast<SuccessorBlockInfo*>(cu_.arena.Alloc(sizeof(SuccessorBlockInfo), |
| kArenaAllocSuccessor)); |
| successor_block_info->block = j; |
| successor_block_info->key = 0u; // Not used by class init check elimination. |
| bb->successor_blocks->Insert(successor_block_info); |
| } |
| } |
| bb->predecessors = new (&cu_.arena) GrowableArray<BasicBlockId>( |
| &cu_.arena, def->num_predecessors, kGrowableArrayPredecessors); |
| for (size_t j = 0u; j != def->num_predecessors; ++j) { |
| ASSERT_NE(0u, def->predecessors[j]); |
| bb->predecessors->Insert(def->predecessors[j]); |
| } |
| if (def->type == kDalvikByteCode || def->type == kEntryBlock || def->type == kExitBlock) { |
| bb->data_flow_info = static_cast<BasicBlockDataFlow*>( |
| cu_.arena.Alloc(sizeof(BasicBlockDataFlow), kArenaAllocDFInfo)); |
| } |
| } |
| cu_.mir_graph->num_blocks_ = count; |
| ASSERT_EQ(count, cu_.mir_graph->block_list_.Size()); |
| cu_.mir_graph->entry_block_ = cu_.mir_graph->block_list_.Get(1); |
| ASSERT_EQ(kEntryBlock, cu_.mir_graph->entry_block_->block_type); |
| cu_.mir_graph->exit_block_ = cu_.mir_graph->block_list_.Get(2); |
| ASSERT_EQ(kExitBlock, cu_.mir_graph->exit_block_->block_type); |
| } |
| |
| template <size_t count> |
| void PrepareBasicBlocks(const BBDef (&defs)[count]) { |
| DoPrepareBasicBlocks(defs, count); |
| } |
| |
| void ComputeTopologicalSortOrder() { |
| cu_.mir_graph->SSATransformationStart(); |
| cu_.mir_graph->ComputeDFSOrders(); |
| cu_.mir_graph->ComputeDominators(); |
| cu_.mir_graph->ComputeTopologicalSortOrder(); |
| cu_.mir_graph->SSATransformationEnd(); |
| ASSERT_NE(cu_.mir_graph->topological_order_, nullptr); |
| ASSERT_NE(cu_.mir_graph->topological_order_loop_ends_, nullptr); |
| ASSERT_NE(cu_.mir_graph->topological_order_indexes_, nullptr); |
| ASSERT_EQ(cu_.mir_graph->GetNumBlocks(), cu_.mir_graph->topological_order_indexes_->Size()); |
| for (size_t i = 0, size = cu_.mir_graph->GetTopologicalSortOrder()->Size(); i != size; ++i) { |
| ASSERT_LT(cu_.mir_graph->topological_order_->Get(i), cu_.mir_graph->GetNumBlocks()); |
| BasicBlockId id = cu_.mir_graph->topological_order_->Get(i); |
| EXPECT_EQ(i, cu_.mir_graph->topological_order_indexes_->Get(id)); |
| } |
| } |
| |
| void DoCheckOrder(const BasicBlockId* ids, size_t count) { |
| ASSERT_EQ(count, cu_.mir_graph->GetTopologicalSortOrder()->Size()); |
| for (size_t i = 0; i != count; ++i) { |
| EXPECT_EQ(ids[i], cu_.mir_graph->GetTopologicalSortOrder()->Get(i)) << i; |
| } |
| } |
| |
| template <size_t count> |
| void CheckOrder(const BasicBlockId (&ids)[count]) { |
| DoCheckOrder(ids, count); |
| } |
| |
| void DoCheckLoopEnds(const uint16_t* ends, size_t count) { |
| for (size_t i = 0; i != count; ++i) { |
| ASSERT_LT(i, cu_.mir_graph->GetTopologicalSortOrderLoopEnds()->Size()); |
| EXPECT_EQ(ends[i], cu_.mir_graph->GetTopologicalSortOrderLoopEnds()->Get(i)) << i; |
| } |
| } |
| |
| template <size_t count> |
| void CheckLoopEnds(const uint16_t (&ends)[count]) { |
| DoCheckLoopEnds(ends, count); |
| } |
| |
| TopologicalSortOrderTest() |
| : pool_(), |
| cu_(&pool_) { |
| cu_.mir_graph.reset(new MIRGraph(&cu_, &cu_.arena)); |
| } |
| |
| ArenaPool pool_; |
| CompilationUnit cu_; |
| }; |
| |
| TEST_F(TopologicalSortOrderTest, DoWhile) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED2(3, 4)), // "taken" loops to self. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 0, 3, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, While) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 5), DEF_PRED2(1, 4)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(3), DEF_PRED1(3)), // Loops to 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 3, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, WhileWithTwoBackEdges) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 6), DEF_PRED3(1, 4, 5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 3), DEF_PRED1(3)), // Loops to 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(3), DEF_PRED1(4)), // Loops to 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 6, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 4, 0, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, NestedLoop) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(7)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 7), DEF_PRED2(1, 6)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 6), DEF_PRED2(3, 5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(4)), // Loops to 4. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(3), DEF_PRED1(4)), // Loops to 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 6, 7, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 5, 4, 0, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, NestedLoopHeadLoops) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 6), DEF_PRED2(1, 4)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 3), DEF_PRED2(3, 5)), // Nested head, loops to 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(4)), // Loops to 4. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 6, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 4, 4, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, NestedLoopSameBackBranchBlock) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 6), DEF_PRED2(1, 5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED2(3, 5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 3), DEF_PRED1(4)), // Loops to 4 and 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 6, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 4, 4, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, TwoReorderedInnerLoops) { |
| // This is a simplified version of real code graph where the branch from 8 to 5 must prevent |
| // the block 5 from being considered a loop head before processing the loop 7-8. |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(9)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 9), DEF_PRED2(1, 5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 7), DEF_PRED1(3)), // Branch over loop in 5. |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(6, 3), DEF_PRED3(4, 6, 8)), // Loops to 4; inner loop. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED1(5)), // Loops to 5. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(8), DEF_PRED2(4, 8)), // Loop head. |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(7, 5), DEF_PRED1(7)), // Loops to 7; branches to 5. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 7, 8, 5, 6, 9, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 7, 0, 5, 0, 7, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, NestedLoopWithBackEdgeAfterOuterLoopBackEdge) { |
| // This is a simplified version of real code graph. The back-edge from 7 to the inner |
| // loop head 4 comes after the back-edge from 6 to the outer loop head 3. To make this |
| // appear a bit more complex, there's also a back-edge from 5 to 4. |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(7)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED2(1, 6)), // Outer loop head. |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 6), DEF_PRED3(3, 5, 7)), // Inner loop head. |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(4)), // Loops to inner loop head 4. |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(7, 3), DEF_PRED1(4)), // Loops to outer loop head 3. |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(2, 4), DEF_PRED1(6)), // Loops to inner loop head 4. |
| }; |
| const BasicBlockId expected_order[] = { |
| // NOTE: The 5 goes before 6 only because 5 is a "fall-through" from 4 while 6 is "taken". |
| 1, 3, 4, 5, 6, 7, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 6, 6, 0, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| TEST_F(TopologicalSortOrderTest, LoopWithTwoEntryPoints) { |
| const BBDef bbs[] = { |
| DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), |
| DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), |
| DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(7)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED1(1)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED2(3, 6)), // Fall-back block is chosen as |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED2(3, 4)), // the earlier from these two. |
| DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 7), DEF_PRED1(5)), |
| DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(6)), |
| }; |
| const BasicBlockId expected_order[] = { |
| 1, 3, 4, 5, 6, 7, 2 |
| }; |
| const uint16_t loop_ends[] = { |
| 0, 0, 5, 0, 0, 0, 0 |
| }; |
| |
| PrepareBasicBlocks(bbs); |
| ComputeTopologicalSortOrder(); |
| CheckOrder(expected_order); |
| CheckLoopEnds(loop_ends); |
| } |
| |
| } // namespace art |