blob: 8b02269998582d8927624090731dffafe1933a42 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "local_value_numbering.h"
#include "global_value_numbering.h"
#include "mir_field_info.h"
#include "mir_graph.h"
namespace art {
namespace { // anonymous namespace
// Operations used for value map keys instead of actual opcode.
static constexpr uint16_t kInvokeMemoryVersionBumpOp = Instruction::INVOKE_VIRTUAL;
static constexpr uint16_t kUnresolvedSFieldOp = Instruction::SGET;
static constexpr uint16_t kResolvedSFieldOp = Instruction::SGET_WIDE;
static constexpr uint16_t kUnresolvedIFieldOp = Instruction::IGET;
static constexpr uint16_t kNonAliasingIFieldLocOp = Instruction::IGET_WIDE;
static constexpr uint16_t kNonAliasingIFieldInitialOp = Instruction::IGET_OBJECT;
static constexpr uint16_t kAliasingIFieldOp = Instruction::IGET_BOOLEAN;
static constexpr uint16_t kAliasingIFieldStartVersionOp = Instruction::IGET_BYTE;
static constexpr uint16_t kAliasingIFieldBumpVersionOp = Instruction::IGET_CHAR;
static constexpr uint16_t kNonAliasingArrayOp = Instruction::AGET;
static constexpr uint16_t kNonAliasingArrayStartVersionOp = Instruction::AGET_WIDE;
static constexpr uint16_t kNonAliasingArrayBumpVersionOp = Instruction::AGET_OBJECT;
static constexpr uint16_t kAliasingArrayOp = Instruction::AGET_BOOLEAN;
static constexpr uint16_t kAliasingArrayStartVersionOp = Instruction::AGET_BYTE;
static constexpr uint16_t kAliasingArrayBumpVersionOp = Instruction::AGET_CHAR;
static constexpr uint16_t kMergeBlockMemoryVersionBumpOp = Instruction::INVOKE_VIRTUAL_RANGE;
static constexpr uint16_t kMergeBlockAliasingIFieldVersionBumpOp = Instruction::IPUT;
static constexpr uint16_t kMergeBlockAliasingIFieldMergeLocationOp = Instruction::IPUT_WIDE;
static constexpr uint16_t kMergeBlockNonAliasingArrayVersionBumpOp = Instruction::APUT;
static constexpr uint16_t kMergeBlockNonAliasingArrayMergeLocationOp = Instruction::APUT_WIDE;
static constexpr uint16_t kMergeBlockAliasingArrayVersionBumpOp = Instruction::APUT_OBJECT;
static constexpr uint16_t kMergeBlockAliasingArrayMergeLocationOp = Instruction::APUT_BOOLEAN;
static constexpr uint16_t kMergeBlockNonAliasingIFieldVersionBumpOp = Instruction::APUT_BYTE;
static constexpr uint16_t kMergeBlockSFieldVersionBumpOp = Instruction::APUT_CHAR;
} // anonymous namespace
class LocalValueNumbering::AliasingIFieldVersions {
public:
static uint16_t StartMemoryVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t field_id) {
uint16_t type = gvn->GetFieldType(field_id);
return gvn->LookupValue(kAliasingIFieldStartVersionOp, field_id,
lvn->global_memory_version_, lvn->unresolved_ifield_version_[type]);
}
static uint16_t BumpMemoryVersion(GlobalValueNumbering* gvn, uint16_t old_version,
uint16_t store_ref_set_id, uint16_t stored_value) {
return gvn->LookupValue(kAliasingIFieldBumpVersionOp, old_version,
store_ref_set_id, stored_value);
}
static uint16_t LookupGlobalValue(GlobalValueNumbering* gvn,
uint16_t field_id, uint16_t base, uint16_t memory_version) {
return gvn->LookupValue(kAliasingIFieldOp, field_id, base, memory_version);
}
static uint16_t LookupMergeValue(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t field_id, uint16_t base) {
// If the base/field_id is non-aliasing in lvn, use the non-aliasing value.
uint16_t type = gvn->GetFieldType(field_id);
if (lvn->IsNonAliasingIField(base, field_id, type)) {
uint16_t loc = gvn->LookupValue(kNonAliasingIFieldLocOp, base, field_id, type);
auto lb = lvn->non_aliasing_ifield_value_map_.find(loc);
return (lb != lvn->non_aliasing_ifield_value_map_.end())
? lb->second
: gvn->LookupValue(kNonAliasingIFieldInitialOp, loc, kNoValue, kNoValue);
}
return AliasingValuesMergeGet<AliasingIFieldVersions>(
gvn, lvn, &lvn->aliasing_ifield_value_map_, field_id, base);
}
static bool HasNewBaseVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t field_id) {
uint16_t type = gvn->GetFieldType(field_id);
return lvn->unresolved_ifield_version_[type] == lvn->merge_new_memory_version_ ||
lvn->global_memory_version_ == lvn->merge_new_memory_version_;
}
static uint16_t LookupMergeBlockValue(GlobalValueNumbering* gvn, uint16_t lvn_id,
uint16_t field_id) {
return gvn->LookupValue(kMergeBlockAliasingIFieldVersionBumpOp, field_id, kNoValue, lvn_id);
}
static uint16_t LookupMergeLocationValue(GlobalValueNumbering* gvn, uint16_t lvn_id,
uint16_t field_id, uint16_t base) {
return gvn->LookupValue(kMergeBlockAliasingIFieldMergeLocationOp, field_id, base, lvn_id);
}
};
class LocalValueNumbering::NonAliasingArrayVersions {
public:
static uint16_t StartMemoryVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t array) {
return gvn->LookupValue(kNonAliasingArrayStartVersionOp, array, kNoValue, kNoValue);
}
static uint16_t BumpMemoryVersion(GlobalValueNumbering* gvn, uint16_t old_version,
uint16_t store_ref_set_id, uint16_t stored_value) {
return gvn->LookupValue(kNonAliasingArrayBumpVersionOp, old_version,
store_ref_set_id, stored_value);
}
static uint16_t LookupGlobalValue(GlobalValueNumbering* gvn,
uint16_t array, uint16_t index, uint16_t memory_version) {
return gvn->LookupValue(kNonAliasingArrayOp, array, index, memory_version);
}
static uint16_t LookupMergeValue(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t array, uint16_t index) {
return AliasingValuesMergeGet<NonAliasingArrayVersions>(
gvn, lvn, &lvn->non_aliasing_array_value_map_, array, index);
}
static bool HasNewBaseVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t array) {
return false; // Not affected by global_memory_version_.
}
static uint16_t LookupMergeBlockValue(GlobalValueNumbering* gvn, uint16_t lvn_id,
uint16_t array) {
return gvn->LookupValue(kMergeBlockNonAliasingArrayVersionBumpOp, array, kNoValue, lvn_id);
}
static uint16_t LookupMergeLocationValue(GlobalValueNumbering* gvn, uint16_t lvn_id,
uint16_t array, uint16_t index) {
return gvn->LookupValue(kMergeBlockNonAliasingArrayMergeLocationOp, array, index, lvn_id);
}
};
class LocalValueNumbering::AliasingArrayVersions {
public:
static uint16_t StartMemoryVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t type) {
return gvn->LookupValue(kAliasingArrayStartVersionOp, type, lvn->global_memory_version_,
kNoValue);
}
static uint16_t BumpMemoryVersion(GlobalValueNumbering* gvn, uint16_t old_version,
uint16_t store_ref_set_id, uint16_t stored_value) {
return gvn->LookupValue(kAliasingArrayBumpVersionOp, old_version,
store_ref_set_id, stored_value);
}
static uint16_t LookupGlobalValue(GlobalValueNumbering* gvn,
uint16_t type, uint16_t location, uint16_t memory_version) {
return gvn->LookupValue(kAliasingArrayOp, type, location, memory_version);
}
static uint16_t LookupMergeValue(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t type, uint16_t location) {
// If the location is non-aliasing in lvn, use the non-aliasing value.
uint16_t array = gvn->GetArrayLocationBase(location);
if (lvn->IsNonAliasingArray(array, type)) {
uint16_t index = gvn->GetArrayLocationIndex(location);
return NonAliasingArrayVersions::LookupMergeValue(gvn, lvn, array, index);
}
return AliasingValuesMergeGet<AliasingArrayVersions>(
gvn, lvn, &lvn->aliasing_array_value_map_, type, location);
}
static bool HasNewBaseVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn,
uint16_t type) {
return lvn->global_memory_version_ == lvn->merge_new_memory_version_;
}
static uint16_t LookupMergeBlockValue(GlobalValueNumbering* gvn, uint16_t lvn_id,
uint16_t type) {
return gvn->LookupValue(kMergeBlockAliasingArrayVersionBumpOp, type, kNoValue, lvn_id);
}
static uint16_t LookupMergeLocationValue(GlobalValueNumbering* gvn, uint16_t lvn_id,
uint16_t type, uint16_t location) {
return gvn->LookupValue(kMergeBlockAliasingArrayMergeLocationOp, type, location, lvn_id);
}
};
template <typename Map>
LocalValueNumbering::AliasingValues* LocalValueNumbering::GetAliasingValues(
Map* map, const typename Map::key_type& key) {
auto lb = map->lower_bound(key);
if (lb == map->end() || map->key_comp()(key, lb->first)) {
lb = map->PutBefore(lb, key, AliasingValues(this));
}
return &lb->second;
}
template <typename Versions, typename KeyType>
void LocalValueNumbering::UpdateAliasingValuesLoadVersion(const KeyType& key,
AliasingValues* values) {
if (values->last_load_memory_version == kNoValue) {
// Get the start version that accounts for aliasing with unresolved fields of the same
// type and make it unique for the field by including the field_id.
uint16_t memory_version = values->memory_version_before_stores;
if (memory_version == kNoValue) {
memory_version = Versions::StartMemoryVersion(gvn_, this, key);
}
if (!values->store_loc_set.empty()) {
uint16_t ref_set_id = gvn_->GetRefSetId(values->store_loc_set);
memory_version = Versions::BumpMemoryVersion(gvn_, memory_version, ref_set_id,
values->last_stored_value);
}
values->last_load_memory_version = memory_version;
}
}
template <typename Versions, typename Map>
uint16_t LocalValueNumbering::AliasingValuesMergeGet(GlobalValueNumbering* gvn,
const LocalValueNumbering* lvn,
Map* map, const typename Map::key_type& key,
uint16_t location) {
// Retrieve the value name that we would get from
// const_cast<LocalValueNumbering*>(lvn)->HandleAliasingValueGet(map. key, location)
// but don't modify the map.
uint16_t value_name;
auto it = map->find(key);
if (it == map->end()) {
uint16_t start_version = Versions::StartMemoryVersion(gvn, lvn, key);
value_name = Versions::LookupGlobalValue(gvn, key, location, start_version);
} else if (it->second.store_loc_set.count(location) != 0u) {
value_name = it->second.last_stored_value;
} else {
auto load_it = it->second.load_value_map.find(location);
if (load_it != it->second.load_value_map.end()) {
value_name = load_it->second;
} else {
value_name = Versions::LookupGlobalValue(gvn, key, location, it->second.last_load_memory_version);
}
}
return value_name;
}
template <typename Versions, typename Map>
uint16_t LocalValueNumbering::HandleAliasingValuesGet(Map* map, const typename Map::key_type& key,
uint16_t location) {
// Retrieve the value name for IGET/SGET/AGET, update the map with new value if any.
uint16_t res;
AliasingValues* values = GetAliasingValues(map, key);
if (values->store_loc_set.count(location) != 0u) {
res = values->last_stored_value;
} else {
UpdateAliasingValuesLoadVersion<Versions>(key, values);
auto lb = values->load_value_map.lower_bound(location);
if (lb != values->load_value_map.end() && lb->first == location) {
res = lb->second;
} else {
res = Versions::LookupGlobalValue(gvn_, key, location, values->last_load_memory_version);
values->load_value_map.PutBefore(lb, location, res);
}
}
return res;
}
template <typename Versions, typename Map>
bool LocalValueNumbering::HandleAliasingValuesPut(Map* map, const typename Map::key_type& key,
uint16_t location, uint16_t value) {
AliasingValues* values = GetAliasingValues(map, key);
auto load_values_it = values->load_value_map.find(location);
if (load_values_it != values->load_value_map.end() && load_values_it->second == value) {
// This insn can be eliminated, it stores the same value that's already in the field.
return false;
}
if (value == values->last_stored_value) {
auto store_loc_lb = values->store_loc_set.lower_bound(location);
if (store_loc_lb != values->store_loc_set.end() && *store_loc_lb == location) {
// This insn can be eliminated, it stores the same value that's already in the field.
return false;
}
values->store_loc_set.emplace_hint(store_loc_lb, location);
} else {
UpdateAliasingValuesLoadVersion<Versions>(key, values);
values->memory_version_before_stores = values->last_load_memory_version;
values->last_stored_value = value;
values->store_loc_set.clear();
values->store_loc_set.insert(location);
}
// Clear the last load memory version and remove all potentially overwritten values.
values->last_load_memory_version = kNoValue;
auto it = values->load_value_map.begin(), end = values->load_value_map.end();
while (it != end) {
if (it->second == value) {
++it;
} else {
it = values->load_value_map.erase(it);
}
}
return true;
}
template <typename K>
void LocalValueNumbering::CopyAliasingValuesMap(ScopedArenaSafeMap<K, AliasingValues>* dest,
const ScopedArenaSafeMap<K, AliasingValues>& src) {
// We need each new AliasingValues (or rather its map members) to be constructed
// with our allocator, rather than the allocator of the source.
for (const auto& entry : src) {
auto it = dest->PutBefore(dest->end(), entry.first, AliasingValues(this));
it->second = entry.second; // Map assignments preserve current allocator.
}
}
LocalValueNumbering::LocalValueNumbering(GlobalValueNumbering* gvn, uint16_t id,
ScopedArenaAllocator* allocator)
: gvn_(gvn),
id_(id),
sreg_value_map_(std::less<uint16_t>(), allocator->Adapter()),
sreg_wide_value_map_(std::less<uint16_t>(), allocator->Adapter()),
sfield_value_map_(std::less<uint16_t>(), allocator->Adapter()),
non_aliasing_ifield_value_map_(std::less<uint16_t>(), allocator->Adapter()),
aliasing_ifield_value_map_(std::less<uint16_t>(), allocator->Adapter()),
non_aliasing_array_value_map_(std::less<uint16_t>(), allocator->Adapter()),
aliasing_array_value_map_(std::less<uint16_t>(), allocator->Adapter()),
global_memory_version_(0u),
non_aliasing_refs_(std::less<uint16_t>(), allocator->Adapter()),
escaped_refs_(std::less<uint16_t>(), allocator->Adapter()),
escaped_ifield_clobber_set_(EscapedIFieldClobberKeyComparator(), allocator->Adapter()),
escaped_array_clobber_set_(EscapedArrayClobberKeyComparator(), allocator->Adapter()),
range_checked_(RangeCheckKeyComparator() , allocator->Adapter()),
null_checked_(std::less<uint16_t>(), allocator->Adapter()),
merge_names_(allocator->Adapter()),
merge_map_(std::less<ScopedArenaVector<BasicBlockId>>(), allocator->Adapter()),
merge_new_memory_version_(kNoValue) {
std::fill_n(unresolved_sfield_version_, kFieldTypeCount, 0u);
std::fill_n(unresolved_ifield_version_, kFieldTypeCount, 0u);
}
bool LocalValueNumbering::Equals(const LocalValueNumbering& other) const {
DCHECK(gvn_ == other.gvn_);
// Compare the maps/sets and memory versions.
return sreg_value_map_ == other.sreg_value_map_ &&
sreg_wide_value_map_ == other.sreg_wide_value_map_ &&
sfield_value_map_ == other.sfield_value_map_ &&
non_aliasing_ifield_value_map_ == other.non_aliasing_ifield_value_map_ &&
aliasing_ifield_value_map_ == other.aliasing_ifield_value_map_ &&
non_aliasing_array_value_map_ == other.non_aliasing_array_value_map_ &&
aliasing_array_value_map_ == other.aliasing_array_value_map_ &&
SameMemoryVersion(other) &&
non_aliasing_refs_ == other.non_aliasing_refs_ &&
escaped_refs_ == other.escaped_refs_ &&
escaped_ifield_clobber_set_ == other.escaped_ifield_clobber_set_ &&
escaped_array_clobber_set_ == other.escaped_array_clobber_set_ &&
range_checked_ == other.range_checked_ &&
null_checked_ == other.null_checked_;
}
void LocalValueNumbering::MergeOne(const LocalValueNumbering& other, MergeType merge_type) {
CopyLiveSregValues(&sreg_value_map_, other.sreg_value_map_);
CopyLiveSregValues(&sreg_wide_value_map_, other.sreg_wide_value_map_);
if (merge_type == kReturnMerge) {
// RETURN or PHI+RETURN. We need only sreg value maps.
return;
}
non_aliasing_ifield_value_map_ = other.non_aliasing_ifield_value_map_;
CopyAliasingValuesMap(&non_aliasing_array_value_map_, other.non_aliasing_array_value_map_);
non_aliasing_refs_ = other.non_aliasing_refs_;
range_checked_ = other.range_checked_;
null_checked_ = other.null_checked_;
if (merge_type == kCatchMerge) {
// Memory is clobbered. Use new memory version and don't merge aliasing locations.
global_memory_version_ = NewMemoryVersion(&merge_new_memory_version_);
std::fill_n(unresolved_sfield_version_, kFieldTypeCount, global_memory_version_);
std::fill_n(unresolved_ifield_version_, kFieldTypeCount, global_memory_version_);
PruneNonAliasingRefsForCatch();
return;
}
DCHECK(merge_type == kNormalMerge);
global_memory_version_ = other.global_memory_version_;
std::copy_n(other.unresolved_ifield_version_, kFieldTypeCount, unresolved_ifield_version_);
std::copy_n(other.unresolved_sfield_version_, kFieldTypeCount, unresolved_sfield_version_);
sfield_value_map_ = other.sfield_value_map_;
CopyAliasingValuesMap(&aliasing_ifield_value_map_, other.aliasing_ifield_value_map_);
CopyAliasingValuesMap(&aliasing_array_value_map_, other.aliasing_array_value_map_);
escaped_refs_ = other.escaped_refs_;
escaped_ifield_clobber_set_ = other.escaped_ifield_clobber_set_;
escaped_array_clobber_set_ = other.escaped_array_clobber_set_;
}
bool LocalValueNumbering::SameMemoryVersion(const LocalValueNumbering& other) const {
return
global_memory_version_ == other.global_memory_version_ &&
std::equal(unresolved_ifield_version_, unresolved_ifield_version_ + kFieldTypeCount,
other.unresolved_ifield_version_) &&
std::equal(unresolved_sfield_version_, unresolved_sfield_version_ + kFieldTypeCount,
other.unresolved_sfield_version_);
}
uint16_t LocalValueNumbering::NewMemoryVersion(uint16_t* new_version) {
if (*new_version == kNoValue) {
*new_version = gvn_->LookupValue(kMergeBlockMemoryVersionBumpOp, 0u, 0u, id_);
}
return *new_version;
}
void LocalValueNumbering::MergeMemoryVersions(bool clobbered_catch) {
DCHECK_GE(gvn_->merge_lvns_.size(), 2u);
const LocalValueNumbering* cmp = gvn_->merge_lvns_[0];
// Check if the global version has changed.
bool new_global_version = clobbered_catch;
if (!new_global_version) {
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if (lvn->global_memory_version_ != cmp->global_memory_version_) {
// Use a new version for everything.
new_global_version = true;
break;
}
}
}
if (new_global_version) {
global_memory_version_ = NewMemoryVersion(&merge_new_memory_version_);
std::fill_n(unresolved_sfield_version_, kFieldTypeCount, merge_new_memory_version_);
std::fill_n(unresolved_ifield_version_, kFieldTypeCount, merge_new_memory_version_);
} else {
// Initialize with a copy of memory versions from the comparison LVN.
global_memory_version_ = cmp->global_memory_version_;
std::copy_n(cmp->unresolved_ifield_version_, kFieldTypeCount, unresolved_ifield_version_);
std::copy_n(cmp->unresolved_sfield_version_, kFieldTypeCount, unresolved_sfield_version_);
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if (lvn == cmp) {
continue;
}
for (size_t i = 0; i != kFieldTypeCount; ++i) {
if (lvn->unresolved_ifield_version_[i] != cmp->unresolved_ifield_version_[i]) {
unresolved_ifield_version_[i] = NewMemoryVersion(&merge_new_memory_version_);
}
if (lvn->unresolved_sfield_version_[i] != cmp->unresolved_sfield_version_[i]) {
unresolved_sfield_version_[i] = NewMemoryVersion(&merge_new_memory_version_);
}
}
}
}
}
void LocalValueNumbering::PruneNonAliasingRefsForCatch() {
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
const BasicBlock* bb = gvn_->GetBasicBlock(lvn->Id());
if (UNLIKELY(bb->taken == id_) || UNLIKELY(bb->fall_through == id_)) {
// Non-exceptional path to a catch handler means that the catch block was actually
// empty and all exceptional paths lead to the shared path after that empty block.
continue;
}
DCHECK_EQ(bb->taken, kNullBlock);
DCHECK_NE(bb->fall_through, kNullBlock);
const BasicBlock* fall_through_bb = gvn_->GetBasicBlock(bb->fall_through);
const MIR* mir = fall_through_bb->first_mir_insn;
DCHECK(mir != nullptr);
// Only INVOKEs can leak and clobber non-aliasing references if they throw.
if ((Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke) != 0) {
for (uint16_t i = 0u; i != mir->ssa_rep->num_uses; ++i) {
uint16_t value_name = lvn->GetOperandValue(mir->ssa_rep->uses[i]);
non_aliasing_refs_.erase(value_name);
}
}
}
}
template <typename Set, Set LocalValueNumbering::* set_ptr>
void LocalValueNumbering::IntersectSets() {
DCHECK_GE(gvn_->merge_lvns_.size(), 2u);
// Find the LVN with the least entries in the set.
const LocalValueNumbering* least_entries_lvn = gvn_->merge_lvns_[0];
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if ((lvn->*set_ptr).size() < (least_entries_lvn->*set_ptr).size()) {
least_entries_lvn = lvn;
}
}
// For each key check if it's in all the LVNs.
for (const auto& key : least_entries_lvn->*set_ptr) {
bool checked = true;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if (lvn != least_entries_lvn && (lvn->*set_ptr).count(key) == 0u) {
checked = false;
break;
}
}
if (checked) {
(this->*set_ptr).emplace_hint((this->*set_ptr).end(), key);
}
}
}
void LocalValueNumbering::CopyLiveSregValues(SregValueMap* dest, const SregValueMap& src) {
auto dest_end = dest->end();
ArenaBitVector* live_in_v = gvn_->GetMirGraph()->GetBasicBlock(id_)->data_flow_info->live_in_v;
DCHECK(live_in_v != nullptr);
for (const auto& entry : src) {
bool live = live_in_v->IsBitSet(gvn_->GetMirGraph()->SRegToVReg(entry.first));
if (live) {
dest->PutBefore(dest_end, entry.first, entry.second);
}
}
}
template <LocalValueNumbering::SregValueMap LocalValueNumbering::* map_ptr>
void LocalValueNumbering::IntersectSregValueMaps() {
DCHECK_GE(gvn_->merge_lvns_.size(), 2u);
// Find the LVN with the least entries in the set.
const LocalValueNumbering* least_entries_lvn = gvn_->merge_lvns_[0];
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if ((lvn->*map_ptr).size() < (least_entries_lvn->*map_ptr).size()) {
least_entries_lvn = lvn;
}
}
// For each key check if it's in all the LVNs.
ArenaBitVector* live_in_v = gvn_->GetMirGraph()->GetBasicBlock(id_)->data_flow_info->live_in_v;
DCHECK(live_in_v != nullptr);
for (const auto& entry : least_entries_lvn->*map_ptr) {
bool live_and_same = live_in_v->IsBitSet(gvn_->GetMirGraph()->SRegToVReg(entry.first));
if (live_and_same) {
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if (lvn != least_entries_lvn) {
auto it = (lvn->*map_ptr).find(entry.first);
if (it == (lvn->*map_ptr).end() || !(it->second == entry.second)) {
live_and_same = false;
break;
}
}
}
}
if (live_and_same) {
(this->*map_ptr).PutBefore((this->*map_ptr).end(), entry.first, entry.second);
}
}
}
// Intersect maps as sets. The value type must be equality-comparable.
template <typename Map>
void LocalValueNumbering::InPlaceIntersectMaps(Map* work_map, const Map& other_map) {
auto work_it = work_map->begin(), work_end = work_map->end();
auto cmp = work_map->value_comp();
for (const auto& entry : other_map) {
while (work_it != work_end &&
(cmp(*work_it, entry) ||
(!cmp(entry, *work_it) && !(work_it->second == entry.second)))) {
work_it = work_map->erase(work_it);
}
if (work_it == work_end) {
return;
}
++work_it;
}
}
template <typename Set, Set LocalValueNumbering::*set_ptr, void (LocalValueNumbering::*MergeFn)(
const typename Set::value_type& entry, typename Set::iterator hint)>
void LocalValueNumbering::MergeSets() {
auto cmp = (this->*set_ptr).value_comp();
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
auto my_it = (this->*set_ptr).begin(), my_end = (this->*set_ptr).end();
for (const auto& entry : lvn->*set_ptr) {
while (my_it != my_end && cmp(*my_it, entry)) {
++my_it;
}
if (my_it != my_end && !cmp(entry, *my_it)) {
// Already handled.
++my_it;
} else {
// Merge values for this field_id.
(this->*MergeFn)(entry, my_it); // my_it remains valid across inserts to std::set/SafeMap.
}
}
}
}
void LocalValueNumbering::IntersectAliasingValueLocations(AliasingValues* work_values,
const AliasingValues* values) {
auto cmp = work_values->load_value_map.key_comp();
auto work_it = work_values->load_value_map.begin(), work_end = work_values->load_value_map.end();
auto store_it = values->store_loc_set.begin(), store_end = values->store_loc_set.end();
auto load_it = values->load_value_map.begin(), load_end = values->load_value_map.end();
while (store_it != store_end || load_it != load_end) {
uint16_t loc;
if (store_it != store_end && (load_it == load_end || *store_it < load_it->first)) {
loc = *store_it;
++store_it;
} else {
loc = load_it->first;
++load_it;
DCHECK(store_it == store_end || cmp(loc, *store_it));
}
while (work_it != work_end && cmp(work_it->first, loc)) {
work_it = work_values->load_value_map.erase(work_it);
}
if (work_it != work_end && !cmp(loc, work_it->first)) {
// The location matches, keep it.
++work_it;
}
}
while (work_it != work_end) {
work_it = work_values->load_value_map.erase(work_it);
}
}
void LocalValueNumbering::MergeEscapedRefs(const ValueNameSet::value_type& entry,
ValueNameSet::iterator hint) {
// See if the ref is either escaped or non-aliasing in each predecessor.
bool is_escaped = true;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if (lvn->non_aliasing_refs_.count(entry) == 0u &&
lvn->escaped_refs_.count(entry) == 0u) {
is_escaped = false;
break;
}
}
if (is_escaped) {
escaped_refs_.emplace_hint(hint, entry);
}
}
void LocalValueNumbering::MergeEscapedIFieldTypeClobberSets(
const EscapedIFieldClobberSet::value_type& entry, EscapedIFieldClobberSet::iterator hint) {
// Insert only type-clobber entries (field_id == kNoValue) of escaped refs.
if (entry.field_id == kNoValue && escaped_refs_.count(entry.base) != 0u) {
escaped_ifield_clobber_set_.emplace_hint(hint, entry);
}
}
void LocalValueNumbering::MergeEscapedIFieldClobberSets(
const EscapedIFieldClobberSet::value_type& entry, EscapedIFieldClobberSet::iterator hint) {
// Insert only those entries of escaped refs that are not overridden by a type clobber.
if (!(hint == escaped_ifield_clobber_set_.end() &&
hint->base == entry.base && hint->type == entry.type) &&
escaped_refs_.count(entry.base) != 0u) {
escaped_ifield_clobber_set_.emplace_hint(hint, entry);
}
}
void LocalValueNumbering::MergeEscapedArrayClobberSets(
const EscapedArrayClobberSet::value_type& entry, EscapedArrayClobberSet::iterator hint) {
if (escaped_refs_.count(entry.base) != 0u) {
escaped_array_clobber_set_.emplace_hint(hint, entry);
}
}
void LocalValueNumbering::MergeNullChecked() {
DCHECK_GE(gvn_->merge_lvns_.size(), 2u);
// Find the LVN with the least entries in the set.
const LocalValueNumbering* least_entries_lvn = gvn_->merge_lvns_[0];
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
if (lvn->null_checked_.size() < least_entries_lvn->null_checked_.size()) {
least_entries_lvn = lvn;
}
}
// For each null-checked value name check if it's null-checked in all the LVNs.
for (const auto& value_name : least_entries_lvn->null_checked_) {
// Merge null_checked_ for this ref.
merge_names_.clear();
merge_names_.resize(gvn_->merge_lvns_.size(), value_name);
if (gvn_->NullCheckedInAllPredecessors(merge_names_)) {
null_checked_.insert(null_checked_.end(), value_name);
}
}
// Now check if the least_entries_lvn has a null-check as the last insn.
const BasicBlock* least_entries_bb = gvn_->GetBasicBlock(least_entries_lvn->Id());
if (gvn_->HasNullCheckLastInsn(least_entries_bb, id_)) {
int s_reg = least_entries_bb->last_mir_insn->ssa_rep->uses[0];
uint32_t value_name = least_entries_lvn->GetSRegValueName(s_reg);
merge_names_.clear();
merge_names_.resize(gvn_->merge_lvns_.size(), value_name);
if (gvn_->NullCheckedInAllPredecessors(merge_names_)) {
null_checked_.insert(value_name);
}
}
}
void LocalValueNumbering::MergeSFieldValues(const SFieldToValueMap::value_type& entry,
SFieldToValueMap::iterator hint) {
uint16_t field_id = entry.first;
merge_names_.clear();
uint16_t value_name = kNoValue;
bool same_values = true;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
// Get the value name as in HandleSGet() but don't modify *lvn.
auto it = lvn->sfield_value_map_.find(field_id);
if (it != lvn->sfield_value_map_.end()) {
value_name = it->second;
} else {
uint16_t type = gvn_->GetFieldType(field_id);
value_name = gvn_->LookupValue(kResolvedSFieldOp, field_id,
lvn->unresolved_sfield_version_[type],
lvn->global_memory_version_);
}
same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back());
merge_names_.push_back(value_name);
}
if (same_values) {
// value_name already contains the result.
} else {
auto lb = merge_map_.lower_bound(merge_names_);
if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) {
value_name = lb->second;
} else {
value_name = gvn_->LookupValue(kMergeBlockSFieldVersionBumpOp, field_id, id_, kNoValue);
merge_map_.PutBefore(lb, merge_names_, value_name);
if (gvn_->NullCheckedInAllPredecessors(merge_names_)) {
null_checked_.insert(value_name);
}
}
}
sfield_value_map_.PutBefore(hint, field_id, value_name);
}
void LocalValueNumbering::MergeNonAliasingIFieldValues(const IFieldLocToValueMap::value_type& entry,
IFieldLocToValueMap::iterator hint) {
uint16_t field_loc = entry.first;
merge_names_.clear();
uint16_t value_name = kNoValue;
bool same_values = true;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
// Get the value name as in HandleIGet() but don't modify *lvn.
auto it = lvn->non_aliasing_ifield_value_map_.find(field_loc);
if (it != lvn->non_aliasing_ifield_value_map_.end()) {
value_name = it->second;
} else {
value_name = gvn_->LookupValue(kNonAliasingIFieldInitialOp, field_loc, kNoValue, kNoValue);
}
same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back());
merge_names_.push_back(value_name);
}
if (same_values) {
// value_name already contains the result.
} else {
auto lb = merge_map_.lower_bound(merge_names_);
if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) {
value_name = lb->second;
} else {
value_name = gvn_->LookupValue(kMergeBlockNonAliasingIFieldVersionBumpOp, field_loc,
id_, kNoValue);
merge_map_.PutBefore(lb, merge_names_, value_name);
if (gvn_->NullCheckedInAllPredecessors(merge_names_)) {
null_checked_.insert(value_name);
}
}
}
non_aliasing_ifield_value_map_.PutBefore(hint, field_loc, value_name);
}
template <typename Map, Map LocalValueNumbering::*map_ptr, typename Versions>
void LocalValueNumbering::MergeAliasingValues(const typename Map::value_type& entry,
typename Map::iterator hint) {
const typename Map::key_type& key = entry.first;
auto it = (this->*map_ptr).PutBefore(hint, key, AliasingValues(this));
AliasingValues* my_values = &it->second;
const AliasingValues* cmp_values = nullptr;
bool same_version = !Versions::HasNewBaseVersion(gvn_, this, key);
uint16_t load_memory_version_for_same_version = kNoValue;
if (same_version) {
// Find the first non-null values.
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
auto it = (lvn->*map_ptr).find(key);
if (it != (lvn->*map_ptr).end()) {
cmp_values = &it->second;
break;
}
}
DCHECK(cmp_values != nullptr); // There must be at least one non-null values.
// Check if we have identical memory versions, i.e. the global memory version, unresolved
// field version and the values' memory_version_before_stores, last_stored_value
// and store_loc_set are identical.
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
auto it = (lvn->*map_ptr).find(key);
if (it == (lvn->*map_ptr).end()) {
if (cmp_values->memory_version_before_stores != kNoValue) {
same_version = false;
break;
}
} else if (cmp_values->last_stored_value != it->second.last_stored_value ||
cmp_values->memory_version_before_stores != it->second.memory_version_before_stores ||
cmp_values->store_loc_set != it->second.store_loc_set) {
same_version = false;
break;
} else if (it->second.last_load_memory_version != kNoValue) {
DCHECK(load_memory_version_for_same_version == kNoValue ||
load_memory_version_for_same_version == it->second.last_load_memory_version);
load_memory_version_for_same_version = it->second.last_load_memory_version;
}
}
}
if (same_version) {
// Copy the identical values.
my_values->memory_version_before_stores = cmp_values->memory_version_before_stores;
my_values->last_stored_value = cmp_values->last_stored_value;
my_values->store_loc_set = cmp_values->store_loc_set;
my_values->last_load_memory_version = load_memory_version_for_same_version;
// Merge load values seen in all incoming arcs (i.e. an intersection).
if (!cmp_values->load_value_map.empty()) {
my_values->load_value_map = cmp_values->load_value_map;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
auto it = (lvn->*map_ptr).find(key);
if (it == (lvn->*map_ptr).end() || it->second.load_value_map.empty()) {
my_values->load_value_map.clear();
break;
}
InPlaceIntersectMaps(&my_values->load_value_map, it->second.load_value_map);
if (my_values->load_value_map.empty()) {
break;
}
}
}
} else {
// Bump version number for the merge.
my_values->memory_version_before_stores = my_values->last_load_memory_version =
Versions::LookupMergeBlockValue(gvn_, id_, key);
// Calculate the locations that have been either read from or written to in each incoming LVN.
bool first_lvn = true;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
auto it = (lvn->*map_ptr).find(key);
if (it == (lvn->*map_ptr).end()) {
my_values->load_value_map.clear();
break;
}
if (first_lvn) {
first_lvn = false;
// Copy the first LVN's locations. Values will be overwritten later.
my_values->load_value_map = it->second.load_value_map;
for (uint16_t location : it->second.store_loc_set) {
my_values->load_value_map.Put(location, 0u);
}
} else {
IntersectAliasingValueLocations(my_values, &it->second);
}
}
// Calculate merged values for the intersection.
for (auto& load_value_entry : my_values->load_value_map) {
uint16_t location = load_value_entry.first;
bool same_values = true;
uint16_t value_name = kNoValue;
merge_names_.clear();
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
value_name = Versions::LookupMergeValue(gvn_, lvn, key, location);
same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back());
merge_names_.push_back(value_name);
}
if (same_values) {
// value_name already contains the result.
} else {
auto lb = merge_map_.lower_bound(merge_names_);
if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) {
value_name = lb->second;
} else {
// NOTE: In addition to the key and id_ which don't change on an LVN recalculation
// during GVN, we also add location which can actually change on recalculation, so the
// value_name below may change. This could lead to an infinite loop if the location
// value name always changed when the refereced value name changes. However, given that
// we assign unique value names for other merges, such as Phis, such a dependency is
// not possible in a well-formed SSA graph.
value_name = Versions::LookupMergeLocationValue(gvn_, id_, key, location);
merge_map_.PutBefore(lb, merge_names_, value_name);
if (gvn_->NullCheckedInAllPredecessors(merge_names_)) {
null_checked_.insert(value_name);
}
}
}
load_value_entry.second = value_name;
}
}
}
void LocalValueNumbering::Merge(MergeType merge_type) {
DCHECK_GE(gvn_->merge_lvns_.size(), 2u);
IntersectSregValueMaps<&LocalValueNumbering::sreg_value_map_>();
IntersectSregValueMaps<&LocalValueNumbering::sreg_wide_value_map_>();
if (merge_type == kReturnMerge) {
// RETURN or PHI+RETURN. We need only sreg value maps.
return;
}
MergeMemoryVersions(merge_type == kCatchMerge);
// Merge non-aliasing maps/sets.
IntersectSets<ValueNameSet, &LocalValueNumbering::non_aliasing_refs_>();
if (!non_aliasing_refs_.empty() && merge_type == kCatchMerge) {
PruneNonAliasingRefsForCatch();
}
if (!non_aliasing_refs_.empty()) {
MergeSets<IFieldLocToValueMap, &LocalValueNumbering::non_aliasing_ifield_value_map_,
&LocalValueNumbering::MergeNonAliasingIFieldValues>();
MergeSets<NonAliasingArrayValuesMap, &LocalValueNumbering::non_aliasing_array_value_map_,
&LocalValueNumbering::MergeAliasingValues<
NonAliasingArrayValuesMap, &LocalValueNumbering::non_aliasing_array_value_map_,
NonAliasingArrayVersions>>();
}
// We won't do anything complicated for range checks, just calculate the intersection.
IntersectSets<RangeCheckSet, &LocalValueNumbering::range_checked_>();
// Merge null_checked_. We may later insert more, such as merged object field values.
MergeNullChecked();
if (merge_type == kCatchMerge) {
// Memory is clobbered. New memory version already created, don't merge aliasing locations.
return;
}
DCHECK(merge_type == kNormalMerge);
// Merge escaped refs and clobber sets.
MergeSets<ValueNameSet, &LocalValueNumbering::escaped_refs_,
&LocalValueNumbering::MergeEscapedRefs>();
if (!escaped_refs_.empty()) {
MergeSets<EscapedIFieldClobberSet, &LocalValueNumbering::escaped_ifield_clobber_set_,
&LocalValueNumbering::MergeEscapedIFieldTypeClobberSets>();
MergeSets<EscapedIFieldClobberSet, &LocalValueNumbering::escaped_ifield_clobber_set_,
&LocalValueNumbering::MergeEscapedIFieldClobberSets>();
MergeSets<EscapedArrayClobberSet, &LocalValueNumbering::escaped_array_clobber_set_,
&LocalValueNumbering::MergeEscapedArrayClobberSets>();
}
MergeSets<SFieldToValueMap, &LocalValueNumbering::sfield_value_map_,
&LocalValueNumbering::MergeSFieldValues>();
MergeSets<AliasingIFieldValuesMap, &LocalValueNumbering::aliasing_ifield_value_map_,
&LocalValueNumbering::MergeAliasingValues<
AliasingIFieldValuesMap, &LocalValueNumbering::aliasing_ifield_value_map_,
AliasingIFieldVersions>>();
MergeSets<AliasingArrayValuesMap, &LocalValueNumbering::aliasing_array_value_map_,
&LocalValueNumbering::MergeAliasingValues<
AliasingArrayValuesMap, &LocalValueNumbering::aliasing_array_value_map_,
AliasingArrayVersions>>();
}
uint16_t LocalValueNumbering::MarkNonAliasingNonNull(MIR* mir) {
uint16_t res = GetOperandValue(mir->ssa_rep->defs[0]);
DCHECK(null_checked_.find(res) == null_checked_.end());
null_checked_.insert(res);
non_aliasing_refs_.insert(res);
return res;
}
bool LocalValueNumbering::IsNonAliasing(uint16_t reg) const {
return non_aliasing_refs_.find(reg) != non_aliasing_refs_.end();
}
bool LocalValueNumbering::IsNonAliasingIField(uint16_t reg, uint16_t field_id,
uint16_t type) const {
if (IsNonAliasing(reg)) {
return true;
}
if (escaped_refs_.find(reg) == escaped_refs_.end()) {
return false;
}
// Check for IPUTs to unresolved fields.
EscapedIFieldClobberKey key1 = { reg, type, kNoValue };
if (escaped_ifield_clobber_set_.find(key1) != escaped_ifield_clobber_set_.end()) {
return false;
}
// Check for aliased IPUTs to the same field.
EscapedIFieldClobberKey key2 = { reg, type, field_id };
return escaped_ifield_clobber_set_.find(key2) == escaped_ifield_clobber_set_.end();
}
bool LocalValueNumbering::IsNonAliasingArray(uint16_t reg, uint16_t type) const {
if (IsNonAliasing(reg)) {
return true;
}
if (escaped_refs_.count(reg) == 0u) {
return false;
}
// Check for aliased APUTs.
EscapedArrayClobberKey key = { reg, type };
return escaped_array_clobber_set_.find(key) == escaped_array_clobber_set_.end();
}
void LocalValueNumbering::HandleNullCheck(MIR* mir, uint16_t reg) {
auto lb = null_checked_.lower_bound(reg);
if (lb != null_checked_.end() && *lb == reg) {
if (LIKELY(gvn_->CanModify())) {
if (gvn_->GetCompilationUnit()->verbose) {
LOG(INFO) << "Removing null check for 0x" << std::hex << mir->offset;
}
mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
}
} else {
null_checked_.insert(lb, reg);
}
}
void LocalValueNumbering::HandleRangeCheck(MIR* mir, uint16_t array, uint16_t index) {
RangeCheckKey key = { array, index };
auto lb = range_checked_.lower_bound(key);
if (lb != range_checked_.end() && !RangeCheckKeyComparator()(key, *lb)) {
if (LIKELY(gvn_->CanModify())) {
if (gvn_->GetCompilationUnit()->verbose) {
LOG(INFO) << "Removing range check for 0x" << std::hex << mir->offset;
}
mir->optimization_flags |= MIR_IGNORE_RANGE_CHECK;
}
} else {
// Mark range check completed.
range_checked_.insert(lb, key);
}
}
void LocalValueNumbering::HandlePutObject(MIR* mir) {
// If we're storing a non-aliasing reference, stop tracking it as non-aliasing now.
uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]);
HandleEscapingRef(base);
}
void LocalValueNumbering::HandleEscapingRef(uint16_t base) {
auto it = non_aliasing_refs_.find(base);
if (it != non_aliasing_refs_.end()) {
non_aliasing_refs_.erase(it);
escaped_refs_.insert(base);
}
}
uint16_t LocalValueNumbering::HandlePhi(MIR* mir) {
if (gvn_->merge_lvns_.empty()) {
// Running LVN without a full GVN?
return kNoValue;
}
int16_t num_uses = mir->ssa_rep->num_uses;
int32_t* uses = mir->ssa_rep->uses;
// Try to find out if this is merging wide regs.
if (mir->ssa_rep->defs[0] != 0 &&
sreg_wide_value_map_.count(mir->ssa_rep->defs[0] - 1) != 0u) {
// This is the high part of a wide reg. Ignore the Phi.
return kNoValue;
}
bool wide = false;
for (int16_t i = 0; i != num_uses; ++i) {
if (sreg_wide_value_map_.count(uses[i]) != 0u) {
wide = true;
break;
}
}
// Iterate over *merge_lvns_ and skip incoming sregs for BBs without associated LVN.
uint16_t value_name = kNoValue;
merge_names_.clear();
BasicBlockId* incoming = mir->meta.phi_incoming;
int16_t pos = 0;
bool same_values = true;
for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) {
DCHECK_LT(pos, mir->ssa_rep->num_uses);
while (incoming[pos] != lvn->Id()) {
++pos;
DCHECK_LT(pos, mir->ssa_rep->num_uses);
}
int s_reg = uses[pos];
++pos;
value_name = wide ? lvn->GetOperandValueWide(s_reg) : lvn->GetOperandValue(s_reg);
same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back());
merge_names_.push_back(value_name);
}
if (same_values) {
// value_name already contains the result.
} else {
auto lb = merge_map_.lower_bound(merge_names_);
if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) {
value_name = lb->second;
} else {
value_name = gvn_->LookupValue(kNoValue, mir->ssa_rep->defs[0], kNoValue, kNoValue);
merge_map_.PutBefore(lb, merge_names_, value_name);
if (!wide && gvn_->NullCheckedInAllPredecessors(merge_names_)) {
null_checked_.insert(value_name);
}
}
}
if (wide) {
SetOperandValueWide(mir->ssa_rep->defs[0], value_name);
} else {
SetOperandValue(mir->ssa_rep->defs[0], value_name);
}
return value_name;
}
uint16_t LocalValueNumbering::HandleAGet(MIR* mir, uint16_t opcode) {
// uint16_t type = opcode - Instruction::AGET;
uint16_t array = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, array);
uint16_t index = GetOperandValue(mir->ssa_rep->uses[1]);
HandleRangeCheck(mir, array, index);
uint16_t type = opcode - Instruction::AGET;
// Establish value number for loaded register.
uint16_t res;
if (IsNonAliasingArray(array, type)) {
res = HandleAliasingValuesGet<NonAliasingArrayVersions>(&non_aliasing_array_value_map_,
array, index);
} else {
uint16_t location = gvn_->GetArrayLocation(array, index);
res = HandleAliasingValuesGet<AliasingArrayVersions>(&aliasing_array_value_map_,
type, location);
}
if (opcode == Instruction::AGET_WIDE) {
SetOperandValueWide(mir->ssa_rep->defs[0], res);
} else {
SetOperandValue(mir->ssa_rep->defs[0], res);
}
return res;
}
void LocalValueNumbering::HandleAPut(MIR* mir, uint16_t opcode) {
int array_idx = (opcode == Instruction::APUT_WIDE) ? 2 : 1;
int index_idx = array_idx + 1;
uint16_t array = GetOperandValue(mir->ssa_rep->uses[array_idx]);
HandleNullCheck(mir, array);
uint16_t index = GetOperandValue(mir->ssa_rep->uses[index_idx]);
HandleRangeCheck(mir, array, index);
uint16_t type = opcode - Instruction::APUT;
uint16_t value = (opcode == Instruction::APUT_WIDE)
? GetOperandValueWide(mir->ssa_rep->uses[0])
: GetOperandValue(mir->ssa_rep->uses[0]);
if (IsNonAliasing(array)) {
bool put_is_live = HandleAliasingValuesPut<NonAliasingArrayVersions>(
&non_aliasing_array_value_map_, array, index, value);
if (!put_is_live) {
// This APUT can be eliminated, it stores the same value that's already in the field.
// TODO: Eliminate the APUT.
return;
}
} else {
uint16_t location = gvn_->GetArrayLocation(array, index);
bool put_is_live = HandleAliasingValuesPut<AliasingArrayVersions>(
&aliasing_array_value_map_, type, location, value);
if (!put_is_live) {
// This APUT can be eliminated, it stores the same value that's already in the field.
// TODO: Eliminate the APUT.
return;
}
// Clobber all escaped array refs for this type.
for (uint16_t escaped_array : escaped_refs_) {
EscapedArrayClobberKey clobber_key = { escaped_array, type };
escaped_array_clobber_set_.insert(clobber_key);
}
}
}
uint16_t LocalValueNumbering::HandleIGet(MIR* mir, uint16_t opcode) {
uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, base);
const MirFieldInfo& field_info = gvn_->GetMirGraph()->GetIFieldLoweringInfo(mir);
uint16_t res;
if (!field_info.IsResolved() || field_info.IsVolatile()) {
// Volatile fields always get a new memory version; field id is irrelevant.
// Unresolved fields may be volatile, so handle them as such to be safe.
// Use result s_reg - will be unique.
res = gvn_->LookupValue(kNoValue, mir->ssa_rep->defs[0], kNoValue, kNoValue);
} else {
uint16_t type = opcode - Instruction::IGET;
uint16_t field_id = gvn_->GetFieldId(field_info, type);
if (IsNonAliasingIField(base, field_id, type)) {
uint16_t loc = gvn_->LookupValue(kNonAliasingIFieldLocOp, base, field_id, type);
auto lb = non_aliasing_ifield_value_map_.lower_bound(loc);
if (lb != non_aliasing_ifield_value_map_.end() && lb->first == loc) {
res = lb->second;
} else {
res = gvn_->LookupValue(kNonAliasingIFieldInitialOp, loc, kNoValue, kNoValue);
non_aliasing_ifield_value_map_.PutBefore(lb, loc, res);
}
} else {
res = HandleAliasingValuesGet<AliasingIFieldVersions>(&aliasing_ifield_value_map_,
field_id, base);
}
}
if (opcode == Instruction::IGET_WIDE) {
SetOperandValueWide(mir->ssa_rep->defs[0], res);
} else {
SetOperandValue(mir->ssa_rep->defs[0], res);
}
return res;
}
void LocalValueNumbering::HandleIPut(MIR* mir, uint16_t opcode) {
uint16_t type = opcode - Instruction::IPUT;
int base_reg = (opcode == Instruction::IPUT_WIDE) ? 2 : 1;
uint16_t base = GetOperandValue(mir->ssa_rep->uses[base_reg]);
HandleNullCheck(mir, base);
const MirFieldInfo& field_info = gvn_->GetMirGraph()->GetIFieldLoweringInfo(mir);
if (!field_info.IsResolved()) {
// Unresolved fields always alias with everything of the same type.
// Use mir->offset as modifier; without elaborate inlining, it will be unique.
unresolved_ifield_version_[type] =
gvn_->LookupValue(kUnresolvedIFieldOp, kNoValue, kNoValue, mir->offset);
// For simplicity, treat base as escaped now.
HandleEscapingRef(base);
// Clobber all fields of escaped references of the same type.
for (uint16_t escaped_ref : escaped_refs_) {
EscapedIFieldClobberKey clobber_key = { escaped_ref, type, kNoValue };
escaped_ifield_clobber_set_.insert(clobber_key);
}
// Aliasing fields of the same type may have been overwritten.
auto it = aliasing_ifield_value_map_.begin(), end = aliasing_ifield_value_map_.end();
while (it != end) {
if (gvn_->GetFieldType(it->first) != type) {
++it;
} else {
it = aliasing_ifield_value_map_.erase(it);
}
}
} else if (field_info.IsVolatile()) {
// Nothing to do, resolved volatile fields always get a new memory version anyway and
// can't alias with resolved non-volatile fields.
} else {
uint16_t field_id = gvn_->GetFieldId(field_info, type);
uint16_t value = (opcode == Instruction::IPUT_WIDE)
? GetOperandValueWide(mir->ssa_rep->uses[0])
: GetOperandValue(mir->ssa_rep->uses[0]);
if (IsNonAliasing(base)) {
uint16_t loc = gvn_->LookupValue(kNonAliasingIFieldLocOp, base, field_id, type);
auto lb = non_aliasing_ifield_value_map_.lower_bound(loc);
if (lb != non_aliasing_ifield_value_map_.end() && lb->first == loc) {
if (lb->second == value) {
// This IPUT can be eliminated, it stores the same value that's already in the field.
// TODO: Eliminate the IPUT.
return;
}
lb->second = value; // Overwrite.
} else {
non_aliasing_ifield_value_map_.PutBefore(lb, loc, value);
}
} else {
bool put_is_live = HandleAliasingValuesPut<AliasingIFieldVersions>(
&aliasing_ifield_value_map_, field_id, base, value);
if (!put_is_live) {
// This IPUT can be eliminated, it stores the same value that's already in the field.
// TODO: Eliminate the IPUT.
return;
}
// Clobber all fields of escaped references for this field.
for (uint16_t escaped_ref : escaped_refs_) {
EscapedIFieldClobberKey clobber_key = { escaped_ref, type, field_id };
escaped_ifield_clobber_set_.insert(clobber_key);
}
}
}
}
uint16_t LocalValueNumbering::HandleSGet(MIR* mir, uint16_t opcode) {
const MirSFieldLoweringInfo& field_info = gvn_->GetMirGraph()->GetSFieldLoweringInfo(mir);
if (!field_info.IsInitialized() && (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
// Class initialization can call arbitrary functions, we need to wipe aliasing values.
HandleInvokeOrClInit(mir);
}
uint16_t res;
if (!field_info.IsResolved() || field_info.IsVolatile()) {
// Volatile fields always get a new memory version; field id is irrelevant.
// Unresolved fields may be volatile, so handle them as such to be safe.
// Use result s_reg - will be unique.
res = gvn_->LookupValue(kNoValue, mir->ssa_rep->defs[0], kNoValue, kNoValue);
} else {
uint16_t type = opcode - Instruction::SGET;
uint16_t field_id = gvn_->GetFieldId(field_info, type);
auto lb = sfield_value_map_.lower_bound(field_id);
if (lb != sfield_value_map_.end() && lb->first == field_id) {
res = lb->second;
} else {
// Resolved non-volatile static fields can alias with non-resolved fields of the same type,
// so we need to use unresolved_sfield_version_[type] in addition to global_memory_version_
// to determine the version of the field.
res = gvn_->LookupValue(kResolvedSFieldOp, field_id,
unresolved_sfield_version_[type], global_memory_version_);
sfield_value_map_.PutBefore(lb, field_id, res);
}
}
if (opcode == Instruction::SGET_WIDE) {
SetOperandValueWide(mir->ssa_rep->defs[0], res);
} else {
SetOperandValue(mir->ssa_rep->defs[0], res);
}
return res;
}
void LocalValueNumbering::HandleSPut(MIR* mir, uint16_t opcode) {
const MirSFieldLoweringInfo& field_info = gvn_->GetMirGraph()->GetSFieldLoweringInfo(mir);
if (!field_info.IsInitialized() && (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
// Class initialization can call arbitrary functions, we need to wipe aliasing values.
HandleInvokeOrClInit(mir);
}
uint16_t type = opcode - Instruction::SPUT;
if (!field_info.IsResolved()) {
// Unresolved fields always alias with everything of the same type.
// Use mir->offset as modifier; without elaborate inlining, it will be unique.
unresolved_sfield_version_[type] =
gvn_->LookupValue(kUnresolvedSFieldOp, kNoValue, kNoValue, mir->offset);
RemoveSFieldsForType(type);
} else if (field_info.IsVolatile()) {
// Nothing to do, resolved volatile fields always get a new memory version anyway and
// can't alias with resolved non-volatile fields.
} else {
uint16_t field_id = gvn_->GetFieldId(field_info, type);
uint16_t value = (opcode == Instruction::SPUT_WIDE)
? GetOperandValueWide(mir->ssa_rep->uses[0])
: GetOperandValue(mir->ssa_rep->uses[0]);
// Resolved non-volatile static fields can alias with non-resolved fields of the same type,
// so we need to use unresolved_sfield_version_[type] in addition to global_memory_version_
// to determine the version of the field.
auto lb = sfield_value_map_.lower_bound(field_id);
if (lb != sfield_value_map_.end() && lb->first == field_id) {
if (lb->second == value) {
// This SPUT can be eliminated, it stores the same value that's already in the field.
// TODO: Eliminate the SPUT.
return;
}
lb->second = value; // Overwrite.
} else {
sfield_value_map_.PutBefore(lb, field_id, value);
}
}
}
void LocalValueNumbering::RemoveSFieldsForType(uint16_t type) {
// Erase all static fields of this type from the sfield_value_map_.
for (auto it = sfield_value_map_.begin(), end = sfield_value_map_.end(); it != end; ) {
if (gvn_->GetFieldType(it->first) == type) {
it = sfield_value_map_.erase(it);
} else {
++it;
}
}
}
void LocalValueNumbering::HandleInvokeOrClInit(MIR* mir) {
// Use mir->offset as modifier; without elaborate inlining, it will be unique.
global_memory_version_ =
gvn_->LookupValue(kInvokeMemoryVersionBumpOp, 0u, 0u, mir->offset);
// All static fields and instance fields and array elements of aliasing references,
// including escaped references, may have been modified.
sfield_value_map_.clear();
aliasing_ifield_value_map_.clear();
aliasing_array_value_map_.clear();
escaped_refs_.clear();
escaped_ifield_clobber_set_.clear();
escaped_array_clobber_set_.clear();
}
uint16_t LocalValueNumbering::GetValueNumber(MIR* mir) {
uint16_t res = kNoValue;
uint16_t opcode = mir->dalvikInsn.opcode;
switch (opcode) {
case Instruction::NOP:
case Instruction::RETURN_VOID:
case Instruction::RETURN:
case Instruction::RETURN_OBJECT:
case Instruction::RETURN_WIDE:
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
case Instruction::CHECK_CAST:
case Instruction::THROW:
case Instruction::FILL_ARRAY_DATA:
case Instruction::PACKED_SWITCH:
case Instruction::SPARSE_SWITCH:
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE:
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ:
case kMirOpFusedCmplFloat:
case kMirOpFusedCmpgFloat:
case kMirOpFusedCmplDouble:
case kMirOpFusedCmpgDouble:
case kMirOpFusedCmpLong:
// Nothing defined - take no action.
break;
case Instruction::MONITOR_ENTER:
HandleNullCheck(mir, GetOperandValue(mir->ssa_rep->uses[0]));
// NOTE: Keeping all aliasing values intact. Programs that rely on loads/stores of the
// same non-volatile locations outside and inside a synchronized block being different
// contain races that we cannot fix.
break;
case Instruction::MONITOR_EXIT:
HandleNullCheck(mir, GetOperandValue(mir->ssa_rep->uses[0]));
// If we're running GVN and CanModify(), uneliminated null check indicates bytecode error.
if ((gvn_->GetCompilationUnit()->disable_opt & (1u << kGlobalValueNumbering)) == 0u &&
gvn_->CanModify() && (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0) {
LOG(WARNING) << "Bytecode error: MONITOR_EXIT is still null checked at 0x" << std::hex
<< mir->offset << " in " << PrettyMethod(gvn_->cu_->method_idx, *gvn_->cu_->dex_file);
}
break;
case Instruction::FILLED_NEW_ARRAY:
case Instruction::FILLED_NEW_ARRAY_RANGE:
// Nothing defined but the result will be unique and non-null.
if (mir->next != nullptr && mir->next->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
uint16_t array = MarkNonAliasingNonNull(mir->next);
// Do not SetOperandValue(), we'll do that when we process the MOVE_RESULT_OBJECT.
if (kLocalValueNumberingEnableFilledNewArrayTracking && mir->ssa_rep->num_uses != 0u) {
AliasingValues* values = GetAliasingValues(&non_aliasing_array_value_map_, array);
// Clear the value if we got a merged version in a loop.
*values = AliasingValues(this);
for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) {
DCHECK_EQ(High16Bits(i), 0u);
uint16_t index = gvn_->LookupValue(Instruction::CONST, i, 0u, 0);
uint16_t value = GetOperandValue(mir->ssa_rep->uses[i]);
values->load_value_map.Put(index, value);
RangeCheckKey key = { array, index };
range_checked_.insert(key);
}
}
// The MOVE_RESULT_OBJECT will be processed next and we'll return the value name then.
}
// All args escaped (if references).
for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) {
uint16_t reg = GetOperandValue(mir->ssa_rep->uses[i]);
HandleEscapingRef(reg);
}
break;
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_DIRECT_RANGE:
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_RANGE:
case Instruction::INVOKE_SUPER:
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_INTERFACE_RANGE: {
// Nothing defined but handle the null check.
uint16_t reg = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, reg);
}
// Intentional fall-through.
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_STATIC_RANGE:
if ((mir->optimization_flags & MIR_INLINED) == 0) {
// Make ref args aliasing.
for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) {
uint16_t reg = GetOperandValue(mir->ssa_rep->uses[i]);
non_aliasing_refs_.erase(reg);
}
HandleInvokeOrClInit(mir);
}
break;
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_OBJECT:
case Instruction::INSTANCE_OF:
// 1 result, treat as unique each time, use result s_reg - will be unique.
res = GetOperandValue(mir->ssa_rep->defs[0]);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::MOVE_EXCEPTION:
case Instruction::NEW_INSTANCE:
case Instruction::CONST_CLASS:
case Instruction::NEW_ARRAY:
// 1 result, treat as unique each time, use result s_reg - will be unique.
res = MarkNonAliasingNonNull(mir);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
// These strings are internalized, so assign value based on the string pool index.
res = gvn_->LookupValue(Instruction::CONST_STRING, Low16Bits(mir->dalvikInsn.vB),
High16Bits(mir->dalvikInsn.vB), 0);
SetOperandValue(mir->ssa_rep->defs[0], res);
null_checked_.insert(res); // May already be there.
// NOTE: Hacking the contents of an internalized string via reflection is possible
// but the behavior is undefined. Therefore, we consider the string constant and
// the reference non-aliasing.
// TUNING: We could keep this property even if the reference "escapes".
non_aliasing_refs_.insert(res); // May already be there.
break;
case Instruction::MOVE_RESULT_WIDE:
// 1 wide result, treat as unique each time, use result s_reg - will be unique.
res = GetOperandValueWide(mir->ssa_rep->defs[0]);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
break;
case kMirOpPhi:
res = HandlePhi(mir);
break;
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_OBJECT_FROM16:
case kMirOpCopy:
// Just copy value number of source to value number of result.
res = GetOperandValue(mir->ssa_rep->uses[0]);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_WIDE_FROM16:
// Just copy value number of source to value number of result.
res = GetOperandValueWide(mir->ssa_rep->uses[0]);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
res = gvn_->LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB),
High16Bits(mir->dalvikInsn.vB), 0);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST_HIGH16:
res = gvn_->LookupValue(Instruction::CONST, 0, mir->dalvikInsn.vB, 0);
SetOperandValue(mir->ssa_rep->defs[0], res);
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32: {
uint16_t low_res = gvn_->LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB),
High16Bits(mir->dalvikInsn.vB >> 16), 1);
uint16_t high_res;
if (mir->dalvikInsn.vB & 0x80000000) {
high_res = gvn_->LookupValue(Instruction::CONST, 0xffff, 0xffff, 2);
} else {
high_res = gvn_->LookupValue(Instruction::CONST, 0, 0, 2);
}
res = gvn_->LookupValue(Instruction::CONST, low_res, high_res, 3);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CONST_WIDE: {
uint32_t low_word = Low32Bits(mir->dalvikInsn.vB_wide);
uint32_t high_word = High32Bits(mir->dalvikInsn.vB_wide);
uint16_t low_res = gvn_->LookupValue(Instruction::CONST, Low16Bits(low_word),
High16Bits(low_word), 1);
uint16_t high_res = gvn_->LookupValue(Instruction::CONST, Low16Bits(high_word),
High16Bits(high_word), 2);
res = gvn_->LookupValue(Instruction::CONST, low_res, high_res, 3);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CONST_WIDE_HIGH16: {
uint16_t low_res = gvn_->LookupValue(Instruction::CONST, 0, 0, 1);
uint16_t high_res = gvn_->LookupValue(Instruction::CONST, 0,
Low16Bits(mir->dalvikInsn.vB), 2);
res = gvn_->LookupValue(Instruction::CONST, low_res, high_res, 3);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::ARRAY_LENGTH: {
// Handle the null check.
uint16_t reg = GetOperandValue(mir->ssa_rep->uses[0]);
HandleNullCheck(mir, reg);
}
// Intentional fall-through.
case Instruction::NEG_INT:
case Instruction::NOT_INT:
case Instruction::NEG_FLOAT:
case Instruction::INT_TO_BYTE:
case Instruction::INT_TO_SHORT:
case Instruction::INT_TO_CHAR:
case Instruction::INT_TO_FLOAT:
case Instruction::FLOAT_TO_INT: {
// res = op + 1 operand
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::LONG_TO_FLOAT:
case Instruction::LONG_TO_INT:
case Instruction::DOUBLE_TO_FLOAT:
case Instruction::DOUBLE_TO_INT: {
// res = op + 1 wide operand
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::DOUBLE_TO_LONG:
case Instruction::LONG_TO_DOUBLE:
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
case Instruction::NEG_DOUBLE: {
// wide res = op + 1 wide operand
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::FLOAT_TO_DOUBLE:
case Instruction::FLOAT_TO_LONG:
case Instruction::INT_TO_DOUBLE:
case Instruction::INT_TO_LONG: {
// wide res = op + 1 operand
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
case Instruction::CMP_LONG: {
// res = op + 2 wide operands
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::CMPG_FLOAT:
case Instruction::CMPL_FLOAT:
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR: {
// res = op + 2 operands
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]);
res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::MUL_LONG:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::MUL_LONG_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR: {
// wide res = op + 2 wide operands
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]);
res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR: {
// wide res = op + 1 wide operand + 1 operand
uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[2]);
res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue);
SetOperandValueWide(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR: {
// res = op + 2 operands
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]);
res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::RSUB_INT:
case Instruction::ADD_INT_LIT16:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT_LIT16:
case Instruction::AND_INT_LIT16:
case Instruction::OR_INT_LIT16:
case Instruction::XOR_INT_LIT16:
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT8:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT8:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8: {
// Same as res = op + 2 operands, except use vC as operand 2
uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]);
uint16_t operand2 = gvn_->LookupValue(Instruction::CONST, mir->dalvikInsn.vC, 0, 0);
res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue);
SetOperandValue(mir->ssa_rep->defs[0], res);
}
break;
case Instruction::AGET_OBJECT:
case Instruction::AGET:
case Instruction::AGET_WIDE:
case Instruction::AGET_BOOLEAN:
case Instruction::AGET_BYTE:
case Instruction::AGET_CHAR:
case Instruction::AGET_SHORT:
res = HandleAGet(mir, opcode);
break;
case Instruction::APUT_OBJECT:
HandlePutObject(mir);
// Intentional fall-through.
case Instruction::APUT:
case Instruction::APUT_WIDE:
case Instruction::APUT_BYTE:
case Instruction::APUT_BOOLEAN:
case Instruction::APUT_SHORT:
case Instruction::APUT_CHAR:
HandleAPut(mir, opcode);
break;
case Instruction::IGET_OBJECT:
case Instruction::IGET:
case Instruction::IGET_WIDE:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT:
res = HandleIGet(mir, opcode);
break;
case Instruction::IPUT_OBJECT:
HandlePutObject(mir);
// Intentional fall-through.
case Instruction::IPUT:
case Instruction::IPUT_WIDE:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT:
HandleIPut(mir, opcode);
break;
case Instruction::SGET_OBJECT:
case Instruction::SGET:
case Instruction::SGET_WIDE:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT:
res = HandleSGet(mir, opcode);
break;
case Instruction::SPUT_OBJECT:
HandlePutObject(mir);
// Intentional fall-through.
case Instruction::SPUT:
case Instruction::SPUT_WIDE:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT:
HandleSPut(mir, opcode);
break;
}
return res;
}
} // namespace art