blob: fe6154792c96c57817be987f9f615a9e9bd675a9 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "interpreter_common.h"
#include <cmath>
#include "base/casts.h"
#include "base/enums.h"
#include "class_root.h"
#include "debugger.h"
#include "dex/dex_file_types.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "intrinsics_enum.h"
#include "jit/jit.h"
#include "jvalue-inl.h"
#include "method_handles-inl.h"
#include "method_handles.h"
#include "mirror/array-alloc-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class.h"
#include "mirror/emulated_stack_frame.h"
#include "mirror/method_handle_impl-inl.h"
#include "mirror/object_array-alloc-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/var_handle.h"
#include "reflection-inl.h"
#include "reflection.h"
#include "shadow_frame-inl.h"
#include "stack.h"
#include "thread-inl.h"
#include "transaction.h"
#include "var_handles.h"
#include "well_known_classes.h"
namespace art {
namespace interpreter {
void ThrowNullPointerExceptionFromInterpreter() {
ThrowNullPointerExceptionFromDexPC();
}
bool CheckStackOverflow(Thread* self, size_t frame_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
uint8_t* stack_end = self->GetStackEndForInterpreter(implicit_check);
if (UNLIKELY(__builtin_frame_address(0) < stack_end + frame_size)) {
ThrowStackOverflowError(self);
return false;
}
return true;
}
bool UseFastInterpreterToInterpreterInvoke(ArtMethod* method) {
Runtime* runtime = Runtime::Current();
const void* quick_code = method->GetEntryPointFromQuickCompiledCode();
if (!runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
return false;
}
if (!method->SkipAccessChecks() || method->IsNative() || method->IsProxyMethod()) {
return false;
}
if (method->IsIntrinsic()) {
return false;
}
if (method->GetDeclaringClass()->IsStringClass() && method->IsConstructor()) {
return false;
}
if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) {
return false;
}
ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() != nullptr)) {
return false;
}
return true;
}
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) {
const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f =
FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
if (transaction_active) {
if (Runtime::Current()->GetTransaction()->ReadConstraint(obj.Ptr(), f)) {
Runtime::Current()->AbortTransactionAndThrowAbortError(self, "Can't read static fields of "
+ obj->PrettyTypeOf() + " since it does not belong to clinit's class.");
return false;
}
}
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, true);
return false;
}
}
JValue result;
if (UNLIKELY(!DoFieldGetCommon<field_type>(self, shadow_frame, obj, f, &result))) {
// Instrumentation threw an error!
CHECK(self->IsExceptionPending());
return false;
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, result.GetZ());
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, result.GetB());
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, result.GetC());
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, result.GetS());
break;
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, result.GetI());
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, result.GetJ());
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, result.GetL());
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoFieldGet functions.
#define EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \
template bool DoFieldGet<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data)
#define EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(_find_type, _field_type) \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false, true); \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false, false); \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true, true); \
EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true, false);
// iget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstanceObjectRead, Primitive::kPrimNot)
// sget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticObjectRead, Primitive::kPrimNot)
#undef EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL
// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
// Report this field access to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
// Save obj in case the instrumentation event has thread suspension.
HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj);
instrumentation->FieldReadEvent(self,
obj.Ptr(),
shadow_frame.GetMethod(),
shadow_frame.GetDexPC(),
f);
if (UNLIKELY(self->IsExceptionPending())) {
return false;
}
}
// Note: iget-x-quick instructions are only for non-volatile fields.
const uint32_t vregA = inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset)));
break;
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldBoolean(field_offset)));
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldByte(field_offset)));
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldChar(field_offset)));
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldShort(field_offset)));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset)));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoIGetQuick functions.
#define EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(_field_type) \
template bool DoIGetQuick<_field_type>(ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data)
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimInt); // iget-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimBoolean); // iget-boolean-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimByte); // iget-byte-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimChar); // iget-char-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimShort); // iget-short-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimLong); // iget-wide-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimNot); // iget-object-quick.
#undef EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL
template<Primitive::Type field_type>
static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg)
REQUIRES_SHARED(Locks::mutator_lock_) {
JValue field_value;
switch (field_type) {
case Primitive::kPrimBoolean:
field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimByte:
field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimChar:
field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimShort:
field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimInt:
field_value.SetI(shadow_frame.GetVReg(vreg));
break;
case Primitive::kPrimLong:
field_value.SetJ(shadow_frame.GetVRegLong(vreg));
break;
case Primitive::kPrimNot:
field_value.SetL(shadow_frame.GetVRegReference(vreg));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return field_value;
}
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) {
const bool do_assignability_check = do_access_check;
bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f =
FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
if (transaction_active) {
if (Runtime::Current()->GetTransaction()->WriteConstraint(obj.Ptr(), f)) {
Runtime::Current()->AbortTransactionAndThrowAbortError(
self, "Can't set fields of " + obj->PrettyTypeOf());
return false;
}
}
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, false);
return false;
}
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
JValue value = GetFieldValue<field_type>(shadow_frame, vregA);
return DoFieldPutCommon<field_type, do_assignability_check, transaction_active>(self,
shadow_frame,
obj,
f,
value);
}
// Explicitly instantiate all DoFieldPut functions.
#define EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \
template bool DoFieldPut<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \
const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)
#define EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(_find_type, _field_type) \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, false); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, false); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, true); \
EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, true);
// iput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstanceObjectWrite, Primitive::kPrimNot)
// sput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticObjectWrite, Primitive::kPrimNot)
#undef EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL
template<Primitive::Type field_type, bool transaction_active>
bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
const uint32_t vregA = inst->VRegA_22c(inst_data);
// Report this field modification to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
// Save obj in case the instrumentation event has thread suspension.
HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj);
mirror::Object* fake_root = nullptr;
HandleWrapper<mirror::Object> ret(hs.NewHandleWrapper<mirror::Object>(
field_type == Primitive::kPrimNot ? field_value.GetGCRoot() : &fake_root));
instrumentation->FieldWriteEvent(self,
obj.Ptr(),
shadow_frame.GetMethod(),
shadow_frame.GetDexPC(),
f,
field_value);
if (UNLIKELY(self->IsExceptionPending())) {
return false;
}
if (UNLIKELY(shadow_frame.GetForcePopFrame())) {
// Don't actually set the field. The next instruction will force us to pop.
DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
DCHECK(PrevFrameWillRetry(self, shadow_frame));
return true;
}
}
// Note: iput-x-quick instructions are only for non-volatile fields.
switch (field_type) {
case Primitive::kPrimBoolean:
obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot:
obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Explicitly instantiate all DoIPutQuick functions.
#define EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, _transaction_active) \
template bool DoIPutQuick<_field_type, _transaction_active>(const ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data)
#define EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(_field_type) \
EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, false); \
EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, true);
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimInt) // iput-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimBoolean) // iput-boolean-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimByte) // iput-byte-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimChar) // iput-char-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimShort) // iput-short-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimLong) // iput-wide-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimNot) // iput-object-quick.
#undef EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL
// We execute any instrumentation events that are triggered by this exception and change the
// shadow_frame's dex_pc to that of the exception handler if there is one in the current method.
// Return true if we should continue executing in the current method and false if we need to go up
// the stack to find an exception handler.
// We accept a null Instrumentation* meaning we must not report anything to the instrumentation.
// TODO We should have a better way to skip instrumentation reporting or possibly rethink that
// behavior.
bool MoveToExceptionHandler(Thread* self,
ShadowFrame& shadow_frame,
const instrumentation::Instrumentation* instrumentation) {
self->VerifyStack();
StackHandleScope<2> hs(self);
Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException()));
if (instrumentation != nullptr &&
instrumentation->HasExceptionThrownListeners() &&
self->IsExceptionThrownByCurrentMethod(exception.Get())) {
// See b/65049545 for why we don't need to check to see if the exception has changed.
instrumentation->ExceptionThrownEvent(self, exception.Get());
if (shadow_frame.GetForcePopFrame()) {
// We will check in the caller for GetForcePopFrame again. We need to bail out early to
// prevent an ExceptionHandledEvent from also being sent before popping.
return true;
}
}
bool clear_exception = false;
uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock(
hs.NewHandle(exception->GetClass()), shadow_frame.GetDexPC(), &clear_exception);
if (found_dex_pc == dex::kDexNoIndex) {
if (instrumentation != nullptr) {
if (shadow_frame.NeedsNotifyPop()) {
instrumentation->WatchedFramePopped(self, shadow_frame);
}
// Exception is not caught by the current method. We will unwind to the
// caller. Notify any instrumentation listener.
instrumentation->MethodUnwindEvent(self,
shadow_frame.GetThisObject(),
shadow_frame.GetMethod(),
shadow_frame.GetDexPC());
}
return false;
} else {
shadow_frame.SetDexPC(found_dex_pc);
if (instrumentation != nullptr && instrumentation->HasExceptionHandledListeners()) {
self->ClearException();
instrumentation->ExceptionHandledEvent(self, exception.Get());
if (UNLIKELY(self->IsExceptionPending())) {
// Exception handled event threw an exception. Try to find the handler for this one.
return MoveToExceptionHandler(self, shadow_frame, instrumentation);
} else if (!clear_exception) {
self->SetException(exception.Get());
}
} else if (clear_exception) {
self->ClearException();
}
return true;
}
}
void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) {
LOG(FATAL) << "Unexpected instruction: "
<< inst->DumpString(shadow_frame.GetMethod()->GetDexFile());
UNREACHABLE();
}
void AbortTransactionF(Thread* self, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
AbortTransactionV(self, fmt, args);
va_end(args);
}
void AbortTransactionV(Thread* self, const char* fmt, va_list args) {
CHECK(Runtime::Current()->IsActiveTransaction());
// Constructs abort message.
std::string abort_msg;
android::base::StringAppendV(&abort_msg, fmt, args);
// Throws an exception so we can abort the transaction and rollback every change.
Runtime::Current()->AbortTransactionAndThrowAbortError(self, abort_msg);
}
// START DECLARATIONS :
//
// These additional declarations are required because clang complains
// about ALWAYS_INLINE (-Werror, -Wgcc-compat) in definitions.
//
template <bool is_range, bool do_assignability_check>
static ALWAYS_INLINE bool DoCallCommon(ArtMethod* called_method,
Thread* self,
ShadowFrame& shadow_frame,
JValue* result,
uint16_t number_of_inputs,
uint32_t (&arg)[Instruction::kMaxVarArgRegs],
uint32_t vregC) REQUIRES_SHARED(Locks::mutator_lock_);
template <bool is_range>
ALWAYS_INLINE void CopyRegisters(ShadowFrame& caller_frame,
ShadowFrame* callee_frame,
const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
const size_t first_src_reg,
const size_t first_dest_reg,
const size_t num_regs) REQUIRES_SHARED(Locks::mutator_lock_);
// END DECLARATIONS.
void ArtInterpreterToCompiledCodeBridge(Thread* self,
ArtMethod* caller,
ShadowFrame* shadow_frame,
uint16_t arg_offset,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* method = shadow_frame->GetMethod();
// Ensure static methods are initialized.
if (method->IsStatic()) {
ObjPtr<mirror::Class> declaringClass = method->GetDeclaringClass();
if (UNLIKELY(!declaringClass->IsInitialized())) {
self->PushShadowFrame(shadow_frame);
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(declaringClass));
if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true,
true))) {
self->PopShadowFrame();
DCHECK(self->IsExceptionPending());
return;
}
self->PopShadowFrame();
CHECK(h_class->IsInitializing());
// Reload from shadow frame in case the method moved, this is faster than adding a handle.
method = shadow_frame->GetMethod();
}
}
// Basic checks for the arg_offset. If there's no code item, the arg_offset must be 0. Otherwise,
// check that the arg_offset isn't greater than the number of registers. A stronger check is
// difficult since the frame may contain space for all the registers in the method, or only enough
// space for the arguments.
if (kIsDebugBuild) {
if (method->GetCodeItem() == nullptr) {
DCHECK_EQ(0u, arg_offset) << method->PrettyMethod();
} else {
DCHECK_LE(arg_offset, shadow_frame->NumberOfVRegs());
}
}
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr && caller != nullptr) {
jit->NotifyInterpreterToCompiledCodeTransition(self, caller);
}
method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset),
(shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t),
result, method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty());
}
void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
uint16_t this_obj_vreg,
JValue result)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> existing = shadow_frame->GetVRegReference(this_obj_vreg);
if (existing == nullptr) {
// If it's null, we come from compiled code that was deoptimized. Nothing to do,
// as the compiler verified there was no alias.
// Set the new string result of the StringFactory.
shadow_frame->SetVRegReference(this_obj_vreg, result.GetL());
return;
}
// Set the string init result into all aliases.
for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) {
if (shadow_frame->GetVRegReference(i) == existing) {
DCHECK_EQ(shadow_frame->GetVRegReference(i),
reinterpret_cast32<mirror::Object*>(shadow_frame->GetVReg(i)));
shadow_frame->SetVRegReference(i, result.GetL());
DCHECK_EQ(shadow_frame->GetVRegReference(i),
reinterpret_cast32<mirror::Object*>(shadow_frame->GetVReg(i)));
}
}
}
template<bool is_range>
static bool DoMethodHandleInvokeCommon(Thread* self,
ShadowFrame& shadow_frame,
bool invoke_exact,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Make sure to check for async exceptions
if (UNLIKELY(self->ObserveAsyncException())) {
return false;
}
// Invoke-polymorphic instructions always take a receiver. i.e, they are never static.
const uint32_t vRegC = (is_range) ? inst->VRegC_4rcc() : inst->VRegC_45cc();
const int invoke_method_idx = (is_range) ? inst->VRegB_4rcc() : inst->VRegB_45cc();
// Initialize |result| to 0 as this is the default return value for
// polymorphic invocations of method handle types with void return
// and provides sane return result in error cases.
result->SetJ(0);
// The invoke_method_idx here is the name of the signature polymorphic method that
// was symbolically invoked in bytecode (say MethodHandle.invoke or MethodHandle.invokeExact)
// and not the method that we'll dispatch to in the end.
StackHandleScope<2> hs(self);
Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
ObjPtr<mirror::MethodHandle>::DownCast(
MakeObjPtr(shadow_frame.GetVRegReference(vRegC)))));
if (UNLIKELY(method_handle == nullptr)) {
// Note that the invoke type is kVirtual here because a call to a signature
// polymorphic method is shaped like a virtual call at the bytecode level.
ThrowNullPointerExceptionForMethodAccess(invoke_method_idx, InvokeType::kVirtual);
return false;
}
// The vRegH value gives the index of the proto_id associated with this
// signature polymorphic call site.
const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
const dex::ProtoIndex callsite_proto_id(vRegH);
// Call through to the classlinker and ask it to resolve the static type associated
// with the callsite. This information is stored in the dex cache so it's
// guaranteed to be fast after the first resolution.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::MethodType> callsite_type(hs.NewHandle(
class_linker->ResolveMethodType(self, callsite_proto_id, shadow_frame.GetMethod())));
// This implies we couldn't resolve one or more types in this method handle.
if (UNLIKELY(callsite_type == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
// There is a common dispatch method for method handles that takes
// arguments either from a range or an array of arguments depending
// on whether the DEX instruction is invoke-polymorphic/range or
// invoke-polymorphic. The array here is for the latter.
if (UNLIKELY(is_range)) {
// VRegC is the register holding the method handle. Arguments passed
// to the method handle's target do not include the method handle.
RangeInstructionOperands operands(inst->VRegC_4rcc() + 1, inst->VRegA_4rcc() - 1);
if (invoke_exact) {
return MethodHandleInvokeExact(self,
shadow_frame,
method_handle,
callsite_type,
&operands,
result);
} else {
return MethodHandleInvoke(self,
shadow_frame,
method_handle,
callsite_type,
&operands,
result);
}
} else {
// Get the register arguments for the invoke.
uint32_t args[Instruction::kMaxVarArgRegs] = {};
inst->GetVarArgs(args, inst_data);
// Drop the first register which is the method handle performing the invoke.
memmove(args, args + 1, sizeof(args[0]) * (Instruction::kMaxVarArgRegs - 1));
args[Instruction::kMaxVarArgRegs - 1] = 0;
VarArgsInstructionOperands operands(args, inst->VRegA_45cc() - 1);
if (invoke_exact) {
return MethodHandleInvokeExact(self,
shadow_frame,
method_handle,
callsite_type,
&operands,
result);
} else {
return MethodHandleInvoke(self,
shadow_frame,
method_handle,
callsite_type,
&operands,
result);
}
}
}
bool DoMethodHandleInvokeExact(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) {
if (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC) {
static const bool kIsRange = false;
return DoMethodHandleInvokeCommon<kIsRange>(
self, shadow_frame, /* invoke_exact= */ true, inst, inst_data, result);
} else {
DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_POLYMORPHIC_RANGE);
static const bool kIsRange = true;
return DoMethodHandleInvokeCommon<kIsRange>(
self, shadow_frame, /* invoke_exact= */ true, inst, inst_data, result);
}
}
bool DoMethodHandleInvoke(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) {
if (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC) {
static const bool kIsRange = false;
return DoMethodHandleInvokeCommon<kIsRange>(
self, shadow_frame, /* invoke_exact= */ false, inst, inst_data, result);
} else {
DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_POLYMORPHIC_RANGE);
static const bool kIsRange = true;
return DoMethodHandleInvokeCommon<kIsRange>(
self, shadow_frame, /* invoke_exact= */ false, inst, inst_data, result);
}
}
static bool DoVarHandleInvokeCommon(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result,
mirror::VarHandle::AccessMode access_mode)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Make sure to check for async exceptions
if (UNLIKELY(self->ObserveAsyncException())) {
return false;
}
StackHandleScope<2> hs(self);
bool is_var_args = inst->HasVarArgs();
const uint16_t vRegH = is_var_args ? inst->VRegH_45cc() : inst->VRegH_4rcc();
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::MethodType> callsite_type(hs.NewHandle(
class_linker->ResolveMethodType(self, dex::ProtoIndex(vRegH), shadow_frame.GetMethod())));
// This implies we couldn't resolve one or more types in this VarHandle.
if (UNLIKELY(callsite_type == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
const uint32_t vRegC = is_var_args ? inst->VRegC_45cc() : inst->VRegC_4rcc();
ObjPtr<mirror::Object> receiver(shadow_frame.GetVRegReference(vRegC));
Handle<mirror::VarHandle> var_handle(hs.NewHandle(down_cast<mirror::VarHandle*>(receiver.Ptr())));
if (is_var_args) {
uint32_t args[Instruction::kMaxVarArgRegs];
inst->GetVarArgs(args, inst_data);
VarArgsInstructionOperands all_operands(args, inst->VRegA_45cc());
NoReceiverInstructionOperands operands(&all_operands);
return VarHandleInvokeAccessor(self,
shadow_frame,
var_handle,
callsite_type,
access_mode,
&operands,
result);
} else {
RangeInstructionOperands all_operands(inst->VRegC_4rcc(), inst->VRegA_4rcc());
NoReceiverInstructionOperands operands(&all_operands);
return VarHandleInvokeAccessor(self,
shadow_frame,
var_handle,
callsite_type,
access_mode,
&operands,
result);
}
}
#define DO_VAR_HANDLE_ACCESSOR(_access_mode) \
bool DoVarHandle ## _access_mode(Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data, \
JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { \
const auto access_mode = mirror::VarHandle::AccessMode::k ## _access_mode; \
return DoVarHandleInvokeCommon(self, shadow_frame, inst, inst_data, result, access_mode); \
}
DO_VAR_HANDLE_ACCESSOR(CompareAndExchange)
DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeAcquire)
DO_VAR_HANDLE_ACCESSOR(CompareAndExchangeRelease)
DO_VAR_HANDLE_ACCESSOR(CompareAndSet)
DO_VAR_HANDLE_ACCESSOR(Get)
DO_VAR_HANDLE_ACCESSOR(GetAcquire)
DO_VAR_HANDLE_ACCESSOR(GetAndAdd)
DO_VAR_HANDLE_ACCESSOR(GetAndAddAcquire)
DO_VAR_HANDLE_ACCESSOR(GetAndAddRelease)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAnd)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAndAcquire)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseAndRelease)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOr)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOrAcquire)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseOrRelease)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXor)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXorAcquire)
DO_VAR_HANDLE_ACCESSOR(GetAndBitwiseXorRelease)
DO_VAR_HANDLE_ACCESSOR(GetAndSet)
DO_VAR_HANDLE_ACCESSOR(GetAndSetAcquire)
DO_VAR_HANDLE_ACCESSOR(GetAndSetRelease)
DO_VAR_HANDLE_ACCESSOR(GetOpaque)
DO_VAR_HANDLE_ACCESSOR(GetVolatile)
DO_VAR_HANDLE_ACCESSOR(Set)
DO_VAR_HANDLE_ACCESSOR(SetOpaque)
DO_VAR_HANDLE_ACCESSOR(SetRelease)
DO_VAR_HANDLE_ACCESSOR(SetVolatile)
DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSet)
DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetAcquire)
DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetPlain)
DO_VAR_HANDLE_ACCESSOR(WeakCompareAndSetRelease)
#undef DO_VAR_HANDLE_ACCESSOR
template<bool is_range>
bool DoInvokePolymorphic(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result) {
const int invoke_method_idx = inst->VRegB();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ArtMethod* invoke_method =
class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
self, invoke_method_idx, shadow_frame.GetMethod(), kVirtual);
// Ensure intrinsic identifiers are initialized.
DCHECK(invoke_method->IsIntrinsic());
// Dispatch based on intrinsic identifier associated with method.
switch (static_cast<art::Intrinsics>(invoke_method->GetIntrinsic())) {
#define CASE_SIGNATURE_POLYMORPHIC_INTRINSIC(Name, ...) \
case Intrinsics::k##Name: \
return Do ## Name(self, shadow_frame, inst, inst_data, result);
#include "intrinsics_list.h"
SIGNATURE_POLYMORPHIC_INTRINSICS_LIST(CASE_SIGNATURE_POLYMORPHIC_INTRINSIC)
#undef INTRINSICS_LIST
#undef SIGNATURE_POLYMORPHIC_INTRINSICS_LIST
#undef CASE_SIGNATURE_POLYMORPHIC_INTRINSIC
default:
LOG(FATAL) << "Unreachable: " << invoke_method->GetIntrinsic();
UNREACHABLE();
return false;
}
}
static JValue ConvertScalarBootstrapArgument(jvalue value) {
// value either contains a primitive scalar value if it corresponds
// to a primitive type, or it contains an integer value if it
// corresponds to an object instance reference id (e.g. a string id).
return JValue::FromPrimitive(value.j);
}
static ObjPtr<mirror::Class> GetClassForBootstrapArgument(EncodedArrayValueIterator::ValueType type)
REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = class_linker->GetClassRoots();
switch (type) {
case EncodedArrayValueIterator::ValueType::kBoolean:
case EncodedArrayValueIterator::ValueType::kByte:
case EncodedArrayValueIterator::ValueType::kChar:
case EncodedArrayValueIterator::ValueType::kShort:
// These types are disallowed by JVMS. Treat as integers. This
// will result in CCE's being raised if the BSM has one of these
// types.
case EncodedArrayValueIterator::ValueType::kInt:
return GetClassRoot(ClassRoot::kPrimitiveInt, class_roots);
case EncodedArrayValueIterator::ValueType::kLong:
return GetClassRoot(ClassRoot::kPrimitiveLong, class_roots);
case EncodedArrayValueIterator::ValueType::kFloat:
return GetClassRoot(ClassRoot::kPrimitiveFloat, class_roots);
case EncodedArrayValueIterator::ValueType::kDouble:
return GetClassRoot(ClassRoot::kPrimitiveDouble, class_roots);
case EncodedArrayValueIterator::ValueType::kMethodType:
return GetClassRoot<mirror::MethodType>(class_roots);
case EncodedArrayValueIterator::ValueType::kMethodHandle:
return GetClassRoot<mirror::MethodHandle>(class_roots);
case EncodedArrayValueIterator::ValueType::kString:
return GetClassRoot<mirror::String>();
case EncodedArrayValueIterator::ValueType::kType:
return GetClassRoot<mirror::Class>();
case EncodedArrayValueIterator::ValueType::kField:
case EncodedArrayValueIterator::ValueType::kMethod:
case EncodedArrayValueIterator::ValueType::kEnum:
case EncodedArrayValueIterator::ValueType::kArray:
case EncodedArrayValueIterator::ValueType::kAnnotation:
case EncodedArrayValueIterator::ValueType::kNull:
return nullptr;
}
}
static bool GetArgumentForBootstrapMethod(Thread* self,
ArtMethod* referrer,
EncodedArrayValueIterator::ValueType type,
const JValue* encoded_value,
JValue* decoded_value)
REQUIRES_SHARED(Locks::mutator_lock_) {
// The encoded_value contains either a scalar value (IJDF) or a
// scalar DEX file index to a reference type to be materialized.
switch (type) {
case EncodedArrayValueIterator::ValueType::kInt:
case EncodedArrayValueIterator::ValueType::kFloat:
decoded_value->SetI(encoded_value->GetI());
return true;
case EncodedArrayValueIterator::ValueType::kLong:
case EncodedArrayValueIterator::ValueType::kDouble:
decoded_value->SetJ(encoded_value->GetJ());
return true;
case EncodedArrayValueIterator::ValueType::kMethodType: {
StackHandleScope<2> hs(self);
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
dex::ProtoIndex proto_idx(encoded_value->GetC());
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::MethodType> o =
cl->ResolveMethodType(self, proto_idx, dex_cache, class_loader);
if (UNLIKELY(o.IsNull())) {
DCHECK(self->IsExceptionPending());
return false;
}
decoded_value->SetL(o);
return true;
}
case EncodedArrayValueIterator::ValueType::kMethodHandle: {
uint32_t index = static_cast<uint32_t>(encoded_value->GetI());
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::MethodHandle> o = cl->ResolveMethodHandle(self, index, referrer);
if (UNLIKELY(o.IsNull())) {
DCHECK(self->IsExceptionPending());
return false;
}
decoded_value->SetL(o);
return true;
}
case EncodedArrayValueIterator::ValueType::kString: {
dex::StringIndex index(static_cast<uint32_t>(encoded_value->GetI()));
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::String> o = cl->ResolveString(index, referrer);
if (UNLIKELY(o.IsNull())) {
DCHECK(self->IsExceptionPending());
return false;
}
decoded_value->SetL(o);
return true;
}
case EncodedArrayValueIterator::ValueType::kType: {
dex::TypeIndex index(static_cast<uint32_t>(encoded_value->GetI()));
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> o = cl->ResolveType(index, referrer);
if (UNLIKELY(o.IsNull())) {
DCHECK(self->IsExceptionPending());
return false;
}
decoded_value->SetL(o);
return true;
}
case EncodedArrayValueIterator::ValueType::kBoolean:
case EncodedArrayValueIterator::ValueType::kByte:
case EncodedArrayValueIterator::ValueType::kChar:
case EncodedArrayValueIterator::ValueType::kShort:
case EncodedArrayValueIterator::ValueType::kField:
case EncodedArrayValueIterator::ValueType::kMethod:
case EncodedArrayValueIterator::ValueType::kEnum:
case EncodedArrayValueIterator::ValueType::kArray:
case EncodedArrayValueIterator::ValueType::kAnnotation:
case EncodedArrayValueIterator::ValueType::kNull:
// Unreachable - unsupported types that have been checked when
// determining the effect call site type based on the bootstrap
// argument types.
UNREACHABLE();
}
}
static bool PackArgumentForBootstrapMethod(Thread* self,
ArtMethod* referrer,
CallSiteArrayValueIterator* it,
ShadowFrameSetter* setter)
REQUIRES_SHARED(Locks::mutator_lock_) {
auto type = it->GetValueType();
const JValue encoded_value = ConvertScalarBootstrapArgument(it->GetJavaValue());
JValue decoded_value;
if (!GetArgumentForBootstrapMethod(self, referrer, type, &encoded_value, &decoded_value)) {
return false;
}
switch (it->GetValueType()) {
case EncodedArrayValueIterator::ValueType::kInt:
case EncodedArrayValueIterator::ValueType::kFloat:
setter->Set(static_cast<uint32_t>(decoded_value.GetI()));
return true;
case EncodedArrayValueIterator::ValueType::kLong:
case EncodedArrayValueIterator::ValueType::kDouble:
setter->SetLong(decoded_value.GetJ());
return true;
case EncodedArrayValueIterator::ValueType::kMethodType:
case EncodedArrayValueIterator::ValueType::kMethodHandle:
case EncodedArrayValueIterator::ValueType::kString:
case EncodedArrayValueIterator::ValueType::kType:
setter->SetReference(decoded_value.GetL());
return true;
case EncodedArrayValueIterator::ValueType::kBoolean:
case EncodedArrayValueIterator::ValueType::kByte:
case EncodedArrayValueIterator::ValueType::kChar:
case EncodedArrayValueIterator::ValueType::kShort:
case EncodedArrayValueIterator::ValueType::kField:
case EncodedArrayValueIterator::ValueType::kMethod:
case EncodedArrayValueIterator::ValueType::kEnum:
case EncodedArrayValueIterator::ValueType::kArray:
case EncodedArrayValueIterator::ValueType::kAnnotation:
case EncodedArrayValueIterator::ValueType::kNull:
// Unreachable - unsupported types that have been checked when
// determining the effect call site type based on the bootstrap
// argument types.
UNREACHABLE();
}
}
static bool PackCollectorArrayForBootstrapMethod(Thread* self,
ArtMethod* referrer,
ObjPtr<mirror::Class> array_type,
int32_t array_length,
CallSiteArrayValueIterator* it,
ShadowFrameSetter* setter)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
JValue decoded_value;
#define COLLECT_PRIMITIVE_ARRAY(Descriptor, Type) \
Handle<mirror::Type ## Array> array = \
hs.NewHandle(mirror::Type ## Array::Alloc(self, array_length)); \
if (array.IsNull()) { \
return false; \
} \
for (int32_t i = 0; it->HasNext(); it->Next(), ++i) { \
auto type = it->GetValueType(); \
DCHECK_EQ(type, EncodedArrayValueIterator::ValueType::k ## Type); \
const JValue encoded_value = \
ConvertScalarBootstrapArgument(it->GetJavaValue()); \
GetArgumentForBootstrapMethod(self, \
referrer, \
type, \
&encoded_value, \
&decoded_value); \
array->Set(i, decoded_value.Get ## Descriptor()); \
} \
setter->SetReference(array.Get()); \
return true;
#define COLLECT_REFERENCE_ARRAY(T, Type) \
Handle<mirror::ObjectArray<T>> array = /* NOLINT */ \
hs.NewHandle(mirror::ObjectArray<T>::Alloc(self, \
array_type, \
array_length)); \
if (array.IsNull()) { \
return false; \
} \
for (int32_t i = 0; it->HasNext(); it->Next(), ++i) { \
auto type = it->GetValueType(); \
DCHECK_EQ(type, EncodedArrayValueIterator::ValueType::k ## Type); \
const JValue encoded_value = \
ConvertScalarBootstrapArgument(it->GetJavaValue()); \
if (!GetArgumentForBootstrapMethod(self, \
referrer, \
type, \
&encoded_value, \
&decoded_value)) { \
return false; \
} \
ObjPtr<mirror::Object> o = decoded_value.GetL(); \
if (Runtime::Current()->IsActiveTransaction()) { \
array->Set<true>(i, ObjPtr<T>::DownCast(o)); \
} else { \
array->Set<false>(i, ObjPtr<T>::DownCast(o)); \
} \
} \
setter->SetReference(array.Get()); \
return true;
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = class_linker->GetClassRoots();
ObjPtr<mirror::Class> component_type = array_type->GetComponentType();
if (component_type == GetClassRoot(ClassRoot::kPrimitiveInt, class_roots)) {
COLLECT_PRIMITIVE_ARRAY(I, Int);
} else if (component_type == GetClassRoot(ClassRoot::kPrimitiveLong, class_roots)) {
COLLECT_PRIMITIVE_ARRAY(J, Long);
} else if (component_type == GetClassRoot(ClassRoot::kPrimitiveFloat, class_roots)) {
COLLECT_PRIMITIVE_ARRAY(F, Float);
} else if (component_type == GetClassRoot(ClassRoot::kPrimitiveDouble, class_roots)) {
COLLECT_PRIMITIVE_ARRAY(D, Double);
} else if (component_type == GetClassRoot<mirror::MethodType>()) {
COLLECT_REFERENCE_ARRAY(mirror::MethodType, MethodType);
} else if (component_type == GetClassRoot<mirror::MethodHandle>()) {
COLLECT_REFERENCE_ARRAY(mirror::MethodHandle, MethodHandle);
} else if (component_type == GetClassRoot<mirror::String>(class_roots)) {
COLLECT_REFERENCE_ARRAY(mirror::String, String);
} else if (component_type == GetClassRoot<mirror::Class>()) {
COLLECT_REFERENCE_ARRAY(mirror::Class, Type);
} else {
UNREACHABLE();
}
#undef COLLECT_PRIMITIVE_ARRAY
#undef COLLECT_REFERENCE_ARRAY
}
static ObjPtr<mirror::MethodType> BuildCallSiteForBootstrapMethod(Thread* self,
const DexFile* dex_file,
uint32_t call_site_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx);
CallSiteArrayValueIterator it(*dex_file, csi);
DCHECK_GE(it.Size(), 1u);
StackHandleScope<2> hs(self);
// Create array for parameter types.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> class_array_type =
GetClassRoot<mirror::ObjectArray<mirror::Class>>(class_linker);
Handle<mirror::ObjectArray<mirror::Class>> ptypes = hs.NewHandle(
mirror::ObjectArray<mirror::Class>::Alloc(self,
class_array_type,
static_cast<int>(it.Size())));
if (ptypes.IsNull()) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
// Populate the first argument with an instance of j.l.i.MethodHandles.Lookup
// that the runtime will construct.
ptypes->Set(0, GetClassRoot<mirror::MethodHandlesLookup>(class_linker));
it.Next();
// The remaining parameter types are derived from the types of
// arguments present in the DEX file.
int index = 1;
while (it.HasNext()) {
ObjPtr<mirror::Class> ptype = GetClassForBootstrapArgument(it.GetValueType());
if (ptype.IsNull()) {
ThrowClassCastException("Unsupported bootstrap argument type");
return nullptr;
}
ptypes->Set(index, ptype);
index++;
it.Next();
}
DCHECK_EQ(static_cast<size_t>(index), it.Size());
// By definition, the return type is always a j.l.i.CallSite.
Handle<mirror::Class> rtype = hs.NewHandle(GetClassRoot<mirror::CallSite>());
return mirror::MethodType::Create(self, rtype, ptypes);
}
static ObjPtr<mirror::CallSite> InvokeBootstrapMethod(Thread* self,
ShadowFrame& shadow_frame,
uint32_t call_site_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<5> hs(self);
// There are three mandatory arguments expected from the call site
// value array in the DEX file: the bootstrap method handle, the
// method name to pass to the bootstrap method, and the method type
// to pass to the bootstrap method.
static constexpr size_t kMandatoryArgumentsCount = 3;
ArtMethod* referrer = shadow_frame.GetMethod();
const DexFile* dex_file = referrer->GetDexFile();
const DexFile::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx);
CallSiteArrayValueIterator it(*dex_file, csi);
if (it.Size() < kMandatoryArgumentsCount) {
ThrowBootstrapMethodError("Truncated bootstrap arguments (%zu < %zu)",
it.Size(), kMandatoryArgumentsCount);
return nullptr;
}
if (it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodHandle) {
ThrowBootstrapMethodError("First bootstrap argument is not a method handle");
return nullptr;
}
uint32_t bsm_index = static_cast<uint32_t>(it.GetJavaValue().i);
it.Next();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::MethodHandle> bsm =
hs.NewHandle(class_linker->ResolveMethodHandle(self, bsm_index, referrer));
if (bsm.IsNull()) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
if (bsm->GetHandleKind() != mirror::MethodHandle::Kind::kInvokeStatic) {
// JLS suggests also accepting constructors. This is currently
// hard as constructor invocations happen via transformers in ART
// today. The constructor would need to be a class derived from java.lang.invoke.CallSite.
ThrowBootstrapMethodError("Unsupported bootstrap method invocation kind");
return nullptr;
}
// Construct the local call site type information based on the 3
// mandatory arguments provided by the runtime and the static arguments
// in the DEX file. We will use these arguments to build a shadow frame.
MutableHandle<mirror::MethodType> call_site_type =
hs.NewHandle(BuildCallSiteForBootstrapMethod(self, dex_file, call_site_idx));
if (call_site_type.IsNull()) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
// Check if this BSM is targeting a variable arity method. If so,
// we'll need to collect the trailing arguments into an array.
Handle<mirror::Array> collector_arguments;
int32_t collector_arguments_length;
if (bsm->GetTargetMethod()->IsVarargs()) {
int number_of_bsm_parameters = bsm->GetMethodType()->GetNumberOfPTypes();
if (number_of_bsm_parameters == 0) {
ThrowBootstrapMethodError("Variable arity BSM does not have any arguments");
return nullptr;
}
Handle<mirror::Class> collector_array_class =
hs.NewHandle(bsm->GetMethodType()->GetPTypes()->Get(number_of_bsm_parameters - 1));
if (!collector_array_class->IsArrayClass()) {
ThrowBootstrapMethodError("Variable arity BSM does not have array as final argument");
return nullptr;
}
// The call site may include no arguments to be collected. In this
// case the number of arguments must be at least the number of BSM
// parameters less the collector array.
if (call_site_type->GetNumberOfPTypes() < number_of_bsm_parameters - 1) {
ThrowWrongMethodTypeException(bsm->GetMethodType(), call_site_type.Get());
return nullptr;
}
// Check all the arguments to be collected match the collector array component type.
for (int i = number_of_bsm_parameters - 1; i < call_site_type->GetNumberOfPTypes(); ++i) {
if (call_site_type->GetPTypes()->Get(i) != collector_array_class->GetComponentType()) {
ThrowClassCastException(collector_array_class->GetComponentType(),
call_site_type->GetPTypes()->Get(i));
return nullptr;
}
}
// Update the call site method type so it now includes the collector array.
int32_t collector_arguments_start = number_of_bsm_parameters - 1;
collector_arguments_length = call_site_type->GetNumberOfPTypes() - number_of_bsm_parameters + 1;
call_site_type.Assign(
mirror::MethodType::CollectTrailingArguments(self,
call_site_type.Get(),
collector_array_class.Get(),
collector_arguments_start));
if (call_site_type.IsNull()) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
} else {
collector_arguments_length = 0;
}
if (call_site_type->GetNumberOfPTypes() != bsm->GetMethodType()->GetNumberOfPTypes()) {
ThrowWrongMethodTypeException(bsm->GetMethodType(), call_site_type.Get());
return nullptr;
}
// BSM invocation has a different set of exceptions that
// j.l.i.MethodHandle.invoke(). Scan arguments looking for CCE
// "opportunities". Unfortunately we cannot just leave this to the
// method handle invocation as this might generate a WMTE.
for (int32_t i = 0; i < call_site_type->GetNumberOfPTypes(); ++i) {
ObjPtr<mirror::Class> from = call_site_type->GetPTypes()->Get(i);
ObjPtr<mirror::Class> to = bsm->GetMethodType()->GetPTypes()->Get(i);
if (!IsParameterTypeConvertible(from, to)) {
ThrowClassCastException(from, to);
return nullptr;
}
}
if (!IsReturnTypeConvertible(call_site_type->GetRType(), bsm->GetMethodType()->GetRType())) {
ThrowClassCastException(bsm->GetMethodType()->GetRType(), call_site_type->GetRType());
return nullptr;
}
// Set-up a shadow frame for invoking the bootstrap method handle.
ShadowFrameAllocaUniquePtr bootstrap_frame =
CREATE_SHADOW_FRAME(call_site_type->NumberOfVRegs(),
nullptr,
referrer,
shadow_frame.GetDexPC());
ScopedStackedShadowFramePusher pusher(
self, bootstrap_frame.get(), StackedShadowFrameType::kShadowFrameUnderConstruction);
ShadowFrameSetter setter(bootstrap_frame.get(), 0u);
// The first parameter is a MethodHandles lookup instance.
Handle<mirror::Class> lookup_class =
hs.NewHandle(shadow_frame.GetMethod()->GetDeclaringClass());
ObjPtr<mirror::MethodHandlesLookup> lookup =
mirror::MethodHandlesLookup::Create(self, lookup_class);
if (lookup.IsNull()) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
setter.SetReference(lookup);
// Pack the remaining arguments into the frame.
int number_of_arguments = call_site_type->GetNumberOfPTypes();
int argument_index;
for (argument_index = 1; argument_index < number_of_arguments; ++argument_index) {
if (argument_index == number_of_arguments - 1 &&
call_site_type->GetPTypes()->Get(argument_index)->IsArrayClass()) {
ObjPtr<mirror::Class> array_type = call_site_type->GetPTypes()->Get(argument_index);
if (!PackCollectorArrayForBootstrapMethod(self,
referrer,
array_type,
collector_arguments_length,
&it,
&setter)) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
} else if (!PackArgumentForBootstrapMethod(self, referrer, &it, &setter)) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
it.Next();
}
DCHECK(!it.HasNext());
DCHECK(setter.Done());
// Invoke the bootstrap method handle.
JValue result;
RangeInstructionOperands operands(0, bootstrap_frame->NumberOfVRegs());
bool invoke_success = MethodHandleInvoke(self,
*bootstrap_frame,
bsm,
call_site_type,
&operands,
&result);
if (!invoke_success) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
Handle<mirror::Object> object(hs.NewHandle(result.GetL()));
if (UNLIKELY(object.IsNull())) {
// This will typically be for LambdaMetafactory which is not supported.
ThrowClassCastException("Bootstrap method returned null");
return nullptr;
}
// Check the result type is a subclass of j.l.i.CallSite.
ObjPtr<mirror::Class> call_site_class = GetClassRoot<mirror::CallSite>(class_linker);
if (UNLIKELY(!object->InstanceOf(call_site_class))) {
ThrowClassCastException(object->GetClass(), call_site_class);
return nullptr;
}
// Check the call site target is not null as we're going to invoke it.
ObjPtr<mirror::CallSite> call_site =
ObjPtr<mirror::CallSite>::DownCast(ObjPtr<mirror::Object>(result.GetL()));
ObjPtr<mirror::MethodHandle> target = call_site->GetTarget();
if (UNLIKELY(target == nullptr)) {
ThrowClassCastException("Bootstrap method returned a CallSite with a null target");
return nullptr;
}
return call_site;
}
namespace {
ObjPtr<mirror::CallSite> DoResolveCallSite(Thread* self,
ShadowFrame& shadow_frame,
uint32_t call_site_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(shadow_frame.GetMethod()->GetDexCache()));
// Get the call site from the DexCache if present.
ObjPtr<mirror::CallSite> call_site = dex_cache->GetResolvedCallSite(call_site_idx);
if (LIKELY(call_site != nullptr)) {
return call_site;
}
// Invoke the bootstrap method to get a candidate call site.
call_site = InvokeBootstrapMethod(self, shadow_frame, call_site_idx);
if (UNLIKELY(call_site == nullptr)) {
if (!self->GetException()->IsError()) {
// Use a BootstrapMethodError if the exception is not an instance of java.lang.Error.
ThrowWrappedBootstrapMethodError("Exception from call site #%u bootstrap method",
call_site_idx);
}
return nullptr;
}
// Attempt to place the candidate call site into the DexCache, return the winning call site.
return dex_cache->SetResolvedCallSite(call_site_idx, call_site);
}
} // namespace
bool DoInvokeCustom(Thread* self,
ShadowFrame& shadow_frame,
uint32_t call_site_idx,
const InstructionOperands* operands,
JValue* result) {
// Make sure to check for async exceptions
if (UNLIKELY(self->ObserveAsyncException())) {
return false;
}
// invoke-custom is not supported in transactions. In transactions
// there is a limited set of types supported. invoke-custom allows
// running arbitrary code and instantiating arbitrary types.
CHECK(!Runtime::Current()->IsActiveTransaction());
ObjPtr<mirror::CallSite> call_site = DoResolveCallSite(self, shadow_frame, call_site_idx);
if (call_site.IsNull()) {
DCHECK(self->IsExceptionPending());
return false;
}
StackHandleScope<2> hs(self);
Handle<mirror::MethodHandle> target = hs.NewHandle(call_site->GetTarget());
Handle<mirror::MethodType> target_method_type = hs.NewHandle(target->GetMethodType());
DCHECK_EQ(operands->GetNumberOfOperands(), target_method_type->NumberOfVRegs())
<< " call_site_idx" << call_site_idx;
return MethodHandleInvokeExact(self,
shadow_frame,
target,
target_method_type,
operands,
result);
}
// Assign register 'src_reg' from shadow_frame to register 'dest_reg' into new_shadow_frame.
static inline void AssignRegister(ShadowFrame* new_shadow_frame, const ShadowFrame& shadow_frame,
size_t dest_reg, size_t src_reg)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Uint required, so that sign extension does not make this wrong on 64b systems
uint32_t src_value = shadow_frame.GetVReg(src_reg);
ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference<kVerifyNone>(src_reg);
// If both register locations contains the same value, the register probably holds a reference.
// Note: As an optimization, non-moving collectors leave a stale reference value
// in the references array even after the original vreg was overwritten to a non-reference.
if (src_value == reinterpret_cast32<uint32_t>(o.Ptr())) {
new_shadow_frame->SetVRegReference(dest_reg, o);
} else {
new_shadow_frame->SetVReg(dest_reg, src_value);
}
}
template <bool is_range>
inline void CopyRegisters(ShadowFrame& caller_frame,
ShadowFrame* callee_frame,
const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
const size_t first_src_reg,
const size_t first_dest_reg,
const size_t num_regs) {
if (is_range) {
const size_t dest_reg_bound = first_dest_reg + num_regs;
for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < dest_reg_bound;
++dest_reg, ++src_reg) {
AssignRegister(callee_frame, caller_frame, dest_reg, src_reg);
}
} else {
DCHECK_LE(num_regs, arraysize(arg));
for (size_t arg_index = 0; arg_index < num_regs; ++arg_index) {
AssignRegister(callee_frame, caller_frame, first_dest_reg + arg_index, arg[arg_index]);
}
}
}
template <bool is_range,
bool do_assignability_check>
static inline bool DoCallCommon(ArtMethod* called_method,
Thread* self,
ShadowFrame& shadow_frame,
JValue* result,
uint16_t number_of_inputs,
uint32_t (&arg)[Instruction::kMaxVarArgRegs],
uint32_t vregC) {
bool string_init = false;
// Replace calls to String.<init> with equivalent StringFactory call.
if (UNLIKELY(called_method->GetDeclaringClass()->IsStringClass()
&& called_method->IsConstructor())) {
called_method = WellKnownClasses::StringInitToStringFactory(called_method);
string_init = true;
}
// Compute method information.
CodeItemDataAccessor accessor(called_method->DexInstructionData());
// Number of registers for the callee's call frame.
uint16_t num_regs;
// Test whether to use the interpreter or compiler entrypoint, and save that result to pass to
// PerformCall. A deoptimization could occur at any time, and we shouldn't change which
// entrypoint to use once we start building the shadow frame.
// For unstarted runtimes, always use the interpreter entrypoint. This fixes the case where we are
// doing cross compilation. Note that GetEntryPointFromQuickCompiledCode doesn't use the image
// pointer size here and this may case an overflow if it is called from the compiler. b/62402160
const bool use_interpreter_entrypoint = !Runtime::Current()->IsStarted() ||
ClassLinker::ShouldUseInterpreterEntrypoint(
called_method,
called_method->GetEntryPointFromQuickCompiledCode());
if (LIKELY(accessor.HasCodeItem())) {
// When transitioning to compiled code, space only needs to be reserved for the input registers.
// The rest of the frame gets discarded. This also prevents accessing the called method's code
// item, saving memory by keeping code items of compiled code untouched.
if (!use_interpreter_entrypoint) {
DCHECK(!Runtime::Current()->IsAotCompiler()) << "Compiler should use interpreter entrypoint";
num_regs = number_of_inputs;
} else {
num_regs = accessor.RegistersSize();
DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, accessor.InsSize());
}
} else {
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs = number_of_inputs;
}
// Hack for String init:
//
// Rewrite invoke-x java.lang.String.<init>(this, a, b, c, ...) into:
// invoke-x StringFactory(a, b, c, ...)
// by effectively dropping the first virtual register from the invoke.
//
// (at this point the ArtMethod has already been replaced,
// so we just need to fix-up the arguments)
//
// Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased
// to handle the compiler optimization of replacing `this` with null without
// throwing NullPointerException.
uint32_t string_init_vreg_this = is_range ? vregC : arg[0];
if (UNLIKELY(string_init)) {
DCHECK_GT(num_regs, 0u); // As the method is an instance method, there should be at least 1.
// The new StringFactory call is static and has one fewer argument.
if (!accessor.HasCodeItem()) {
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs--;
} // else ... don't need to change num_regs since it comes up from the string_init's code item
number_of_inputs--;
// Rewrite the var-args, dropping the 0th argument ("this")
for (uint32_t i = 1; i < arraysize(arg); ++i) {
arg[i - 1] = arg[i];
}
arg[arraysize(arg) - 1] = 0;
// Rewrite the non-var-arg case
vregC++; // Skips the 0th vreg in the range ("this").
}
// Parameter registers go at the end of the shadow frame.
DCHECK_GE(num_regs, number_of_inputs);
size_t first_dest_reg = num_regs - number_of_inputs;
DCHECK_NE(first_dest_reg, (size_t)-1);
// Allocate shadow frame on the stack.
const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon");
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
// Initialize new shadow frame by copying the registers from the callee shadow frame.
if (do_assignability_check) {
// Slow path.
// We might need to do class loading, which incurs a thread state change to kNative. So
// register the shadow frame as under construction and allow suspension again.
ScopedStackedShadowFramePusher pusher(
self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
self->EndAssertNoThreadSuspension(old_cause);
// ArtMethod here is needed to check type information of the call site against the callee.
// Type information is retrieved from a DexFile/DexCache for that respective declared method.
//
// As a special case for proxy methods, which are not dex-backed,
// we have to retrieve type information from the proxy's method
// interface method instead (which is dex backed since proxies are never interfaces).
ArtMethod* method =
new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(kRuntimePointerSize);
// We need to do runtime check on reference assignment. We need to load the shorty
// to get the exact type of each reference argument.
const DexFile::TypeList* params = method->GetParameterTypeList();
uint32_t shorty_len = 0;
const char* shorty = method->GetShorty(&shorty_len);
// Handle receiver apart since it's not part of the shorty.
size_t dest_reg = first_dest_reg;
size_t arg_offset = 0;
if (!method->IsStatic()) {
size_t receiver_reg = is_range ? vregC : arg[0];
new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg));
++dest_reg;
++arg_offset;
DCHECK(!string_init); // All StringFactory methods are static.
}
// Copy the caller's invoke-* arguments into the callee's parameter registers.
for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) {
// Skip the 0th 'shorty' type since it represents the return type.
DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'";
const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset];
switch (shorty[shorty_pos + 1]) {
// Handle Object references. 1 virtual register slot.
case 'L': {
ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference(src_reg);
if (do_assignability_check && o != nullptr) {
const dex::TypeIndex type_idx = params->GetTypeItem(shorty_pos).type_idx_;
ObjPtr<mirror::Class> arg_type = method->GetDexCache()->GetResolvedType(type_idx);
if (arg_type == nullptr) {
StackHandleScope<1> hs(self);
// Preserve o since it is used below and GetClassFromTypeIndex may cause thread
// suspension.
HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&o);
arg_type = method->ResolveClassFromTypeIndex(type_idx);
if (arg_type == nullptr) {
CHECK(self->IsExceptionPending());
return false;
}
}
if (!o->VerifierInstanceOf(arg_type)) {
// This should never happen.
std::string temp1, temp2;
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Invoking %s with bad arg %d, type '%s' not instance of '%s'",
new_shadow_frame->GetMethod()->GetName(), shorty_pos,
o->GetClass()->GetDescriptor(&temp1),
arg_type->GetDescriptor(&temp2));
return false;
}
}
new_shadow_frame->SetVRegReference(dest_reg, o);
break;
}
// Handle doubles and longs. 2 consecutive virtual register slots.
case 'J': case 'D': {
uint64_t wide_value =
(static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf<uint32_t>()) |
static_cast<uint32_t>(shadow_frame.GetVReg(src_reg));
new_shadow_frame->SetVRegLong(dest_reg, wide_value);
// Skip the next virtual register slot since we already used it.
++dest_reg;
++arg_offset;
break;
}
// Handle all other primitives that are always 1 virtual register slot.
default:
new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg));
break;
}
}
} else {
if (is_range) {
DCHECK_EQ(num_regs, first_dest_reg + number_of_inputs);
}
CopyRegisters<is_range>(shadow_frame,
new_shadow_frame,
arg,
vregC,
first_dest_reg,
number_of_inputs);
self->EndAssertNoThreadSuspension(old_cause);
}
PerformCall(self,
accessor,
shadow_frame.GetMethod(),
first_dest_reg,
new_shadow_frame,
result,
use_interpreter_entrypoint);
if (string_init && !self->IsExceptionPending()) {
SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result);
}
return !self->IsExceptionPending();
}
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result) {
// Argument word count.
const uint16_t number_of_inputs =
(is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data);
// TODO: find a cleaner way to separate non-range and range information without duplicating
// code.
uint32_t arg[Instruction::kMaxVarArgRegs] = {}; // only used in invoke-XXX.
uint32_t vregC = 0;
if (is_range) {
vregC = inst->VRegC_3rc();
} else {
vregC = inst->VRegC_35c();
inst->GetVarArgs(arg, inst_data);
}
return DoCallCommon<is_range, do_assignability_check>(
called_method, self, shadow_frame,
result, number_of_inputs, arg, vregC);
}
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst,
const ShadowFrame& shadow_frame,
Thread* self,
JValue* result) {
DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY ||
inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE);
const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
if (!is_range) {
// Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
CHECK_LE(length, 5);
}
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return false;
}
uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
ObjPtr<mirror::Class> array_class = ResolveVerifyAndClinit(dex::TypeIndex(type_idx),
shadow_frame.GetMethod(),
self,
false,
do_access_check);
if (UNLIKELY(array_class == nullptr)) {
DCHECK(self->IsExceptionPending());
return false;
}
CHECK(array_class->IsArrayClass());
ObjPtr<mirror::Class> component_class = array_class->GetComponentType();
const bool is_primitive_int_component = component_class->IsPrimitiveInt();
if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) {
if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) {
ThrowRuntimeException("Bad filled array request for type %s",
component_class->PrettyDescriptor().c_str());
} else {
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Found type %s; filled-new-array not implemented for anything but 'int'",
component_class->PrettyDescriptor().c_str());
}
return false;
}
ObjPtr<mirror::Object> new_array = mirror::Array::Alloc<true>(
self,
array_class,
length,
array_class->GetComponentSizeShift(),
Runtime::Current()->GetHeap()->GetCurrentAllocator());
if (UNLIKELY(new_array == nullptr)) {
self->AssertPendingOOMException();
return false;
}
uint32_t arg[Instruction::kMaxVarArgRegs]; // only used in filled-new-array.
uint32_t vregC = 0; // only used in filled-new-array-range.
if (is_range) {
vregC = inst->VRegC_3rc();
} else {
inst->GetVarArgs(arg);
}
for (int32_t i = 0; i < length; ++i) {
size_t src_reg = is_range ? vregC + i : arg[i];
if (is_primitive_int_component) {
new_array->AsIntArray()->SetWithoutChecks<transaction_active>(
i, shadow_frame.GetVReg(src_reg));
} else {
new_array->AsObjectArray<mirror::Object>()->SetWithoutChecks<transaction_active>(
i, shadow_frame.GetVRegReference(src_reg));
}
}
result->SetL(new_array);
return true;
}
// TODO: Use ObjPtr here.
template<typename T>
static void RecordArrayElementsInTransactionImpl(mirror::PrimitiveArray<T>* array,
int32_t count)
REQUIRES_SHARED(Locks::mutator_lock_) {
Runtime* runtime = Runtime::Current();
for (int32_t i = 0; i < count; ++i) {
runtime->RecordWriteArray(array, i, array->GetWithoutChecks(i));
}
}
void RecordArrayElementsInTransaction(ObjPtr<mirror::Array> array, int32_t count)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsActiveTransaction());
DCHECK(array != nullptr);
DCHECK_LE(count, array->GetLength());
Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType();
switch (primitive_component_type) {
case Primitive::kPrimBoolean:
RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count);
break;
case Primitive::kPrimByte:
RecordArrayElementsInTransactionImpl(array->AsByteArray(), count);
break;
case Primitive::kPrimChar:
RecordArrayElementsInTransactionImpl(array->AsCharArray(), count);
break;
case Primitive::kPrimShort:
RecordArrayElementsInTransactionImpl(array->AsShortArray(), count);
break;
case Primitive::kPrimInt:
RecordArrayElementsInTransactionImpl(array->AsIntArray(), count);
break;
case Primitive::kPrimFloat:
RecordArrayElementsInTransactionImpl(array->AsFloatArray(), count);
break;
case Primitive::kPrimLong:
RecordArrayElementsInTransactionImpl(array->AsLongArray(), count);
break;
case Primitive::kPrimDouble:
RecordArrayElementsInTransactionImpl(array->AsDoubleArray(), count);
break;
default:
LOG(FATAL) << "Unsupported primitive type " << primitive_component_type
<< " in fill-array-data";
break;
}
}
// Explicit DoCall template function declarations.
#define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, uint16_t inst_data, \
JValue* result)
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true);
#undef EXPLICIT_DO_CALL_TEMPLATE_DECL
// Explicit DoInvokePolymorphic template function declarations.
#define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoInvokePolymorphic<_is_range>( \
Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \
uint16_t inst_data, JValue* result)
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true);
#undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL
// Explicit DoFilledNewArray template function declarations.
#define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst, \
const ShadowFrame& shadow_frame, \
Thread* self, JValue* result)
#define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active) \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active); \
EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active)
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false);
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true);
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL
} // namespace interpreter
} // namespace art