blob: 01ba84019877f1829988603362e847a120151243 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "heap.h"
#include <limits>
#include <vector>
#include "UniquePtr.h"
#include "image.h"
#include "mark_sweep.h"
#include "object.h"
#include "space.h"
#include "stl_util.h"
#include "timing_logger.h"
#include "thread_list.h"
namespace art {
std::vector<Space*> Heap::spaces_;
Space* Heap::alloc_space_ = NULL;
size_t Heap::maximum_size_ = 0;
size_t Heap::num_bytes_allocated_ = 0;
size_t Heap::num_objects_allocated_ = 0;
bool Heap::is_gc_running_ = false;
HeapBitmap* Heap::mark_bitmap_ = NULL;
HeapBitmap* Heap::live_bitmap_ = NULL;
Class* Heap::java_lang_ref_FinalizerReference_ = NULL;
Class* Heap::java_lang_ref_ReferenceQueue_ = NULL;
MemberOffset Heap::reference_referent_offset_ = MemberOffset(0);
MemberOffset Heap::reference_queue_offset_ = MemberOffset(0);
MemberOffset Heap::reference_queueNext_offset_ = MemberOffset(0);
MemberOffset Heap::reference_pendingNext_offset_ = MemberOffset(0);
MemberOffset Heap::finalizer_reference_zombie_offset_ = MemberOffset(0);
float Heap::target_utilization_ = 0.5;
Mutex* Heap::lock_ = NULL;
bool Heap::verify_objects_ = false;
class ScopedHeapLock {
public:
ScopedHeapLock() {
Heap::Lock();
}
~ScopedHeapLock() {
Heap::Unlock();
}
};
void Heap::Init(size_t initial_size, size_t maximum_size,
const std::vector<std::string>& image_file_names) {
const Runtime* runtime = Runtime::Current();
if (runtime->IsVerboseStartup()) {
LOG(INFO) << "Heap::Init entering";
}
// bounds of all spaces for allocating live and mark bitmaps
// there will be at least one space (the alloc space),
// so set to base to max and limit to min to start
byte* base = reinterpret_cast<byte*>(std::numeric_limits<uintptr_t>::max());
byte* limit = reinterpret_cast<byte*>(std::numeric_limits<uintptr_t>::min());
byte* requested_base = NULL;
std::vector<Space*> image_spaces;
for (size_t i = 0; i < image_file_names.size(); i++) {
Space* space = Space::CreateFromImage(image_file_names[i]);
if (space == NULL) {
LOG(FATAL) << "Failed to create space from " << image_file_names[i];
}
image_spaces.push_back(space);
spaces_.push_back(space);
byte* oat_limit_addr = space->GetImageHeader().GetOatLimitAddr();
if (oat_limit_addr > requested_base) {
requested_base = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_limit_addr),
kPageSize));
}
base = std::min(base, space->GetBase());
limit = std::max(limit, space->GetLimit());
}
alloc_space_ = Space::Create("alloc space", initial_size, maximum_size, requested_base);
if (alloc_space_ == NULL) {
LOG(FATAL) << "Failed to create alloc space";
}
base = std::min(base, alloc_space_->GetBase());
limit = std::max(limit, alloc_space_->GetLimit());
DCHECK_LT(base, limit);
size_t num_bytes = limit - base;
// Allocate the initial live bitmap.
UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create(base, num_bytes));
if (live_bitmap.get() == NULL) {
LOG(FATAL) << "Failed to create live bitmap";
}
// Allocate the initial mark bitmap.
UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create(base, num_bytes));
if (mark_bitmap.get() == NULL) {
LOG(FATAL) << "Failed to create mark bitmap";
}
spaces_.push_back(alloc_space_);
maximum_size_ = maximum_size;
live_bitmap_ = live_bitmap.release();
mark_bitmap_ = mark_bitmap.release();
num_bytes_allocated_ = 0;
num_objects_allocated_ = 0;
// TODO: allocate the card table
// Make image objects live (after live_bitmap_ is set)
for (size_t i = 0; i < image_spaces.size(); i++) {
RecordImageAllocations(image_spaces[i]);
}
Heap::EnableObjectValidation();
// It's still to early to take a lock because there are no threads yet,
// but we can create the heap lock now. We don't create it earlier to
// make it clear that you can't use locks during heap initialization.
lock_ = new Mutex("Heap lock");
if (runtime->IsVerboseStartup()) {
LOG(INFO) << "Heap::Init exiting";
}
}
void Heap::Destroy() {
ScopedHeapLock lock;
STLDeleteElements(&spaces_);
if (mark_bitmap_ != NULL) {
delete mark_bitmap_;
mark_bitmap_ = NULL;
}
if (live_bitmap_ != NULL) {
delete live_bitmap_;
}
live_bitmap_ = NULL;
}
Object* Heap::AllocObject(Class* klass, size_t byte_count) {
{
ScopedHeapLock lock;
DCHECK(klass == NULL || klass->GetDescriptor() == NULL ||
(klass->IsClassClass() && byte_count >= sizeof(Class)) ||
(klass->IsVariableSize() || klass->GetObjectSize() == byte_count));
DCHECK_GE(byte_count, sizeof(Object));
Object* obj = AllocateLocked(byte_count);
if (obj != NULL) {
obj->SetClass(klass);
return obj;
}
}
Thread::Current()->ThrowOutOfMemoryError(klass, byte_count);
return NULL;
}
bool Heap::IsHeapAddress(const Object* obj) {
// Note: we deliberately don't take the lock here, and mustn't test anything that would
// require taking the lock.
if (!IsAligned<kObjectAlignment>(obj)) {
return false;
}
// TODO
return true;
}
#if VERIFY_OBJECT_ENABLED
void Heap::VerifyObject(const Object* obj) {
if (!verify_objects_) {
return;
}
ScopedHeapLock lock;
Heap::VerifyObjectLocked(obj);
}
#endif
void Heap::VerifyObjectLocked(const Object* obj) {
lock_->AssertHeld();
if (obj != NULL) {
if (!IsAligned<kObjectAlignment>(obj)) {
LOG(FATAL) << "Object isn't aligned: " << obj;
} else if (!live_bitmap_->Test(obj)) {
// TODO: we don't hold a lock here as it is assumed the live bit map
// isn't changing if the mutator is running.
LOG(FATAL) << "Object is dead: " << obj;
}
// Ignore early dawn of the universe verifications
if (num_objects_allocated_ > 10) {
const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
Object::ClassOffset().Int32Value();
const Class* c = *reinterpret_cast<Class* const *>(raw_addr);
if (c == NULL) {
LOG(FATAL) << "Null class" << " in object: " << obj;
} else if (!IsAligned<kObjectAlignment>(c)) {
LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
} else if (!live_bitmap_->Test(c)) {
LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
}
// Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
// Note: we don't use the accessors here as they have internal sanity checks
// that we don't want to run
raw_addr = reinterpret_cast<const byte*>(c) +
Object::ClassOffset().Int32Value();
const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr);
raw_addr = reinterpret_cast<const byte*>(c_c) +
Object::ClassOffset().Int32Value();
const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr);
CHECK_EQ(c_c, c_c_c);
}
}
}
void Heap::VerificationCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
Heap::VerifyObjectLocked(obj);
}
void Heap::VerifyHeap() {
ScopedHeapLock lock;
live_bitmap_->Walk(Heap::VerificationCallback, NULL);
}
void Heap::RecordAllocationLocked(Space* space, const Object* obj) {
#ifndef NDEBUG
if (Runtime::Current()->IsStarted()) {
lock_->AssertHeld();
}
#endif
size_t size = space->AllocationSize(obj);
DCHECK_NE(size, 0u);
num_bytes_allocated_ += size;
num_objects_allocated_ += 1;
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = Thread::Current()->GetStats();
++global_stats->allocated_objects;
++thread_stats->allocated_objects;
global_stats->allocated_bytes += size;
thread_stats->allocated_bytes += size;
}
live_bitmap_->Set(obj);
}
void Heap::RecordFreeLocked(size_t freed_objects, size_t freed_bytes) {
lock_->AssertHeld();
if (freed_objects < num_objects_allocated_) {
num_objects_allocated_ -= freed_objects;
} else {
num_objects_allocated_ = 0;
}
if (freed_bytes < num_bytes_allocated_) {
num_bytes_allocated_ -= freed_bytes;
} else {
num_bytes_allocated_ = 0;
}
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = Thread::Current()->GetStats();
++global_stats->freed_objects;
++thread_stats->freed_objects;
global_stats->freed_bytes += freed_bytes;
thread_stats->freed_bytes += freed_bytes;
}
}
void Heap::RecordImageAllocations(Space* space) {
const Runtime* runtime = Runtime::Current();
if (runtime->IsVerboseStartup()) {
LOG(INFO) << "Heap::RecordImageAllocations entering";
}
DCHECK(!Runtime::Current()->IsStarted());
CHECK(space != NULL);
CHECK(live_bitmap_ != NULL);
byte* current = space->GetBase() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
while (current < space->GetLimit()) {
DCHECK_ALIGNED(current, kObjectAlignment);
const Object* obj = reinterpret_cast<const Object*>(current);
live_bitmap_->Set(obj);
current += RoundUp(obj->SizeOf(), kObjectAlignment);
}
if (runtime->IsVerboseStartup()) {
LOG(INFO) << "Heap::RecordImageAllocations exiting";
}
}
Object* Heap::AllocateLocked(size_t size) {
lock_->AssertHeld();
DCHECK(alloc_space_ != NULL);
Space* space = alloc_space_;
Object* obj = AllocateLocked(space, size);
if (obj != NULL) {
RecordAllocationLocked(space, obj);
}
return obj;
}
Object* Heap::AllocateLocked(Space* space, size_t size) {
lock_->AssertHeld();
// Fail impossible allocations. TODO: collect soft references.
if (size > maximum_size_) {
return NULL;
}
Object* ptr = space->AllocWithoutGrowth(size);
if (ptr != NULL) {
return ptr;
}
// The allocation failed. If the GC is running, block until it
// completes and retry.
if (is_gc_running_) {
// The GC is concurrently tracing the heap. Release the heap
// lock, wait for the GC to complete, and retrying allocating.
WaitForConcurrentGcToComplete();
ptr = space->AllocWithoutGrowth(size);
if (ptr != NULL) {
return ptr;
}
}
// Another failure. Our thread was starved or there may be too many
// live objects. Try a foreground GC. This will have no effect if
// the concurrent GC is already running.
if (Runtime::Current()->HasStatsEnabled()) {
++Runtime::Current()->GetStats()->gc_for_alloc_count;
++Thread::Current()->GetStats()->gc_for_alloc_count;
}
LOG(INFO) << "GC_FOR_ALLOC: AllocWithoutGrowth: TODO: test";
CollectGarbageInternal();
ptr = space->AllocWithoutGrowth(size);
if (ptr != NULL) {
return ptr;
}
LOG(INFO) << "GC_FOR_ALLOC: AllocWithGrowth: TODO: test";
// Even that didn't work; this is an exceptional state.
// Try harder, growing the heap if necessary.
ptr = space->AllocWithGrowth(size);
if (ptr != NULL) {
//size_t new_footprint = dvmHeapSourceGetIdealFootprint();
size_t new_footprint = space->GetMaxAllowedFootprint();
// OLD-TODO: may want to grow a little bit more so that the amount of
// free space is equal to the old free space + the
// utilization slop for the new allocation.
LOG(INFO) << "Grow heap (frag case) to " << new_footprint / MB
<< "for " << size << "-byte allocation";
return ptr;
}
// Most allocations should have succeeded by now, so the heap is
// really full, really fragmented, or the requested size is really
// big. Do another GC, collecting SoftReferences this time. The VM
// spec requires that all SoftReferences have been collected and
// cleared before throwing an OOME.
// OLD-TODO: wait for the finalizers from the previous GC to finish
LOG(INFO) << "Forcing collection of SoftReferences for "
<< size << "-byte allocation";
CollectGarbageInternal();
ptr = space->AllocWithGrowth(size);
if (ptr != NULL) {
return ptr;
}
LOG(ERROR) << "Out of memory on a " << size << " byte allocation";
// TODO: tell the HeapSource to dump its state
// TODO: dump stack traces for all threads
return NULL;
}
int64_t Heap::GetMaxMemory() {
UNIMPLEMENTED(WARNING);
return 0;
}
int64_t Heap::GetTotalMemory() {
UNIMPLEMENTED(WARNING);
return 0;
}
int64_t Heap::GetFreeMemory() {
UNIMPLEMENTED(WARNING);
return 0;
}
class InstanceCounter {
public:
InstanceCounter(Class* c, bool count_assignable)
: class_(c), count_assignable_(count_assignable), count_(0) {
}
size_t GetCount() {
return count_;
}
static void Callback(Object* o, void* arg) {
reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o);
}
private:
void VisitInstance(Object* o) {
Class* instance_class = o->GetClass();
if (count_assignable_) {
if (instance_class == class_) {
++count_;
}
} else {
if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) {
++count_;
}
}
}
Class* class_;
bool count_assignable_;
size_t count_;
};
int64_t Heap::CountInstances(Class* c, bool count_assignable) {
ScopedHeapLock lock;
InstanceCounter counter(c, count_assignable);
live_bitmap_->Walk(InstanceCounter::Callback, &counter);
return counter.GetCount();
}
void Heap::CollectGarbage() {
ScopedHeapLock lock;
CollectGarbageInternal();
}
void Heap::CollectGarbageInternal() {
lock_->AssertHeld();
ThreadList* thread_list = Runtime::Current()->GetThreadList();
thread_list->SuspendAll();
size_t initial_size = num_bytes_allocated_;
TimingLogger timings("CollectGarbageInternal");
uint64_t t0 = NanoTime();
Object* cleared_references = NULL;
{
MarkSweep mark_sweep;
timings.AddSplit("ctor");
mark_sweep.Init();
timings.AddSplit("Init");
mark_sweep.MarkRoots();
timings.AddSplit("MarkRoots");
// Push marked roots onto the mark stack
// TODO: if concurrent
// unlock heap
// thread_list->ResumeAll();
mark_sweep.RecursiveMark();
timings.AddSplit("RecursiveMark");
// TODO: if concurrent
// lock heap
// thread_list->SuspendAll();
// re-mark root set
// scan dirty objects
mark_sweep.ProcessReferences(false);
timings.AddSplit("ProcessReferences");
// TODO: if concurrent
// swap bitmaps
mark_sweep.Sweep();
timings.AddSplit("Sweep");
cleared_references = mark_sweep.GetClearedReferences();
}
GrowForUtilization();
timings.AddSplit("GrowForUtilization");
uint64_t t1 = NanoTime();
thread_list->ResumeAll();
EnqueueClearedReferences(&cleared_references);
// TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging.
size_t bytes_freed = initial_size - num_bytes_allocated_;
bool is_small = (bytes_freed > 0 && bytes_freed < 1024);
size_t kib_freed = (bytes_freed > 0 ? std::max(bytes_freed/1024, 1U) : 0);
size_t footprint = alloc_space_->Size();
size_t percentFree = 100 - static_cast<size_t>(100.0f * float(num_bytes_allocated_) / footprint);
uint32_t duration = (t1 - t0)/1000/1000;
LOG(INFO) << "GC freed " << (is_small ? "<" : "") << kib_freed << "KiB, "
<< percentFree << "% free "
<< (num_bytes_allocated_/1024) << "KiB/" << (footprint/1024) << "KiB, "
<< "paused " << duration << "ms";
timings.Dump();
}
void Heap::WaitForConcurrentGcToComplete() {
lock_->AssertHeld();
}
/* Terminology:
* 1. Footprint: Capacity we allocate from system.
* 2. Active space: a.k.a. alloc_space_.
* 3. Soft footprint: external allocation + spaces footprint + active space footprint
* 4. Overhead: soft footprint excluding active.
*
* Layout: (The spaces below might not be contiguous, but are lumped together to depict size.)
* |----------------------spaces footprint--------- --------------|----active space footprint----|
* |--active space allocated--|
* |--------------------soft footprint (include active)--------------------------------------|
* |----------------soft footprint excluding active---------------|
* |------------soft limit-------...|
* |------------------------------------ideal footprint-----------------------------------------...|
*
*/
// Sets the maximum number of bytes that the heap is allowed to
// allocate from the system. Clamps to the appropriate maximum
// value.
// Old spaces will count against the ideal size.
//
void Heap::SetIdealFootprint(size_t max_allowed_footprint)
{
if (max_allowed_footprint > Heap::maximum_size_) {
LOG(INFO) << "Clamp target GC heap from " << max_allowed_footprint
<< " to " << Heap::maximum_size_;
max_allowed_footprint = Heap::maximum_size_;
}
alloc_space_->SetMaxAllowedFootprint(max_allowed_footprint);
}
// kHeapIdealFree is the ideal maximum free size, when we grow the heap for
// utlization.
static const size_t kHeapIdealFree = 2 * MB;
// kHeapMinFree guarantees that you always have at least 512 KB free, when
// you grow for utilization, regardless of target utilization ratio.
static const size_t kHeapMinFree = kHeapIdealFree / 4;
// Given the current contents of the active space, increase the allowed
// heap footprint to match the target utilization ratio. This should
// only be called immediately after a full garbage collection.
//
void Heap::GrowForUtilization() {
lock_->AssertHeld();
// We know what our utilization is at this moment.
// This doesn't actually resize any memory. It just lets the heap grow more
// when necessary.
size_t target_size(num_bytes_allocated_ / Heap::GetTargetHeapUtilization());
if (target_size > num_bytes_allocated_ + kHeapIdealFree) {
target_size = num_bytes_allocated_ + kHeapIdealFree;
} else if (target_size < num_bytes_allocated_ + kHeapMinFree) {
target_size = num_bytes_allocated_ + kHeapMinFree;
}
SetIdealFootprint(target_size);
}
pid_t Heap::GetLockOwner() {
return lock_->GetOwner();
}
void Heap::Lock() {
// Grab the lock, but put ourselves into Thread::kVmWait if it looks
// like we're going to have to wait on the mutex. This prevents
// deadlock if another thread is calling CollectGarbageInternal,
// since they will have the heap lock and be waiting for mutators to
// suspend.
if (!lock_->TryLock()) {
ScopedThreadStateChange tsc(Thread::Current(), Thread::kVmWait);
lock_->Lock();
}
}
void Heap::Unlock() {
lock_->Unlock();
}
void Heap::SetWellKnownClasses(Class* java_lang_ref_FinalizerReference,
Class* java_lang_ref_ReferenceQueue) {
java_lang_ref_FinalizerReference_ = java_lang_ref_FinalizerReference;
java_lang_ref_ReferenceQueue_ = java_lang_ref_ReferenceQueue;
CHECK(java_lang_ref_FinalizerReference_ != NULL);
CHECK(java_lang_ref_ReferenceQueue_ != NULL);
}
void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
MemberOffset reference_queue_offset,
MemberOffset reference_queueNext_offset,
MemberOffset reference_pendingNext_offset,
MemberOffset finalizer_reference_zombie_offset) {
reference_referent_offset_ = reference_referent_offset;
reference_queue_offset_ = reference_queue_offset;
reference_queueNext_offset_ = reference_queueNext_offset;
reference_pendingNext_offset_ = reference_pendingNext_offset;
finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
}
Object* Heap::GetReferenceReferent(Object* reference) {
DCHECK(reference != NULL);
DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
return reference->GetFieldObject<Object*>(reference_referent_offset_, true);
}
void Heap::ClearReferenceReferent(Object* reference) {
DCHECK(reference != NULL);
DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
reference->SetFieldObject(reference_referent_offset_, NULL, true);
}
// Returns true if the reference object has not yet been enqueued.
bool Heap::IsEnqueuable(const Object* ref) {
DCHECK(ref != NULL);
const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false);
const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false);
return (queue != NULL) && (queue_next == NULL);
}
void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) {
DCHECK(ref != NULL);
CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL);
CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL);
EnqueuePendingReference(ref, cleared_reference_list);
}
void Heap::EnqueuePendingReference(Object* ref, Object** list) {
DCHECK(ref != NULL);
DCHECK(list != NULL);
if (*list == NULL) {
ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
*list = ref;
} else {
Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
ref->SetFieldObject(reference_pendingNext_offset_, head, false);
(*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
}
}
Object* Heap::DequeuePendingReference(Object** list) {
DCHECK(list != NULL);
DCHECK(*list != NULL);
Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
Object* ref;
if (*list == head) {
ref = *list;
*list = NULL;
} else {
Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
(*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
ref = head;
}
ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
return ref;
}
void Heap::AddFinalizerReference(Object* object) {
static Method* FinalizerReference_add =
java_lang_ref_FinalizerReference_->FindDirectMethod("add", "(Ljava/lang/Object;)V");
DCHECK(FinalizerReference_add != NULL);
Object* args[] = { object };
FinalizerReference_add->Invoke(Thread::Current(), NULL, reinterpret_cast<byte*>(&args), NULL);
}
void Heap::EnqueueClearedReferences(Object** cleared) {
DCHECK(cleared != NULL);
if (*cleared != NULL) {
static Method* ReferenceQueue_add =
java_lang_ref_ReferenceQueue_->FindDirectMethod("add", "(Ljava/lang/ref/Reference;)V");
DCHECK(ReferenceQueue_add != NULL);
Thread* self = Thread::Current();
ScopedThreadStateChange tsc(self, Thread::kRunnable);
Object* args[] = { *cleared };
ReferenceQueue_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL);
*cleared = NULL;
}
}
} // namespace art