| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ |
| #define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ |
| |
| #include "memory_region.h" |
| |
| #include "bit_utils.h" |
| #include "memory_tool.h" |
| |
| namespace art { |
| |
| // Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for |
| // abstracting away the bit start offset to avoid needing passing as an argument everywhere. |
| class BitMemoryRegion final : public ValueObject { |
| public: |
| struct Less { |
| bool operator()(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) const { |
| return Compare(lhs, rhs) < 0; |
| } |
| }; |
| |
| BitMemoryRegion() = default; |
| ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) { |
| // Normalize the data pointer. Note that bit_start may be negative. |
| uint8_t* aligned_data = AlignDown(data + (bit_start >> kBitsPerByteLog2), sizeof(uintptr_t)); |
| data_ = reinterpret_cast<uintptr_t*>(aligned_data); |
| bit_start_ = bit_start + kBitsPerByte * (data - aligned_data); |
| bit_size_ = bit_size; |
| DCHECK_LT(bit_start_, static_cast<size_t>(kBitsPerIntPtrT)); |
| } |
| ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region) |
| : BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) { |
| } |
| ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length) |
| : BitMemoryRegion(region) { |
| *this = Subregion(bit_offset, bit_length); |
| } |
| |
| ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; } |
| |
| const uint8_t* data() const { |
| DCHECK_ALIGNED(bit_start_, kBitsPerByte); |
| return reinterpret_cast<const uint8_t*>(data_) + bit_start_ / kBitsPerByte; |
| } |
| |
| size_t size_in_bits() const { |
| return bit_size_; |
| } |
| |
| void Resize(size_t bit_size) { |
| bit_size_ = bit_size; |
| } |
| |
| ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const { |
| DCHECK_LE(bit_offset, bit_size_); |
| DCHECK_LE(bit_length, bit_size_ - bit_offset); |
| BitMemoryRegion result = *this; |
| result.bit_start_ += bit_offset; |
| result.bit_size_ = bit_length; |
| return result; |
| } |
| |
| ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const { |
| DCHECK_LE(bit_offset, bit_size_); |
| BitMemoryRegion result = *this; |
| result.bit_start_ += bit_offset; |
| result.bit_size_ -= bit_offset; |
| return result; |
| } |
| |
| // Load a single bit in the region. The bit at offset 0 is the least |
| // significant bit in the first byte. |
| ALWAYS_INLINE bool LoadBit(size_t bit_offset) const { |
| DCHECK_LT(bit_offset, bit_size_); |
| uint8_t* data = reinterpret_cast<uint8_t*>(data_); |
| size_t index = (bit_start_ + bit_offset) / kBitsPerByte; |
| size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; |
| return ((data[index] >> shift) & 1) != 0; |
| } |
| |
| ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) { |
| DCHECK_LT(bit_offset, bit_size_); |
| uint8_t* data = reinterpret_cast<uint8_t*>(data_); |
| size_t index = (bit_start_ + bit_offset) / kBitsPerByte; |
| size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; |
| data[index] &= ~(1 << shift); // Clear bit. |
| data[index] |= (value ? 1 : 0) << shift; // Set bit. |
| DCHECK_EQ(value, LoadBit(bit_offset)); |
| } |
| |
| // Load `bit_length` bits from `data` starting at given `bit_offset`. |
| // The least significant bit is stored in the smallest memory offset. |
| ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment. |
| ALWAYS_INLINE uint32_t LoadBits(size_t bit_offset, size_t bit_length) const { |
| DCHECK(IsAligned<sizeof(uintptr_t)>(data_)); |
| DCHECK_LE(bit_offset, bit_size_); |
| DCHECK_LE(bit_length, bit_size_ - bit_offset); |
| DCHECK_LE(bit_length, BitSizeOf<uint32_t>()); |
| if (bit_length == 0) { |
| return 0; |
| } |
| uintptr_t mask = std::numeric_limits<uintptr_t>::max() >> (kBitsPerIntPtrT - bit_length); |
| size_t index = (bit_start_ + bit_offset) / kBitsPerIntPtrT; |
| size_t shift = (bit_start_ + bit_offset) % kBitsPerIntPtrT; |
| uintptr_t value = data_[index] >> shift; |
| size_t finished_bits = kBitsPerIntPtrT - shift; |
| if (finished_bits < bit_length) { |
| value |= data_[index + 1] << finished_bits; |
| } |
| return value & mask; |
| } |
| |
| // Store `bit_length` bits in `data` starting at given `bit_offset`. |
| // The least significant bit is stored in the smallest memory offset. |
| ALWAYS_INLINE void StoreBits(size_t bit_offset, uint32_t value, size_t bit_length) { |
| DCHECK_LE(bit_offset, bit_size_); |
| DCHECK_LE(bit_length, bit_size_ - bit_offset); |
| DCHECK_LE(bit_length, BitSizeOf<uint32_t>()); |
| DCHECK_LE(value, MaxInt<uint32_t>(bit_length)); |
| if (bit_length == 0) { |
| return; |
| } |
| // Write data byte by byte to avoid races with other threads |
| // on bytes that do not overlap with this region. |
| uint8_t* data = reinterpret_cast<uint8_t*>(data_); |
| uint32_t mask = std::numeric_limits<uint32_t>::max() >> (BitSizeOf<uint32_t>() - bit_length); |
| size_t index = (bit_start_ + bit_offset) / kBitsPerByte; |
| size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; |
| data[index] &= ~(mask << shift); // Clear bits. |
| data[index] |= (value << shift); // Set bits. |
| size_t finished_bits = kBitsPerByte - shift; |
| for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) { |
| data[index + i] &= ~(mask >> finished_bits); // Clear bits. |
| data[index + i] |= (value >> finished_bits); // Set bits. |
| } |
| DCHECK_EQ(value, LoadBits(bit_offset, bit_length)); |
| } |
| |
| // Store bits from other bit region. |
| ALWAYS_INLINE void StoreBits(size_t bit_offset, const BitMemoryRegion& src, size_t bit_length) { |
| DCHECK_LE(bit_offset, bit_size_); |
| DCHECK_LE(bit_length, bit_size_ - bit_offset); |
| size_t bit = 0; |
| constexpr size_t kNumBits = BitSizeOf<uint32_t>(); |
| for (; bit + kNumBits <= bit_length; bit += kNumBits) { |
| StoreBits(bit_offset + bit, src.LoadBits(bit, kNumBits), kNumBits); |
| } |
| size_t num_bits = bit_length - bit; |
| StoreBits(bit_offset + bit, src.LoadBits(bit, num_bits), num_bits); |
| } |
| |
| // Count the number of set bits within the given bit range. |
| ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const { |
| DCHECK_LE(bit_offset, bit_size_); |
| DCHECK_LE(bit_length, bit_size_ - bit_offset); |
| size_t count = 0; |
| size_t bit = 0; |
| constexpr size_t kNumBits = BitSizeOf<uint32_t>(); |
| for (; bit + kNumBits <= bit_length; bit += kNumBits) { |
| count += POPCOUNT(LoadBits(bit_offset + bit, kNumBits)); |
| } |
| count += POPCOUNT(LoadBits(bit_offset + bit, bit_length - bit)); |
| return count; |
| } |
| |
| static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) { |
| if (lhs.size_in_bits() != rhs.size_in_bits()) { |
| return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1; |
| } |
| size_t bit = 0; |
| constexpr size_t kNumBits = BitSizeOf<uint32_t>(); |
| for (; bit + kNumBits <= lhs.size_in_bits(); bit += kNumBits) { |
| uint32_t lhs_bits = lhs.LoadBits(bit, kNumBits); |
| uint32_t rhs_bits = rhs.LoadBits(bit, kNumBits); |
| if (lhs_bits != rhs_bits) { |
| return (lhs_bits < rhs_bits) ? -1 : 1; |
| } |
| } |
| size_t num_bits = lhs.size_in_bits() - bit; |
| uint32_t lhs_bits = lhs.LoadBits(bit, num_bits); |
| uint32_t rhs_bits = rhs.LoadBits(bit, num_bits); |
| if (lhs_bits != rhs_bits) { |
| return (lhs_bits < rhs_bits) ? -1 : 1; |
| } |
| return 0; |
| } |
| |
| private: |
| // The data pointer must be naturally aligned. This makes loading code faster. |
| uintptr_t* data_ = nullptr; |
| size_t bit_start_ = 0; |
| size_t bit_size_ = 0; |
| }; |
| |
| constexpr uint32_t kVarintHeaderBits = 4; |
| constexpr uint32_t kVarintSmallValue = 11; // Maximum value which is stored as-is. |
| |
| class BitMemoryReader { |
| public: |
| BitMemoryReader(BitMemoryReader&&) = default; |
| explicit BitMemoryReader(BitMemoryRegion data) |
| : finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) { |
| } |
| explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0) |
| : finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) { |
| } |
| |
| const uint8_t* data() const { return finished_region_.data(); } |
| |
| BitMemoryRegion GetReadRegion() const { return finished_region_; } |
| |
| size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); } |
| |
| ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) { |
| size_t bit_offset = finished_region_.size_in_bits(); |
| finished_region_.Resize(bit_offset + bit_length); |
| return finished_region_.Subregion(bit_offset, bit_length); |
| } |
| |
| ALWAYS_INLINE uint32_t ReadBits(size_t bit_length) { |
| return ReadRegion(bit_length).LoadBits(/* bit_offset */ 0, bit_length); |
| } |
| |
| ALWAYS_INLINE bool ReadBit() { |
| return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0); |
| } |
| |
| // Read variable-length bit-packed integer. |
| // The first four bits determine the variable length of the encoded integer: |
| // Values 0..11 represent the result as-is, with no further following bits. |
| // Values 12..15 mean the result is in the next 8/16/24/32-bits respectively. |
| ALWAYS_INLINE uint32_t ReadVarint() { |
| uint32_t x = ReadBits(kVarintHeaderBits); |
| if (x > kVarintSmallValue) { |
| x = ReadBits((x - kVarintSmallValue) * kBitsPerByte); |
| } |
| return x; |
| } |
| |
| // Optimized version to read several consecutive varints. |
| // It reads all the headers at once in a single bit read. |
| template<size_t N> // Inference works only with ref-arrays. |
| ALWAYS_INLINE void ReadVarints(uint32_t (&varints)[N]) { |
| constexpr size_t kBatch = std::min(N, sizeof(uint32_t) * kBitsPerByte / kVarintHeaderBits); |
| uint32_t headers = ReadBits(kBatch * kVarintHeaderBits); |
| uint32_t* out = varints; |
| for (size_t i = 0; i < kBatch; out++) { |
| uint32_t header = BitFieldExtract(headers, (i++) * kVarintHeaderBits, kVarintHeaderBits); |
| if (LIKELY(header <= kVarintSmallValue)) { |
| // Fast-path: consume one of the headers and continue to the next varint. |
| *out = header; |
| } else { |
| // Slow-path: rollback reader, read large value, and read remaning headers. |
| finished_region_.Resize(finished_region_.size_in_bits() - (kBatch-i) * kVarintHeaderBits); |
| *out = ReadBits((header - kVarintSmallValue) * kBitsPerByte); |
| headers = ReadBits((kBatch-i) * kVarintHeaderBits) << (i * kVarintHeaderBits); |
| } |
| } |
| for (size_t i = kBatch; i < N; i++, out++) { |
| *out = ReadVarint(); |
| } |
| } |
| |
| private: |
| // Represents all of the bits which were read so far. There is no upper bound. |
| // Therefore, by definition, the "cursor" is always at the end of the region. |
| BitMemoryRegion finished_region_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BitMemoryReader); |
| }; |
| |
| template<typename Vector> |
| class BitMemoryWriter { |
| public: |
| explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0) |
| : out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) { |
| DCHECK_EQ(NumberOfWrittenBits(), 0u); |
| } |
| |
| BitMemoryRegion GetWrittenRegion() const { |
| return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_); |
| } |
| |
| const uint8_t* data() const { return out_->data(); } |
| |
| size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; } |
| |
| ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) { |
| out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length)); |
| BitMemoryRegion region(out_->data(), bit_offset_, bit_length); |
| DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow"; |
| bit_offset_ += bit_length; |
| return region; |
| } |
| |
| ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) { |
| Allocate(region.size_in_bits()).StoreBits(/* bit_offset */ 0, region, region.size_in_bits()); |
| } |
| |
| ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) { |
| Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length); |
| } |
| |
| ALWAYS_INLINE void WriteBit(bool value) { |
| Allocate(1).StoreBit(/* bit_offset */ 0, value); |
| } |
| |
| // Write variable-length bit-packed integer. |
| ALWAYS_INLINE void WriteVarint(uint32_t value) { |
| if (value <= kVarintSmallValue) { |
| WriteBits(value, kVarintHeaderBits); |
| } else { |
| uint32_t num_bits = RoundUp(MinimumBitsToStore(value), kBitsPerByte); |
| uint32_t header = kVarintSmallValue + num_bits / kBitsPerByte; |
| WriteBits(header, kVarintHeaderBits); |
| WriteBits(value, num_bits); |
| } |
| } |
| |
| ALWAYS_INLINE void ByteAlign() { |
| size_t end = bit_start_ + bit_offset_; |
| bit_offset_ += RoundUp(end, kBitsPerByte) - end; |
| } |
| |
| private: |
| Vector* out_; |
| size_t bit_start_; |
| size_t bit_offset_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter); |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ |