| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "codegen_x86.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "dex/reg_storage_eq.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| void X86Mir2Lir::GenArithOpFloat(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { |
| X86OpCode op = kX86Nop; |
| RegLocation rl_result; |
| |
| /* |
| * Don't attempt to optimize register usage since these opcodes call out to |
| * the handlers. |
| */ |
| switch (opcode) { |
| case Instruction::ADD_FLOAT_2ADDR: |
| case Instruction::ADD_FLOAT: |
| op = kX86AddssRR; |
| break; |
| case Instruction::SUB_FLOAT_2ADDR: |
| case Instruction::SUB_FLOAT: |
| op = kX86SubssRR; |
| break; |
| case Instruction::DIV_FLOAT_2ADDR: |
| case Instruction::DIV_FLOAT: |
| op = kX86DivssRR; |
| break; |
| case Instruction::MUL_FLOAT_2ADDR: |
| case Instruction::MUL_FLOAT: |
| op = kX86MulssRR; |
| break; |
| case Instruction::REM_FLOAT_2ADDR: |
| case Instruction::REM_FLOAT: |
| GenRemFP(rl_dest, rl_src1, rl_src2, false /* is_double */); |
| return; |
| case Instruction::NEG_FLOAT: |
| GenNegFloat(rl_dest, rl_src1); |
| return; |
| default: |
| LOG(FATAL) << "Unexpected opcode: " << opcode; |
| } |
| rl_src1 = LoadValue(rl_src1, kFPReg); |
| rl_src2 = LoadValue(rl_src2, kFPReg); |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| RegStorage r_dest = rl_result.reg; |
| RegStorage r_src1 = rl_src1.reg; |
| RegStorage r_src2 = rl_src2.reg; |
| if (r_dest == r_src2) { |
| r_src2 = AllocTempSingle(); |
| OpRegCopy(r_src2, r_dest); |
| } |
| OpRegCopy(r_dest, r_src1); |
| NewLIR2(op, r_dest.GetReg(), r_src2.GetReg()); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenArithOpDouble(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { |
| DCHECK(rl_dest.wide); |
| DCHECK(rl_dest.fp); |
| DCHECK(rl_src1.wide); |
| DCHECK(rl_src1.fp); |
| DCHECK(rl_src2.wide); |
| DCHECK(rl_src2.fp); |
| X86OpCode op = kX86Nop; |
| RegLocation rl_result; |
| |
| switch (opcode) { |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::ADD_DOUBLE: |
| op = kX86AddsdRR; |
| break; |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE: |
| op = kX86SubsdRR; |
| break; |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE: |
| op = kX86DivsdRR; |
| break; |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE: |
| op = kX86MulsdRR; |
| break; |
| case Instruction::REM_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE: |
| GenRemFP(rl_dest, rl_src1, rl_src2, true /* is_double */); |
| return; |
| case Instruction::NEG_DOUBLE: |
| GenNegDouble(rl_dest, rl_src1); |
| return; |
| default: |
| LOG(FATAL) << "Unexpected opcode: " << opcode; |
| } |
| rl_src1 = LoadValueWide(rl_src1, kFPReg); |
| rl_src2 = LoadValueWide(rl_src2, kFPReg); |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| if (rl_result.reg == rl_src2.reg) { |
| rl_src2.reg = AllocTempDouble(); |
| OpRegCopy(rl_src2.reg, rl_result.reg); |
| } |
| OpRegCopy(rl_result.reg, rl_src1.reg); |
| NewLIR2(op, rl_result.reg.GetReg(), rl_src2.reg.GetReg()); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1, |
| int32_t constant) { |
| // TODO: need x86 implementation. |
| UNUSED(rl_dest, rl_src1, constant); |
| LOG(FATAL) << "Unimplemented GenMultiplyByConstantFloat in x86"; |
| } |
| |
| void X86Mir2Lir::GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1, |
| int64_t constant) { |
| // TODO: need x86 implementation. |
| UNUSED(rl_dest, rl_src1, constant); |
| LOG(FATAL) << "Unimplemented GenMultiplyByConstantDouble in x86"; |
| } |
| |
| void X86Mir2Lir::GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double) { |
| // Compute offsets to the source and destination VRs on stack |
| int src_v_reg_offset = SRegOffset(rl_src.s_reg_low); |
| int dest_v_reg_offset = SRegOffset(rl_dest.s_reg_low); |
| |
| // Update the in-register state of source. |
| rl_src = UpdateLocWide(rl_src); |
| |
| // All memory accesses below reference dalvik regs. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| |
| // If the source is in physical register, then put it in its location on stack. |
| if (rl_src.location == kLocPhysReg) { |
| RegisterInfo* reg_info = GetRegInfo(rl_src.reg); |
| |
| if (reg_info != nullptr && reg_info->IsTemp()) { |
| // Calling FlushSpecificReg because it will only write back VR if it is dirty. |
| FlushSpecificReg(reg_info); |
| // ResetDef to prevent NullifyRange from removing stores. |
| ResetDef(rl_src.reg); |
| } else { |
| // It must have been register promoted if it is not a temp but is still in physical |
| // register. Since we need it to be in memory to convert, we place it there now. |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| StoreBaseDisp(rs_rSP, src_v_reg_offset, rl_src.reg, k64, kNotVolatile); |
| } |
| } |
| |
| // Push the source virtual register onto the x87 stack. |
| LIR *fild64 = NewLIR2NoDest(kX86Fild64M, rs_rX86_SP_32.GetReg(), |
| src_v_reg_offset + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(fild64, (src_v_reg_offset + LOWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is64bit */); |
| |
| // Now pop off x87 stack and store it in the destination VR's stack location. |
| int opcode = is_double ? kX86Fstp64M : kX86Fstp32M; |
| int displacement = is_double ? dest_v_reg_offset + LOWORD_OFFSET : dest_v_reg_offset; |
| LIR *fstp = NewLIR2NoDest(opcode, rs_rX86_SP_32.GetReg(), displacement); |
| AnnotateDalvikRegAccess(fstp, displacement >> 2, false /* is_load */, is_double); |
| |
| /* |
| * The result is in a physical register if it was in a temp or was register |
| * promoted. For that reason it is enough to check if it is in physical |
| * register. If it is, then we must do all of the bookkeeping necessary to |
| * invalidate temp (if needed) and load in promoted register (if needed). |
| * If the result's location is in memory, then we do not need to do anything |
| * more since the fstp has already placed the correct value in memory. |
| */ |
| RegLocation rl_result = is_double ? UpdateLocWideTyped(rl_dest) : UpdateLocTyped(rl_dest); |
| if (rl_result.location == kLocPhysReg) { |
| /* |
| * We already know that the result is in a physical register but do not know if it is the |
| * right class. So we call EvalLoc(Wide) first which will ensure that it will get moved to the |
| * correct register class. |
| */ |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| if (is_double) { |
| LoadBaseDisp(rs_rSP, dest_v_reg_offset, rl_result.reg, k64, kNotVolatile); |
| |
| StoreFinalValueWide(rl_dest, rl_result); |
| } else { |
| Load32Disp(rs_rSP, dest_v_reg_offset, rl_result.reg); |
| |
| StoreFinalValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::GenConversion(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src) { |
| RegisterClass rcSrc = kFPReg; |
| X86OpCode op = kX86Nop; |
| RegLocation rl_result; |
| switch (opcode) { |
| case Instruction::INT_TO_FLOAT: |
| rcSrc = kCoreReg; |
| op = kX86Cvtsi2ssRR; |
| break; |
| case Instruction::DOUBLE_TO_FLOAT: |
| rcSrc = kFPReg; |
| op = kX86Cvtsd2ssRR; |
| break; |
| case Instruction::FLOAT_TO_DOUBLE: |
| rcSrc = kFPReg; |
| op = kX86Cvtss2sdRR; |
| break; |
| case Instruction::INT_TO_DOUBLE: |
| rcSrc = kCoreReg; |
| op = kX86Cvtsi2sdRR; |
| break; |
| case Instruction::FLOAT_TO_INT: { |
| rl_src = LoadValue(rl_src, kFPReg); |
| // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc() |
| ClobberSReg(rl_dest.s_reg_low); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage temp_reg = AllocTempSingle(); |
| |
| LoadConstant(rl_result.reg, 0x7fffffff); |
| NewLIR2(kX86Cvtsi2ssRR, temp_reg.GetReg(), rl_result.reg.GetReg()); |
| NewLIR2(kX86ComissRR, rl_src.reg.GetReg(), temp_reg.GetReg()); |
| LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe); |
| LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP); |
| NewLIR2(kX86Cvttss2siRR, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| LIR* branch_normal = NewLIR1(kX86Jmp8, 0); |
| branch_na_n->target = NewLIR0(kPseudoTargetLabel); |
| NewLIR2(kX86Xor32RR, rl_result.reg.GetReg(), rl_result.reg.GetReg()); |
| branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel); |
| branch_normal->target = NewLIR0(kPseudoTargetLabel); |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| case Instruction::DOUBLE_TO_INT: { |
| rl_src = LoadValueWide(rl_src, kFPReg); |
| // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc() |
| ClobberSReg(rl_dest.s_reg_low); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage temp_reg = AllocTempDouble(); |
| |
| LoadConstant(rl_result.reg, 0x7fffffff); |
| NewLIR2(kX86Cvtsi2sdRR, temp_reg.GetReg(), rl_result.reg.GetReg()); |
| NewLIR2(kX86ComisdRR, rl_src.reg.GetReg(), temp_reg.GetReg()); |
| LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe); |
| LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP); |
| NewLIR2(kX86Cvttsd2siRR, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| LIR* branch_normal = NewLIR1(kX86Jmp8, 0); |
| branch_na_n->target = NewLIR0(kPseudoTargetLabel); |
| NewLIR2(kX86Xor32RR, rl_result.reg.GetReg(), rl_result.reg.GetReg()); |
| branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel); |
| branch_normal->target = NewLIR0(kPseudoTargetLabel); |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| case Instruction::LONG_TO_DOUBLE: |
| if (cu_->target64) { |
| rcSrc = kCoreReg; |
| op = kX86Cvtsqi2sdRR; |
| break; |
| } |
| GenLongToFP(rl_dest, rl_src, true /* is_double */); |
| return; |
| case Instruction::LONG_TO_FLOAT: |
| if (cu_->target64) { |
| rcSrc = kCoreReg; |
| op = kX86Cvtsqi2ssRR; |
| break; |
| } |
| GenLongToFP(rl_dest, rl_src, false /* is_double */); |
| return; |
| case Instruction::FLOAT_TO_LONG: |
| if (cu_->target64) { |
| rl_src = LoadValue(rl_src, kFPReg); |
| // If result vreg is also src vreg, break association to avoid useless copy by EvalLoc() |
| ClobberSReg(rl_dest.s_reg_low); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage temp_reg = AllocTempSingle(); |
| |
| // Set 0x7fffffffffffffff to rl_result |
| LoadConstantWide(rl_result.reg, 0x7fffffffffffffff); |
| NewLIR2(kX86Cvtsqi2ssRR, temp_reg.GetReg(), rl_result.reg.GetReg()); |
| NewLIR2(kX86ComissRR, rl_src.reg.GetReg(), temp_reg.GetReg()); |
| LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe); |
| LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP); |
| NewLIR2(kX86Cvttss2sqiRR, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| LIR* branch_normal = NewLIR1(kX86Jmp8, 0); |
| branch_na_n->target = NewLIR0(kPseudoTargetLabel); |
| NewLIR2(kX86Xor64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg()); |
| branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel); |
| branch_normal->target = NewLIR0(kPseudoTargetLabel); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| GenConversionCall(kQuickF2l, rl_dest, rl_src); |
| } |
| return; |
| case Instruction::DOUBLE_TO_LONG: |
| if (cu_->target64) { |
| rl_src = LoadValueWide(rl_src, kFPReg); |
| // If result vreg is also src vreg, break association to avoid useless copy by EvalLoc() |
| ClobberSReg(rl_dest.s_reg_low); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage temp_reg = AllocTempDouble(); |
| |
| // Set 0x7fffffffffffffff to rl_result |
| LoadConstantWide(rl_result.reg, 0x7fffffffffffffff); |
| NewLIR2(kX86Cvtsqi2sdRR, temp_reg.GetReg(), rl_result.reg.GetReg()); |
| NewLIR2(kX86ComisdRR, rl_src.reg.GetReg(), temp_reg.GetReg()); |
| LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe); |
| LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP); |
| NewLIR2(kX86Cvttsd2sqiRR, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| LIR* branch_normal = NewLIR1(kX86Jmp8, 0); |
| branch_na_n->target = NewLIR0(kPseudoTargetLabel); |
| NewLIR2(kX86Xor64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg()); |
| branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel); |
| branch_normal->target = NewLIR0(kPseudoTargetLabel); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| GenConversionCall(kQuickD2l, rl_dest, rl_src); |
| } |
| return; |
| default: |
| LOG(INFO) << "Unexpected opcode: " << opcode; |
| } |
| // At this point, target will be either float or double. |
| DCHECK(rl_dest.fp); |
| if (rl_src.wide) { |
| rl_src = LoadValueWide(rl_src, rcSrc); |
| } else { |
| rl_src = LoadValue(rl_src, rcSrc); |
| } |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| NewLIR2(op, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| if (rl_dest.wide) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| void X86Mir2Lir::GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double) { |
| // Compute offsets to the source and destination VRs on stack. |
| int src1_v_reg_offset = SRegOffset(rl_src1.s_reg_low); |
| int src2_v_reg_offset = SRegOffset(rl_src2.s_reg_low); |
| int dest_v_reg_offset = SRegOffset(rl_dest.s_reg_low); |
| |
| // Update the in-register state of sources. |
| rl_src1 = is_double ? UpdateLocWide(rl_src1) : UpdateLoc(rl_src1); |
| rl_src2 = is_double ? UpdateLocWide(rl_src2) : UpdateLoc(rl_src2); |
| |
| // All memory accesses below reference dalvik regs. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| |
| // If the source is in physical register, then put it in its location on stack. |
| const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; |
| if (rl_src1.location == kLocPhysReg) { |
| RegisterInfo* reg_info = GetRegInfo(rl_src1.reg); |
| |
| if (reg_info != nullptr && reg_info->IsTemp()) { |
| // Calling FlushSpecificReg because it will only write back VR if it is dirty. |
| FlushSpecificReg(reg_info); |
| // ResetDef to prevent NullifyRange from removing stores. |
| ResetDef(rl_src1.reg); |
| } else { |
| // It must have been register promoted if it is not a temp but is still in physical |
| // register. Since we need it to be in memory to convert, we place it there now. |
| StoreBaseDisp(rs_rSP, src1_v_reg_offset, rl_src1.reg, is_double ? k64 : k32, |
| kNotVolatile); |
| } |
| } |
| |
| if (rl_src2.location == kLocPhysReg) { |
| RegisterInfo* reg_info = GetRegInfo(rl_src2.reg); |
| if (reg_info != nullptr && reg_info->IsTemp()) { |
| FlushSpecificReg(reg_info); |
| ResetDef(rl_src2.reg); |
| } else { |
| StoreBaseDisp(rs_rSP, src2_v_reg_offset, rl_src2.reg, is_double ? k64 : k32, |
| kNotVolatile); |
| } |
| } |
| |
| int fld_opcode = is_double ? kX86Fld64M : kX86Fld32M; |
| |
| // Push the source virtual registers onto the x87 stack. |
| LIR *fld_2 = NewLIR2NoDest(fld_opcode, rs_rSP.GetReg(), |
| src2_v_reg_offset + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(fld_2, (src2_v_reg_offset + LOWORD_OFFSET) >> 2, |
| true /* is_load */, is_double /* is64bit */); |
| |
| LIR *fld_1 = NewLIR2NoDest(fld_opcode, rs_rSP.GetReg(), |
| src1_v_reg_offset + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(fld_1, (src1_v_reg_offset + LOWORD_OFFSET) >> 2, |
| true /* is_load */, is_double /* is64bit */); |
| |
| FlushReg(rs_rAX); |
| Clobber(rs_rAX); |
| LockTemp(rs_rAX); |
| |
| LIR* retry = NewLIR0(kPseudoTargetLabel); |
| |
| // Divide ST(0) by ST(1) and place result to ST(0). |
| NewLIR0(kX86Fprem); |
| |
| // Move FPU status word to AX. |
| NewLIR0(kX86Fstsw16R); |
| |
| // Check if reduction is complete. |
| OpRegImm(kOpAnd, rs_rAX, 0x400); |
| |
| // If no then continue to compute remainder. |
| LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondNe); |
| branch->target = retry; |
| |
| FreeTemp(rs_rAX); |
| |
| // Now store result in the destination VR's stack location. |
| int displacement = dest_v_reg_offset + LOWORD_OFFSET; |
| int opcode = is_double ? kX86Fst64M : kX86Fst32M; |
| LIR *fst = NewLIR2NoDest(opcode, rs_rSP.GetReg(), displacement); |
| AnnotateDalvikRegAccess(fst, displacement >> 2, false /* is_load */, is_double /* is64bit */); |
| |
| // Pop ST(1) and ST(0). |
| NewLIR0(kX86Fucompp); |
| |
| /* |
| * The result is in a physical register if it was in a temp or was register |
| * promoted. For that reason it is enough to check if it is in physical |
| * register. If it is, then we must do all of the bookkeeping necessary to |
| * invalidate temp (if needed) and load in promoted register (if needed). |
| * If the result's location is in memory, then we do not need to do anything |
| * more since the fstp has already placed the correct value in memory. |
| */ |
| RegLocation rl_result = is_double ? UpdateLocWideTyped(rl_dest) : UpdateLocTyped(rl_dest); |
| if (rl_result.location == kLocPhysReg) { |
| rl_result = EvalLoc(rl_dest, kFPReg, true); |
| if (is_double) { |
| LoadBaseDisp(rs_rSP, dest_v_reg_offset, rl_result.reg, k64, kNotVolatile); |
| StoreFinalValueWide(rl_dest, rl_result); |
| } else { |
| Load32Disp(rs_rSP, dest_v_reg_offset, rl_result.reg); |
| StoreFinalValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::GenCmpFP(Instruction::Code code, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| bool single = (code == Instruction::CMPL_FLOAT) || (code == Instruction::CMPG_FLOAT); |
| bool unordered_gt = (code == Instruction::CMPG_DOUBLE) || (code == Instruction::CMPG_FLOAT); |
| if (single) { |
| rl_src1 = LoadValue(rl_src1, kFPReg); |
| rl_src2 = LoadValue(rl_src2, kFPReg); |
| } else { |
| rl_src1 = LoadValueWide(rl_src1, kFPReg); |
| rl_src2 = LoadValueWide(rl_src2, kFPReg); |
| } |
| // In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc() |
| ClobberSReg(rl_dest.s_reg_low); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| LoadConstantNoClobber(rl_result.reg, unordered_gt ? 1 : 0); |
| if (single) { |
| NewLIR2(kX86UcomissRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); |
| } else { |
| NewLIR2(kX86UcomisdRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); |
| } |
| LIR* branch = NULL; |
| if (unordered_gt) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| } |
| // If the result reg can't be byte accessed, use a jump and move instead of a set. |
| if (!IsByteRegister(rl_result.reg)) { |
| LIR* branch2 = NULL; |
| if (unordered_gt) { |
| branch2 = NewLIR2(kX86Jcc8, 0, kX86CondA); |
| NewLIR2(kX86Mov32RI, rl_result.reg.GetReg(), 0x0); |
| } else { |
| branch2 = NewLIR2(kX86Jcc8, 0, kX86CondBe); |
| NewLIR2(kX86Mov32RI, rl_result.reg.GetReg(), 0x1); |
| } |
| branch2->target = NewLIR0(kPseudoTargetLabel); |
| } else { |
| NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondA /* above - unsigned > */); |
| } |
| NewLIR2(kX86Sbb32RI, rl_result.reg.GetReg(), 0); |
| if (unordered_gt) { |
| branch->target = NewLIR0(kPseudoTargetLabel); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, |
| bool is_double) { |
| LIR* taken = &block_label_list_[bb->taken]; |
| LIR* not_taken = &block_label_list_[bb->fall_through]; |
| LIR* branch = NULL; |
| RegLocation rl_src1; |
| RegLocation rl_src2; |
| if (is_double) { |
| rl_src1 = mir_graph_->GetSrcWide(mir, 0); |
| rl_src2 = mir_graph_->GetSrcWide(mir, 2); |
| rl_src1 = LoadValueWide(rl_src1, kFPReg); |
| rl_src2 = LoadValueWide(rl_src2, kFPReg); |
| NewLIR2(kX86UcomisdRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); |
| } else { |
| rl_src1 = mir_graph_->GetSrc(mir, 0); |
| rl_src2 = mir_graph_->GetSrc(mir, 1); |
| rl_src1 = LoadValue(rl_src1, kFPReg); |
| rl_src2 = LoadValue(rl_src2, kFPReg); |
| NewLIR2(kX86UcomissRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); |
| } |
| ConditionCode ccode = mir->meta.ccode; |
| switch (ccode) { |
| case kCondEq: |
| if (!gt_bias) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| branch->target = not_taken; |
| } |
| break; |
| case kCondNe: |
| if (!gt_bias) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| branch->target = taken; |
| } |
| break; |
| case kCondLt: |
| if (gt_bias) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| branch->target = not_taken; |
| } |
| ccode = kCondUlt; |
| break; |
| case kCondLe: |
| if (gt_bias) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| branch->target = not_taken; |
| } |
| ccode = kCondLs; |
| break; |
| case kCondGt: |
| if (gt_bias) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| branch->target = taken; |
| } |
| ccode = kCondHi; |
| break; |
| case kCondGe: |
| if (gt_bias) { |
| branch = NewLIR2(kX86Jcc8, 0, kX86CondPE); |
| branch->target = taken; |
| } |
| ccode = kCondUge; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected ccode: " << ccode; |
| } |
| OpCondBranch(ccode, taken); |
| } |
| |
| void X86Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegImm(kOpAdd, rl_result.reg, rl_src.reg, 0x80000000); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| if (cu_->target64) { |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegCopy(rl_result.reg, rl_src.reg); |
| // Flip sign bit. |
| NewLIR2(kX86Rol64RI, rl_result.reg.GetReg(), 1); |
| NewLIR2(kX86Xor64RI, rl_result.reg.GetReg(), 1); |
| NewLIR2(kX86Ror64RI, rl_result.reg.GetReg(), 1); |
| } else { |
| rl_result = ForceTempWide(rl_src); |
| OpRegRegImm(kOpAdd, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), 0x80000000); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| bool X86Mir2Lir::GenInlinedSqrt(CallInfo* info) { |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_dest = InlineTargetWide(info); // double place for result |
| rl_src = LoadValueWide(rl_src, kFPReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); |
| NewLIR2(kX86SqrtsdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool X86Mir2Lir::GenInlinedAbsFloat(CallInfo* info) { |
| // Get the argument |
| RegLocation rl_src = info->args[0]; |
| |
| // Get the inlined intrinsic target virtual register |
| RegLocation rl_dest = InlineTarget(info); |
| |
| // Get the virtual register number |
| DCHECK_NE(rl_src.s_reg_low, INVALID_SREG); |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| int v_src_reg = mir_graph_->SRegToVReg(rl_src.s_reg_low); |
| int v_dst_reg = mir_graph_->SRegToVReg(rl_dest.s_reg_low); |
| |
| // if argument is the same as inlined intrinsic target |
| if (v_src_reg == v_dst_reg) { |
| rl_src = UpdateLoc(rl_src); |
| |
| // if argument is in the physical register |
| if (rl_src.location == kLocPhysReg) { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| OpRegImm(kOpAnd, rl_src.reg, 0x7fffffff); |
| StoreValue(rl_dest, rl_src); |
| return true; |
| } |
| // the argument is in memory |
| DCHECK((rl_src.location == kLocDalvikFrame) || |
| (rl_src.location == kLocCompilerTemp)); |
| |
| // Operate directly into memory. |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| LIR *lir = NewLIR3(kX86And32MI, rs_rX86_SP_32.GetReg(), displacement, 0x7fffffff); |
| AnnotateDalvikRegAccess(lir, displacement >> 2, false /*is_load */, false /* is_64bit */); |
| AnnotateDalvikRegAccess(lir, displacement >> 2, true /* is_load */, false /* is_64bit*/); |
| return true; |
| } else { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegImm(kOpAnd, rl_result.reg, rl_src.reg, 0x7fffffff); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| } |
| |
| bool X86Mir2Lir::GenInlinedAbsDouble(CallInfo* info) { |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_dest = InlineTargetWide(info); |
| DCHECK_NE(rl_src.s_reg_low, INVALID_SREG); |
| if (rl_dest.s_reg_low == INVALID_SREG) { |
| // Result is unused, the code is dead. Inlining successful, no code generated. |
| return true; |
| } |
| if (cu_->target64) { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegCopyWide(rl_result.reg, rl_src.reg); |
| OpRegImm(kOpLsl, rl_result.reg, 1); |
| OpRegImm(kOpLsr, rl_result.reg, 1); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| int v_src_reg = mir_graph_->SRegToVReg(rl_src.s_reg_low); |
| int v_dst_reg = mir_graph_->SRegToVReg(rl_dest.s_reg_low); |
| rl_src = UpdateLocWide(rl_src); |
| |
| // if argument is in the physical XMM register |
| if (rl_src.location == kLocPhysReg && rl_src.reg.IsFloat()) { |
| RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); |
| if (rl_result.reg != rl_src.reg) { |
| LoadConstantWide(rl_result.reg, 0x7fffffffffffffff); |
| NewLIR2(kX86PandRR, rl_result.reg.GetReg(), rl_src.reg.GetReg()); |
| } else { |
| RegStorage sign_mask = AllocTempDouble(); |
| LoadConstantWide(sign_mask, 0x7fffffffffffffff); |
| NewLIR2(kX86PandRR, rl_result.reg.GetReg(), sign_mask.GetReg()); |
| FreeTemp(sign_mask); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } else if (v_src_reg == v_dst_reg) { |
| // if argument is the same as inlined intrinsic target |
| // if argument is in the physical register |
| if (rl_src.location == kLocPhysReg) { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| OpRegImm(kOpAnd, rl_src.reg.GetHigh(), 0x7fffffff); |
| StoreValueWide(rl_dest, rl_src); |
| return true; |
| } |
| // the argument is in memory |
| DCHECK((rl_src.location == kLocDalvikFrame) || |
| (rl_src.location == kLocCompilerTemp)); |
| |
| // Operate directly into memory. |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| LIR *lir = NewLIR3(kX86And32MI, rs_rX86_SP_32.GetReg(), displacement + HIWORD_OFFSET, 0x7fffffff); |
| AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, true /* is_load */, true /* is_64bit*/); |
| AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, false /*is_load */, true /* is_64bit */); |
| return true; |
| } else { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegCopyWide(rl_result.reg, rl_src.reg); |
| OpRegImm(kOpAnd, rl_result.reg.GetHigh(), 0x7fffffff); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| } |
| |
| bool X86Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) { |
| if (is_double) { |
| RegLocation rl_src1 = LoadValueWide(info->args[0], kFPReg); |
| RegLocation rl_src2 = LoadValueWide(info->args[2], kFPReg); |
| RegLocation rl_dest = InlineTargetWide(info); |
| RegLocation rl_result = EvalLocWide(rl_dest, kFPReg, true); |
| |
| // Avoid src2 corruption by OpRegCopyWide. |
| if (rl_result.reg == rl_src2.reg) { |
| std::swap(rl_src2.reg, rl_src1.reg); |
| } |
| |
| OpRegCopyWide(rl_result.reg, rl_src1.reg); |
| NewLIR2(kX86UcomisdRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg()); |
| // If either arg is NaN, return NaN. |
| LIR* branch_nan = NewLIR2(kX86Jcc8, 0, kX86CondP); |
| // Min/Max branches. |
| LIR* branch_cond1 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondA : kX86CondB); |
| LIR* branch_cond2 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondB : kX86CondA); |
| // If equal, we need to resolve situations like min/max(0.0, -0.0) == -0.0/0.0. |
| NewLIR2((is_min) ? kX86OrpdRR : kX86AndpdRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg()); |
| LIR* branch_exit_equal = NewLIR1(kX86Jmp8, 0); |
| // Handle NaN. |
| branch_nan->target = NewLIR0(kPseudoTargetLabel); |
| LoadConstantWide(rl_result.reg, INT64_C(0x7ff8000000000000)); |
| |
| // The base_of_code_ compiler temp is non-null when it is reserved |
| // for being able to do data accesses relative to method start. |
| if (base_of_code_ != nullptr) { |
| // Loading from the constant pool may have used base of code register. |
| // However, the code here generates logic in diamond shape and not all |
| // paths load base of code register. Therefore, we ensure it is clobbered so |
| // that the temp caching system does not believe it is live at merge point. |
| RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low); |
| if (rl_method.wide) { |
| rl_method = UpdateLocWide(rl_method); |
| } else { |
| rl_method = UpdateLoc(rl_method); |
| } |
| if (rl_method.location == kLocPhysReg) { |
| Clobber(rl_method.reg); |
| } |
| } |
| |
| LIR* branch_exit_nan = NewLIR1(kX86Jmp8, 0); |
| // Handle Min/Max. Copy greater/lesser value from src2. |
| branch_cond1->target = NewLIR0(kPseudoTargetLabel); |
| OpRegCopyWide(rl_result.reg, rl_src2.reg); |
| // Right operand is already in result reg. |
| branch_cond2->target = NewLIR0(kPseudoTargetLabel); |
| // Exit. |
| branch_exit_nan->target = NewLIR0(kPseudoTargetLabel); |
| branch_exit_equal->target = NewLIR0(kPseudoTargetLabel); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_src1 = LoadValue(info->args[0], kFPReg); |
| RegLocation rl_src2 = LoadValue(info->args[1], kFPReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); |
| |
| // Avoid src2 corruption by OpRegCopyWide. |
| if (rl_result.reg == rl_src2.reg) { |
| std::swap(rl_src2.reg, rl_src1.reg); |
| } |
| |
| OpRegCopy(rl_result.reg, rl_src1.reg); |
| NewLIR2(kX86UcomissRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg()); |
| // If either arg is NaN, return NaN. |
| LIR* branch_nan = NewLIR2(kX86Jcc8, 0, kX86CondP); |
| // Min/Max branches. |
| LIR* branch_cond1 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondA : kX86CondB); |
| LIR* branch_cond2 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondB : kX86CondA); |
| // If equal, we need to resolve situations like min/max(0.0, -0.0) == -0.0/0.0. |
| NewLIR2((is_min) ? kX86OrpsRR : kX86AndpsRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg()); |
| LIR* branch_exit_equal = NewLIR1(kX86Jmp8, 0); |
| // Handle NaN. |
| branch_nan->target = NewLIR0(kPseudoTargetLabel); |
| LoadConstantNoClobber(rl_result.reg, 0x7fc00000); |
| LIR* branch_exit_nan = NewLIR1(kX86Jmp8, 0); |
| // Handle Min/Max. Copy greater/lesser value from src2. |
| branch_cond1->target = NewLIR0(kPseudoTargetLabel); |
| OpRegCopy(rl_result.reg, rl_src2.reg); |
| // Right operand is already in result reg. |
| branch_cond2->target = NewLIR0(kPseudoTargetLabel); |
| // Exit. |
| branch_exit_nan->target = NewLIR0(kPseudoTargetLabel); |
| branch_exit_equal->target = NewLIR0(kPseudoTargetLabel); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| } // namespace art |