blob: 4825db64027378ad32fd0f32f41227402e34a10f [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_x86.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "x86_lir.h"
namespace art {
void X86Mir2Lir::GenArithOpFloat(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
X86OpCode op = kX86Nop;
RegLocation rl_result;
/*
* Don't attempt to optimize register usage since these opcodes call out to
* the handlers.
*/
switch (opcode) {
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::ADD_FLOAT:
op = kX86AddssRR;
break;
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::SUB_FLOAT:
op = kX86SubssRR;
break;
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::DIV_FLOAT:
op = kX86DivssRR;
break;
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::MUL_FLOAT:
op = kX86MulssRR;
break;
case Instruction::REM_FLOAT_2ADDR:
case Instruction::REM_FLOAT:
GenRemFP(rl_dest, rl_src1, rl_src2, false /* is_double */);
return;
case Instruction::NEG_FLOAT:
GenNegFloat(rl_dest, rl_src1);
return;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
RegStorage r_dest = rl_result.reg;
RegStorage r_src1 = rl_src1.reg;
RegStorage r_src2 = rl_src2.reg;
if (r_dest == r_src2) {
r_src2 = AllocTempSingle();
OpRegCopy(r_src2, r_dest);
}
OpRegCopy(r_dest, r_src1);
NewLIR2(op, r_dest.GetReg(), r_src2.GetReg());
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenArithOpDouble(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
DCHECK(rl_dest.wide);
DCHECK(rl_dest.fp);
DCHECK(rl_src1.wide);
DCHECK(rl_src1.fp);
DCHECK(rl_src2.wide);
DCHECK(rl_src2.fp);
X86OpCode op = kX86Nop;
RegLocation rl_result;
switch (opcode) {
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::ADD_DOUBLE:
op = kX86AddsdRR;
break;
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE:
op = kX86SubsdRR;
break;
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE:
op = kX86DivsdRR;
break;
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE:
op = kX86MulsdRR;
break;
case Instruction::REM_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE:
GenRemFP(rl_dest, rl_src1, rl_src2, true /* is_double */);
return;
case Instruction::NEG_DOUBLE:
GenNegDouble(rl_dest, rl_src1);
return;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
rl_src1 = LoadValueWide(rl_src1, kFPReg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
if (rl_result.reg == rl_src2.reg) {
rl_src2.reg = AllocTempDouble();
OpRegCopy(rl_src2.reg, rl_result.reg);
}
OpRegCopy(rl_result.reg, rl_src1.reg);
NewLIR2(op, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1,
int32_t constant) {
// TODO: need x86 implementation.
UNUSED(rl_dest, rl_src1, constant);
LOG(FATAL) << "Unimplemented GenMultiplyByConstantFloat in x86";
}
void X86Mir2Lir::GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1,
int64_t constant) {
// TODO: need x86 implementation.
UNUSED(rl_dest, rl_src1, constant);
LOG(FATAL) << "Unimplemented GenMultiplyByConstantDouble in x86";
}
void X86Mir2Lir::GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double) {
// Compute offsets to the source and destination VRs on stack
int src_v_reg_offset = SRegOffset(rl_src.s_reg_low);
int dest_v_reg_offset = SRegOffset(rl_dest.s_reg_low);
// Update the in-register state of source.
rl_src = UpdateLocWide(rl_src);
// All memory accesses below reference dalvik regs.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
// If the source is in physical register, then put it in its location on stack.
if (rl_src.location == kLocPhysReg) {
RegisterInfo* reg_info = GetRegInfo(rl_src.reg);
if (reg_info != nullptr && reg_info->IsTemp()) {
// Calling FlushSpecificReg because it will only write back VR if it is dirty.
FlushSpecificReg(reg_info);
// ResetDef to prevent NullifyRange from removing stores.
ResetDef(rl_src.reg);
} else {
// It must have been register promoted if it is not a temp but is still in physical
// register. Since we need it to be in memory to convert, we place it there now.
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
StoreBaseDisp(rs_rSP, src_v_reg_offset, rl_src.reg, k64, kNotVolatile);
}
}
// Push the source virtual register onto the x87 stack.
LIR *fild64 = NewLIR2NoDest(kX86Fild64M, rs_rX86_SP_32.GetReg(),
src_v_reg_offset + LOWORD_OFFSET);
AnnotateDalvikRegAccess(fild64, (src_v_reg_offset + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
// Now pop off x87 stack and store it in the destination VR's stack location.
int opcode = is_double ? kX86Fstp64M : kX86Fstp32M;
int displacement = is_double ? dest_v_reg_offset + LOWORD_OFFSET : dest_v_reg_offset;
LIR *fstp = NewLIR2NoDest(opcode, rs_rX86_SP_32.GetReg(), displacement);
AnnotateDalvikRegAccess(fstp, displacement >> 2, false /* is_load */, is_double);
/*
* The result is in a physical register if it was in a temp or was register
* promoted. For that reason it is enough to check if it is in physical
* register. If it is, then we must do all of the bookkeeping necessary to
* invalidate temp (if needed) and load in promoted register (if needed).
* If the result's location is in memory, then we do not need to do anything
* more since the fstp has already placed the correct value in memory.
*/
RegLocation rl_result = is_double ? UpdateLocWideTyped(rl_dest) : UpdateLocTyped(rl_dest);
if (rl_result.location == kLocPhysReg) {
/*
* We already know that the result is in a physical register but do not know if it is the
* right class. So we call EvalLoc(Wide) first which will ensure that it will get moved to the
* correct register class.
*/
rl_result = EvalLoc(rl_dest, kFPReg, true);
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
if (is_double) {
LoadBaseDisp(rs_rSP, dest_v_reg_offset, rl_result.reg, k64, kNotVolatile);
StoreFinalValueWide(rl_dest, rl_result);
} else {
Load32Disp(rs_rSP, dest_v_reg_offset, rl_result.reg);
StoreFinalValue(rl_dest, rl_result);
}
}
}
void X86Mir2Lir::GenConversion(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) {
RegisterClass rcSrc = kFPReg;
X86OpCode op = kX86Nop;
RegLocation rl_result;
switch (opcode) {
case Instruction::INT_TO_FLOAT:
rcSrc = kCoreReg;
op = kX86Cvtsi2ssRR;
break;
case Instruction::DOUBLE_TO_FLOAT:
rcSrc = kFPReg;
op = kX86Cvtsd2ssRR;
break;
case Instruction::FLOAT_TO_DOUBLE:
rcSrc = kFPReg;
op = kX86Cvtss2sdRR;
break;
case Instruction::INT_TO_DOUBLE:
rcSrc = kCoreReg;
op = kX86Cvtsi2sdRR;
break;
case Instruction::FLOAT_TO_INT: {
rl_src = LoadValue(rl_src, kFPReg);
// In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage temp_reg = AllocTempSingle();
LoadConstant(rl_result.reg, 0x7fffffff);
NewLIR2(kX86Cvtsi2ssRR, temp_reg.GetReg(), rl_result.reg.GetReg());
NewLIR2(kX86ComissRR, rl_src.reg.GetReg(), temp_reg.GetReg());
LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe);
LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
NewLIR2(kX86Cvttss2siRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
branch_na_n->target = NewLIR0(kPseudoTargetLabel);
NewLIR2(kX86Xor32RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
branch_normal->target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::DOUBLE_TO_INT: {
rl_src = LoadValueWide(rl_src, kFPReg);
// In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage temp_reg = AllocTempDouble();
LoadConstant(rl_result.reg, 0x7fffffff);
NewLIR2(kX86Cvtsi2sdRR, temp_reg.GetReg(), rl_result.reg.GetReg());
NewLIR2(kX86ComisdRR, rl_src.reg.GetReg(), temp_reg.GetReg());
LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe);
LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
NewLIR2(kX86Cvttsd2siRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
branch_na_n->target = NewLIR0(kPseudoTargetLabel);
NewLIR2(kX86Xor32RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
branch_normal->target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::LONG_TO_DOUBLE:
if (cu_->target64) {
rcSrc = kCoreReg;
op = kX86Cvtsqi2sdRR;
break;
}
GenLongToFP(rl_dest, rl_src, true /* is_double */);
return;
case Instruction::LONG_TO_FLOAT:
if (cu_->target64) {
rcSrc = kCoreReg;
op = kX86Cvtsqi2ssRR;
break;
}
GenLongToFP(rl_dest, rl_src, false /* is_double */);
return;
case Instruction::FLOAT_TO_LONG:
if (cu_->target64) {
rl_src = LoadValue(rl_src, kFPReg);
// If result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage temp_reg = AllocTempSingle();
// Set 0x7fffffffffffffff to rl_result
LoadConstantWide(rl_result.reg, 0x7fffffffffffffff);
NewLIR2(kX86Cvtsqi2ssRR, temp_reg.GetReg(), rl_result.reg.GetReg());
NewLIR2(kX86ComissRR, rl_src.reg.GetReg(), temp_reg.GetReg());
LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe);
LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
NewLIR2(kX86Cvttss2sqiRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
branch_na_n->target = NewLIR0(kPseudoTargetLabel);
NewLIR2(kX86Xor64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
branch_normal->target = NewLIR0(kPseudoTargetLabel);
StoreValueWide(rl_dest, rl_result);
} else {
GenConversionCall(kQuickF2l, rl_dest, rl_src);
}
return;
case Instruction::DOUBLE_TO_LONG:
if (cu_->target64) {
rl_src = LoadValueWide(rl_src, kFPReg);
// If result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage temp_reg = AllocTempDouble();
// Set 0x7fffffffffffffff to rl_result
LoadConstantWide(rl_result.reg, 0x7fffffffffffffff);
NewLIR2(kX86Cvtsqi2sdRR, temp_reg.GetReg(), rl_result.reg.GetReg());
NewLIR2(kX86ComisdRR, rl_src.reg.GetReg(), temp_reg.GetReg());
LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondAe);
LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
NewLIR2(kX86Cvttsd2sqiRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
branch_na_n->target = NewLIR0(kPseudoTargetLabel);
NewLIR2(kX86Xor64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
branch_normal->target = NewLIR0(kPseudoTargetLabel);
StoreValueWide(rl_dest, rl_result);
} else {
GenConversionCall(kQuickD2l, rl_dest, rl_src);
}
return;
default:
LOG(INFO) << "Unexpected opcode: " << opcode;
}
// At this point, target will be either float or double.
DCHECK(rl_dest.fp);
if (rl_src.wide) {
rl_src = LoadValueWide(rl_src, rcSrc);
} else {
rl_src = LoadValue(rl_src, rcSrc);
}
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(op, rl_result.reg.GetReg(), rl_src.reg.GetReg());
if (rl_dest.wide) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
}
void X86Mir2Lir::GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double) {
// Compute offsets to the source and destination VRs on stack.
int src1_v_reg_offset = SRegOffset(rl_src1.s_reg_low);
int src2_v_reg_offset = SRegOffset(rl_src2.s_reg_low);
int dest_v_reg_offset = SRegOffset(rl_dest.s_reg_low);
// Update the in-register state of sources.
rl_src1 = is_double ? UpdateLocWide(rl_src1) : UpdateLoc(rl_src1);
rl_src2 = is_double ? UpdateLocWide(rl_src2) : UpdateLoc(rl_src2);
// All memory accesses below reference dalvik regs.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
// If the source is in physical register, then put it in its location on stack.
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
if (rl_src1.location == kLocPhysReg) {
RegisterInfo* reg_info = GetRegInfo(rl_src1.reg);
if (reg_info != nullptr && reg_info->IsTemp()) {
// Calling FlushSpecificReg because it will only write back VR if it is dirty.
FlushSpecificReg(reg_info);
// ResetDef to prevent NullifyRange from removing stores.
ResetDef(rl_src1.reg);
} else {
// It must have been register promoted if it is not a temp but is still in physical
// register. Since we need it to be in memory to convert, we place it there now.
StoreBaseDisp(rs_rSP, src1_v_reg_offset, rl_src1.reg, is_double ? k64 : k32,
kNotVolatile);
}
}
if (rl_src2.location == kLocPhysReg) {
RegisterInfo* reg_info = GetRegInfo(rl_src2.reg);
if (reg_info != nullptr && reg_info->IsTemp()) {
FlushSpecificReg(reg_info);
ResetDef(rl_src2.reg);
} else {
StoreBaseDisp(rs_rSP, src2_v_reg_offset, rl_src2.reg, is_double ? k64 : k32,
kNotVolatile);
}
}
int fld_opcode = is_double ? kX86Fld64M : kX86Fld32M;
// Push the source virtual registers onto the x87 stack.
LIR *fld_2 = NewLIR2NoDest(fld_opcode, rs_rSP.GetReg(),
src2_v_reg_offset + LOWORD_OFFSET);
AnnotateDalvikRegAccess(fld_2, (src2_v_reg_offset + LOWORD_OFFSET) >> 2,
true /* is_load */, is_double /* is64bit */);
LIR *fld_1 = NewLIR2NoDest(fld_opcode, rs_rSP.GetReg(),
src1_v_reg_offset + LOWORD_OFFSET);
AnnotateDalvikRegAccess(fld_1, (src1_v_reg_offset + LOWORD_OFFSET) >> 2,
true /* is_load */, is_double /* is64bit */);
FlushReg(rs_rAX);
Clobber(rs_rAX);
LockTemp(rs_rAX);
LIR* retry = NewLIR0(kPseudoTargetLabel);
// Divide ST(0) by ST(1) and place result to ST(0).
NewLIR0(kX86Fprem);
// Move FPU status word to AX.
NewLIR0(kX86Fstsw16R);
// Check if reduction is complete.
OpRegImm(kOpAnd, rs_rAX, 0x400);
// If no then continue to compute remainder.
LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
branch->target = retry;
FreeTemp(rs_rAX);
// Now store result in the destination VR's stack location.
int displacement = dest_v_reg_offset + LOWORD_OFFSET;
int opcode = is_double ? kX86Fst64M : kX86Fst32M;
LIR *fst = NewLIR2NoDest(opcode, rs_rSP.GetReg(), displacement);
AnnotateDalvikRegAccess(fst, displacement >> 2, false /* is_load */, is_double /* is64bit */);
// Pop ST(1) and ST(0).
NewLIR0(kX86Fucompp);
/*
* The result is in a physical register if it was in a temp or was register
* promoted. For that reason it is enough to check if it is in physical
* register. If it is, then we must do all of the bookkeeping necessary to
* invalidate temp (if needed) and load in promoted register (if needed).
* If the result's location is in memory, then we do not need to do anything
* more since the fstp has already placed the correct value in memory.
*/
RegLocation rl_result = is_double ? UpdateLocWideTyped(rl_dest) : UpdateLocTyped(rl_dest);
if (rl_result.location == kLocPhysReg) {
rl_result = EvalLoc(rl_dest, kFPReg, true);
if (is_double) {
LoadBaseDisp(rs_rSP, dest_v_reg_offset, rl_result.reg, k64, kNotVolatile);
StoreFinalValueWide(rl_dest, rl_result);
} else {
Load32Disp(rs_rSP, dest_v_reg_offset, rl_result.reg);
StoreFinalValue(rl_dest, rl_result);
}
}
}
void X86Mir2Lir::GenCmpFP(Instruction::Code code, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
bool single = (code == Instruction::CMPL_FLOAT) || (code == Instruction::CMPG_FLOAT);
bool unordered_gt = (code == Instruction::CMPG_DOUBLE) || (code == Instruction::CMPG_FLOAT);
if (single) {
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
} else {
rl_src1 = LoadValueWide(rl_src1, kFPReg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
}
// In case result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstantNoClobber(rl_result.reg, unordered_gt ? 1 : 0);
if (single) {
NewLIR2(kX86UcomissRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
} else {
NewLIR2(kX86UcomisdRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
}
LIR* branch = NULL;
if (unordered_gt) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
}
// If the result reg can't be byte accessed, use a jump and move instead of a set.
if (!IsByteRegister(rl_result.reg)) {
LIR* branch2 = NULL;
if (unordered_gt) {
branch2 = NewLIR2(kX86Jcc8, 0, kX86CondA);
NewLIR2(kX86Mov32RI, rl_result.reg.GetReg(), 0x0);
} else {
branch2 = NewLIR2(kX86Jcc8, 0, kX86CondBe);
NewLIR2(kX86Mov32RI, rl_result.reg.GetReg(), 0x1);
}
branch2->target = NewLIR0(kPseudoTargetLabel);
} else {
NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondA /* above - unsigned > */);
}
NewLIR2(kX86Sbb32RI, rl_result.reg.GetReg(), 0);
if (unordered_gt) {
branch->target = NewLIR0(kPseudoTargetLabel);
}
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
bool is_double) {
LIR* taken = &block_label_list_[bb->taken];
LIR* not_taken = &block_label_list_[bb->fall_through];
LIR* branch = NULL;
RegLocation rl_src1;
RegLocation rl_src2;
if (is_double) {
rl_src1 = mir_graph_->GetSrcWide(mir, 0);
rl_src2 = mir_graph_->GetSrcWide(mir, 2);
rl_src1 = LoadValueWide(rl_src1, kFPReg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
NewLIR2(kX86UcomisdRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
} else {
rl_src1 = mir_graph_->GetSrc(mir, 0);
rl_src2 = mir_graph_->GetSrc(mir, 1);
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
NewLIR2(kX86UcomissRR, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
}
ConditionCode ccode = mir->meta.ccode;
switch (ccode) {
case kCondEq:
if (!gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = not_taken;
}
break;
case kCondNe:
if (!gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = taken;
}
break;
case kCondLt:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = not_taken;
}
ccode = kCondUlt;
break;
case kCondLe:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = not_taken;
}
ccode = kCondLs;
break;
case kCondGt:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = taken;
}
ccode = kCondHi;
break;
case kCondGe:
if (gt_bias) {
branch = NewLIR2(kX86Jcc8, 0, kX86CondPE);
branch->target = taken;
}
ccode = kCondUge;
break;
default:
LOG(FATAL) << "Unexpected ccode: " << ccode;
}
OpCondBranch(ccode, taken);
}
void X86Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegImm(kOpAdd, rl_result.reg, rl_src.reg, 0x80000000);
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValueWide(rl_src, kCoreReg);
if (cu_->target64) {
rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegCopy(rl_result.reg, rl_src.reg);
// Flip sign bit.
NewLIR2(kX86Rol64RI, rl_result.reg.GetReg(), 1);
NewLIR2(kX86Xor64RI, rl_result.reg.GetReg(), 1);
NewLIR2(kX86Ror64RI, rl_result.reg.GetReg(), 1);
} else {
rl_result = ForceTempWide(rl_src);
OpRegRegImm(kOpAdd, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), 0x80000000);
}
StoreValueWide(rl_dest, rl_result);
}
bool X86Mir2Lir::GenInlinedSqrt(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info); // double place for result
rl_src = LoadValueWide(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(kX86SqrtsdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
return true;
}
bool X86Mir2Lir::GenInlinedAbsFloat(CallInfo* info) {
// Get the argument
RegLocation rl_src = info->args[0];
// Get the inlined intrinsic target virtual register
RegLocation rl_dest = InlineTarget(info);
// Get the virtual register number
DCHECK_NE(rl_src.s_reg_low, INVALID_SREG);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
int v_src_reg = mir_graph_->SRegToVReg(rl_src.s_reg_low);
int v_dst_reg = mir_graph_->SRegToVReg(rl_dest.s_reg_low);
// if argument is the same as inlined intrinsic target
if (v_src_reg == v_dst_reg) {
rl_src = UpdateLoc(rl_src);
// if argument is in the physical register
if (rl_src.location == kLocPhysReg) {
rl_src = LoadValue(rl_src, kCoreReg);
OpRegImm(kOpAnd, rl_src.reg, 0x7fffffff);
StoreValue(rl_dest, rl_src);
return true;
}
// the argument is in memory
DCHECK((rl_src.location == kLocDalvikFrame) ||
(rl_src.location == kLocCompilerTemp));
// Operate directly into memory.
int displacement = SRegOffset(rl_dest.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR *lir = NewLIR3(kX86And32MI, rs_rX86_SP_32.GetReg(), displacement, 0x7fffffff);
AnnotateDalvikRegAccess(lir, displacement >> 2, false /*is_load */, false /* is_64bit */);
AnnotateDalvikRegAccess(lir, displacement >> 2, true /* is_load */, false /* is_64bit*/);
return true;
} else {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegImm(kOpAnd, rl_result.reg, rl_src.reg, 0x7fffffff);
StoreValue(rl_dest, rl_result);
return true;
}
}
bool X86Mir2Lir::GenInlinedAbsDouble(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info);
DCHECK_NE(rl_src.s_reg_low, INVALID_SREG);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
if (cu_->target64) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopyWide(rl_result.reg, rl_src.reg);
OpRegImm(kOpLsl, rl_result.reg, 1);
OpRegImm(kOpLsr, rl_result.reg, 1);
StoreValueWide(rl_dest, rl_result);
return true;
}
int v_src_reg = mir_graph_->SRegToVReg(rl_src.s_reg_low);
int v_dst_reg = mir_graph_->SRegToVReg(rl_dest.s_reg_low);
rl_src = UpdateLocWide(rl_src);
// if argument is in the physical XMM register
if (rl_src.location == kLocPhysReg && rl_src.reg.IsFloat()) {
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
if (rl_result.reg != rl_src.reg) {
LoadConstantWide(rl_result.reg, 0x7fffffffffffffff);
NewLIR2(kX86PandRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
} else {
RegStorage sign_mask = AllocTempDouble();
LoadConstantWide(sign_mask, 0x7fffffffffffffff);
NewLIR2(kX86PandRR, rl_result.reg.GetReg(), sign_mask.GetReg());
FreeTemp(sign_mask);
}
StoreValueWide(rl_dest, rl_result);
return true;
} else if (v_src_reg == v_dst_reg) {
// if argument is the same as inlined intrinsic target
// if argument is in the physical register
if (rl_src.location == kLocPhysReg) {
rl_src = LoadValueWide(rl_src, kCoreReg);
OpRegImm(kOpAnd, rl_src.reg.GetHigh(), 0x7fffffff);
StoreValueWide(rl_dest, rl_src);
return true;
}
// the argument is in memory
DCHECK((rl_src.location == kLocDalvikFrame) ||
(rl_src.location == kLocCompilerTemp));
// Operate directly into memory.
int displacement = SRegOffset(rl_dest.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR *lir = NewLIR3(kX86And32MI, rs_rX86_SP_32.GetReg(), displacement + HIWORD_OFFSET, 0x7fffffff);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, true /* is_load */, true /* is_64bit*/);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, false /*is_load */, true /* is_64bit */);
return true;
} else {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopyWide(rl_result.reg, rl_src.reg);
OpRegImm(kOpAnd, rl_result.reg.GetHigh(), 0x7fffffff);
StoreValueWide(rl_dest, rl_result);
return true;
}
}
bool X86Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
if (is_double) {
RegLocation rl_src1 = LoadValueWide(info->args[0], kFPReg);
RegLocation rl_src2 = LoadValueWide(info->args[2], kFPReg);
RegLocation rl_dest = InlineTargetWide(info);
RegLocation rl_result = EvalLocWide(rl_dest, kFPReg, true);
// Avoid src2 corruption by OpRegCopyWide.
if (rl_result.reg == rl_src2.reg) {
std::swap(rl_src2.reg, rl_src1.reg);
}
OpRegCopyWide(rl_result.reg, rl_src1.reg);
NewLIR2(kX86UcomisdRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
// If either arg is NaN, return NaN.
LIR* branch_nan = NewLIR2(kX86Jcc8, 0, kX86CondP);
// Min/Max branches.
LIR* branch_cond1 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondA : kX86CondB);
LIR* branch_cond2 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondB : kX86CondA);
// If equal, we need to resolve situations like min/max(0.0, -0.0) == -0.0/0.0.
NewLIR2((is_min) ? kX86OrpdRR : kX86AndpdRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
LIR* branch_exit_equal = NewLIR1(kX86Jmp8, 0);
// Handle NaN.
branch_nan->target = NewLIR0(kPseudoTargetLabel);
LoadConstantWide(rl_result.reg, INT64_C(0x7ff8000000000000));
// The base_of_code_ compiler temp is non-null when it is reserved
// for being able to do data accesses relative to method start.
if (base_of_code_ != nullptr) {
// Loading from the constant pool may have used base of code register.
// However, the code here generates logic in diamond shape and not all
// paths load base of code register. Therefore, we ensure it is clobbered so
// that the temp caching system does not believe it is live at merge point.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
if (rl_method.wide) {
rl_method = UpdateLocWide(rl_method);
} else {
rl_method = UpdateLoc(rl_method);
}
if (rl_method.location == kLocPhysReg) {
Clobber(rl_method.reg);
}
}
LIR* branch_exit_nan = NewLIR1(kX86Jmp8, 0);
// Handle Min/Max. Copy greater/lesser value from src2.
branch_cond1->target = NewLIR0(kPseudoTargetLabel);
OpRegCopyWide(rl_result.reg, rl_src2.reg);
// Right operand is already in result reg.
branch_cond2->target = NewLIR0(kPseudoTargetLabel);
// Exit.
branch_exit_nan->target = NewLIR0(kPseudoTargetLabel);
branch_exit_equal->target = NewLIR0(kPseudoTargetLabel);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_src1 = LoadValue(info->args[0], kFPReg);
RegLocation rl_src2 = LoadValue(info->args[1], kFPReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
// Avoid src2 corruption by OpRegCopyWide.
if (rl_result.reg == rl_src2.reg) {
std::swap(rl_src2.reg, rl_src1.reg);
}
OpRegCopy(rl_result.reg, rl_src1.reg);
NewLIR2(kX86UcomissRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
// If either arg is NaN, return NaN.
LIR* branch_nan = NewLIR2(kX86Jcc8, 0, kX86CondP);
// Min/Max branches.
LIR* branch_cond1 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondA : kX86CondB);
LIR* branch_cond2 = NewLIR2(kX86Jcc8, 0, (is_min) ? kX86CondB : kX86CondA);
// If equal, we need to resolve situations like min/max(0.0, -0.0) == -0.0/0.0.
NewLIR2((is_min) ? kX86OrpsRR : kX86AndpsRR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
LIR* branch_exit_equal = NewLIR1(kX86Jmp8, 0);
// Handle NaN.
branch_nan->target = NewLIR0(kPseudoTargetLabel);
LoadConstantNoClobber(rl_result.reg, 0x7fc00000);
LIR* branch_exit_nan = NewLIR1(kX86Jmp8, 0);
// Handle Min/Max. Copy greater/lesser value from src2.
branch_cond1->target = NewLIR0(kPseudoTargetLabel);
OpRegCopy(rl_result.reg, rl_src2.reg);
// Right operand is already in result reg.
branch_cond2->target = NewLIR0(kPseudoTargetLabel);
// Exit.
branch_exit_nan->target = NewLIR0(kPseudoTargetLabel);
branch_exit_equal->target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
}
return true;
}
} // namespace art