blob: 6cc7e307af9784b41dcfbf055a4efb24fa8260c2 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include "base/common_art_test.h"
#include "base/utils.h"
#include "gc/collector/immune_spaces.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "oat/oat_file.h"
#include "thread-current-inl.h"
namespace art HIDDEN {
namespace mirror {
class Object;
} // namespace mirror
namespace gc {
namespace collector {
class FakeOatFile : public OatFile {
public:
FakeOatFile(uint8_t* begin, uint8_t* end) : OatFile("Location", /*executable=*/ false) {
begin_ = begin;
end_ = end;
}
};
class FakeImageSpace : public space::ImageSpace {
public:
FakeImageSpace(MemMap&& map,
accounting::ContinuousSpaceBitmap&& live_bitmap,
std::unique_ptr<FakeOatFile>&& oat_file,
MemMap&& oat_map)
: ImageSpace("FakeImageSpace",
/*image_location=*/"",
/*profile_files=*/{},
std::move(map),
std::move(live_bitmap),
map.End()),
oat_map_(std::move(oat_map)) {
oat_file_ = std::move(oat_file);
oat_file_non_owned_ = oat_file_.get();
}
private:
MemMap oat_map_;
};
class ImmuneSpacesTest : public CommonArtTest {
static constexpr size_t kMaxBitmaps = 10;
public:
ImmuneSpacesTest() {}
void ReserveBitmaps() {
const size_t page_size = MemMap::GetPageSize();
// Create a bunch of fake bitmaps since these are required to create image spaces. The bitmaps
// do not need to cover the image spaces though.
for (size_t i = 0; i < kMaxBitmaps; ++i) {
accounting::ContinuousSpaceBitmap bitmap(
accounting::ContinuousSpaceBitmap::Create(
"bitmap", reinterpret_cast<uint8_t*>(static_cast<size_t>(page_size)), page_size));
CHECK(bitmap.IsValid());
live_bitmaps_.push_back(std::move(bitmap));
}
}
MemMap ReserveImage(size_t image_size, /*out*/ std::string* error_str) {
// If the image is aligned to the current runtime page size, it will already
// be naturally aligned. On the other hand, MayAnonymousAligned() requires
// that the requested alignment is higher.
DCHECK_LE(MemMap::GetPageSize(), kElfSegmentAlignment);
if (MemMap::GetPageSize() == kElfSegmentAlignment) {
return MemMap::MapAnonymous("reserve",
image_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/true,
error_str);
}
return MemMap::MapAnonymousAligned("reserve",
image_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/true,
kElfSegmentAlignment,
error_str);
}
// Create an image space, the oat file is optional.
FakeImageSpace* CreateImageSpace(size_t image_size,
size_t oat_size,
MemMap* image_reservation,
MemMap* oat_reservation) {
DCHECK(image_reservation != nullptr);
DCHECK(oat_reservation != nullptr);
std::string error_str;
MemMap image_map = MemMap::MapAnonymous("FakeImageSpace",
image_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
/*reservation=*/ image_reservation,
&error_str);
if (!image_map.IsValid()) {
LOG(ERROR) << error_str;
return nullptr;
}
CHECK(!live_bitmaps_.empty());
accounting::ContinuousSpaceBitmap live_bitmap(std::move(live_bitmaps_.back()));
live_bitmaps_.pop_back();
MemMap oat_map = MemMap::MapAnonymous("OatMap",
oat_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
/*reservation=*/ oat_reservation,
&error_str);
if (!oat_map.IsValid()) {
LOG(ERROR) << error_str;
return nullptr;
}
std::unique_ptr<FakeOatFile> oat_file(new FakeOatFile(oat_map.Begin(), oat_map.End()));
// Create image header.
ImageSection sections[ImageHeader::kSectionCount];
new (image_map.Begin()) ImageHeader(
/*image_reservation_size=*/ image_size,
/*component_count=*/ 1u,
/*image_begin=*/ PointerToLowMemUInt32(image_map.Begin()),
/*image_size=*/ image_size,
sections,
/*image_roots=*/ PointerToLowMemUInt32(image_map.Begin()) + 1,
/*oat_checksum=*/ 0u,
// The oat file data in the header is always right after the image space.
/*oat_file_begin=*/ PointerToLowMemUInt32(oat_map.Begin()),
/*oat_data_begin=*/ PointerToLowMemUInt32(oat_map.Begin()),
/*oat_data_end=*/ PointerToLowMemUInt32(oat_map.Begin() + oat_size),
/*oat_file_end=*/ PointerToLowMemUInt32(oat_map.Begin() + oat_size),
/*boot_image_begin=*/ 0u,
/*boot_image_size=*/ 0u,
/*boot_image_component_count=*/ 0u,
/*boot_image_checksum=*/ 0u,
/*pointer_size=*/ sizeof(void*));
return new FakeImageSpace(std::move(image_map),
std::move(live_bitmap),
std::move(oat_file),
std::move(oat_map));
}
private:
// Bitmap pool for pre-allocated fake bitmaps. We need to pre-allocate them since we don't want
// them to randomly get placed somewhere where we want an image space.
std::vector<accounting::ContinuousSpaceBitmap> live_bitmaps_;
};
class FakeSpace : public space::ContinuousSpace {
public:
FakeSpace(uint8_t* begin, uint8_t* end)
: ContinuousSpace("FakeSpace",
space::kGcRetentionPolicyNeverCollect,
begin,
end,
/*limit=*/end) {}
space::SpaceType GetType() const override {
return space::kSpaceTypeMallocSpace;
}
bool CanMoveObjects() const override {
return false;
}
accounting::ContinuousSpaceBitmap* GetLiveBitmap() override {
return nullptr;
}
accounting::ContinuousSpaceBitmap* GetMarkBitmap() override {
return nullptr;
}
};
TEST_F(ImmuneSpacesTest, AppendBasic) {
ImmuneSpaces spaces;
uint8_t* const base = reinterpret_cast<uint8_t*>(0x1000);
FakeSpace a(base, base + 45 * KB);
FakeSpace b(a.Limit(), a.Limit() + 813 * KB);
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
spaces.AddSpace(&a);
spaces.AddSpace(&b);
}
EXPECT_TRUE(spaces.ContainsSpace(&a));
EXPECT_TRUE(spaces.ContainsSpace(&b));
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), a.Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), b.Limit());
}
// Tests [image][oat][space] producing a single large immune region.
TEST_F(ImmuneSpacesTest, AppendAfterImage) {
ReserveBitmaps();
ImmuneSpaces spaces;
constexpr size_t kImageSize = 123 * kElfSegmentAlignment;
constexpr size_t kImageOatSize = 321 * kElfSegmentAlignment;
constexpr size_t kOtherSpaceSize = 100 * kElfSegmentAlignment;
std::string error_str;
MemMap reservation = ReserveImage(kImageSize + kImageOatSize + kOtherSpaceSize, &error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
MemMap image_reservation = reservation.TakeReservedMemory(kImageSize);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<FakeImageSpace> image_space(CreateImageSpace(kImageSize,
kImageOatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(image_space != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
const ImageHeader& image_header = image_space->GetImageHeader();
FakeSpace space(image_header.GetOatFileEnd(), image_header.GetOatFileEnd() + kOtherSpaceSize);
EXPECT_EQ(image_header.GetImageSize(), kImageSize);
EXPECT_EQ(static_cast<size_t>(image_header.GetOatFileEnd() - image_header.GetOatFileBegin()),
kImageOatSize);
EXPECT_EQ(image_space->GetOatFile()->Size(), kImageOatSize);
// Check that we do not include the oat if there is no space after.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
spaces.AddSpace(image_space.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
image_space->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
image_space->Limit());
// Add another space and ensure it gets appended.
EXPECT_NE(image_space->Limit(), space.Begin());
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
spaces.AddSpace(&space);
}
EXPECT_TRUE(spaces.ContainsSpace(image_space.get()));
EXPECT_TRUE(spaces.ContainsSpace(&space));
// CreateLargestImmuneRegion should have coalesced the two spaces since the oat code after the
// image prevents gaps.
// Check that we have a continuous region.
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
image_space->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space.Limit());
}
// Test [image1][image2][image1 oat][image2 oat][image3] producing a single large immune region.
TEST_F(ImmuneSpacesTest, MultiImage) {
ReserveBitmaps();
// Image 2 needs to be smaller or else it may be chosen for immune region.
constexpr size_t kImage1Size = kElfSegmentAlignment * 17;
constexpr size_t kImage2Size = kElfSegmentAlignment * 13;
constexpr size_t kImage3Size = kElfSegmentAlignment * 3;
constexpr size_t kImage1OatSize = kElfSegmentAlignment * 5;
constexpr size_t kImage2OatSize = kElfSegmentAlignment * 8;
constexpr size_t kImage3OatSize = kElfSegmentAlignment;
constexpr size_t kImageBytes = kImage1Size + kImage2Size + kImage3Size;
constexpr size_t kMemorySize = kImageBytes + kImage1OatSize + kImage2OatSize + kImage3OatSize;
std::string error_str;
MemMap reservation = ReserveImage(kMemorySize, &error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
MemMap image_reservation = reservation.TakeReservedMemory(kImage1Size + kImage2Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<FakeImageSpace> space1(CreateImageSpace(kImage1Size,
kImage1OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space1 != nullptr);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<FakeImageSpace> space2(CreateImageSpace(kImage2Size,
kImage2OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space2 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
// Finally put a 3rd image space.
image_reservation = reservation.TakeReservedMemory(kImage3Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<FakeImageSpace> space3(CreateImageSpace(kImage3Size,
kImage3OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space3 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_FALSE(reservation.IsValid());
// Check that we do not include the oat if there is no space after.
ImmuneSpaces spaces;
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space1 " << reinterpret_cast<const void*>(space1->Begin());
spaces.AddSpace(space1.get());
LOG(INFO) << "Adding space2 " << reinterpret_cast<const void*>(space2->Begin());
spaces.AddSpace(space2.get());
}
// There are no more heap bytes, the immune region should only be the first 2 image spaces and
// should exclude the image oat files.
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
space1->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
space2->Limit());
// Add another space after the oat files, now it should contain the entire memory region.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space3 " << reinterpret_cast<const void*>(space3->Begin());
spaces.AddSpace(space3.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
space1->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
space3->Limit());
// Add a smaller non-adjacent space and ensure it does not become part of the immune region.
// Image size is kImageBytes - kElfSegmentAlignment
// Oat size is kElfSegmentAlignment.
// Guard pages to ensure it is not adjacent to an existing immune region.
// Layout: [guard page][image][oat][guard page]
constexpr size_t kGuardSize = kElfSegmentAlignment;
constexpr size_t kImage4Size = kImageBytes - kElfSegmentAlignment;
constexpr size_t kImage4OatSize = kElfSegmentAlignment;
reservation = ReserveImage(kImage4Size + kImage4OatSize + kGuardSize * 2, &error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
MemMap guard = reservation.TakeReservedMemory(kGuardSize);
ASSERT_TRUE(guard.IsValid());
ASSERT_TRUE(reservation.IsValid());
guard.Reset(); // Release the guard memory.
image_reservation = reservation.TakeReservedMemory(kImage4Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<FakeImageSpace> space4(CreateImageSpace(kImage4Size,
kImage4OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space4 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
ASSERT_EQ(reservation.Size(), kGuardSize);
reservation.Reset(); // Release the guard memory.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space4 " << reinterpret_cast<const void*>(space4->Begin());
spaces.AddSpace(space4.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
space1->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
space3->Limit());
// Add a larger non-adjacent space and ensure it becomes the new largest immune region.
// Image size is kImageBytes + kElfSegmentAlignment
// Oat size is kElfSegmentAlignment.
// Guard pages to ensure it is not adjacent to an existing immune region.
// Layout: [guard page][image][oat][guard page]
constexpr size_t kImage5Size = kImageBytes + kElfSegmentAlignment;
constexpr size_t kImage5OatSize = kElfSegmentAlignment;
reservation = ReserveImage(kImage5Size + kImage5OatSize + kGuardSize * 2, &error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
guard = reservation.TakeReservedMemory(kGuardSize);
ASSERT_TRUE(guard.IsValid());
ASSERT_TRUE(reservation.IsValid());
guard.Reset(); // Release the guard memory.
image_reservation = reservation.TakeReservedMemory(kImage5Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<FakeImageSpace> space5(CreateImageSpace(kImage5Size,
kImage5OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space5 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
ASSERT_EQ(reservation.Size(), kGuardSize);
reservation.Reset(); // Release the guard memory.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space5 " << reinterpret_cast<const void*>(space5->Begin());
spaces.AddSpace(space5.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), space5->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space5->Limit());
}
} // namespace collector
} // namespace gc
} // namespace art